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Electronic properties of graphene/hexagonal-boron-nitride moiré superlattice
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We theoretically investigate the electronic structures of moiré superlattices arising in monolayer/bilayer
graphene stacked on hexagonal boron nitride (hBN) in the presence and absence of magnetic field. We develop
an effective continuum model from a microscopic tight-binding lattice Hamiltonian and calculate the electronic
structures of graphene-hBN systems with different rotation angles. Using the effective model, we explain the
characteristic band properties such as the gap opening at the corners of the superlattice Brillouin zone (mini-Dirac
point). We also investigate the energy spectrum and quantum Hall effect of graphene-hBN systems in uniform
magnetic field and demonstrate the evolution of the fractal spectrum as a function of the magnetic field. The
spectrum generally splits in the valley degrees of freedom (K and K ′) due to the lack of the inversion symmetry,
and the valley splitting is more significant in bilayer graphene on hBN than in monolayer graphene on hBN
because of the stronger inversion-symmetry breaking in bilayer.
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I. INTRODUCTION

Whenever two atomically-thin lattices are stacked in an
incommensurate manner, there always arises a superlattice
structure which modulates along the in-plane direction due
to the moiré interference between different lattice periods.
For example, a bilayer graphene stacked at an arbitrary angle
(twisted bilayer graphene) [1] exhibits a periodic variation
of the interlayer interaction in the form of moiré pattern, of
which the period can exceed the range of the atomic scale.
The electronic structures of twisted bilayer graphenes have
been intensively investigated, and it is shown that the material
properties, such as the Fermi velocity, the band energy scale,
and optical absorption spectrum, can be widely tunable with
respect to the twist angle [2–10]. Moreover, a huge unit cell
of moiré superlattice provides an opportunity to investigate
the self-similar, fractal evolution of the energy spectrum
[11] under the simultaneous influences of spatial period and
magnetic field [12–14].

Recently, the graphene stacked on hexagonal boron nitride
(hBN) has attracted much attention as another moiré superlat-
tice system [15–21]. Hexagonal boron nitride is isostructural
to graphene but has boron and nitrogen atoms at A and
B sublattices, respectively, leading to a finite energy gap
in the electronic structure [22,23]. When the graphene is
placed on the hBN substrate, the 1.8% lattice mismatch
between graphene and hBN introduces a superlattice potential
even in a nonrotated stacking. The transport properties in
graphene-hBN systems have been investigated experimentally,
and in particular, the fractal electronic structure was actu-
ally observed in magnetic fields [18–20,24]. The electronic
structures of graphene-hBN systems have been studied using
several theoretical approaches [25–37]. The effective model
was derived from the extension from the twisted bilayer
graphene [26], the symmetry based approach [28,29], and also
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from the density functional theory [32]. The energy spectrum
in the magnetic field in the presence of hBN-substrate was also
calculated [18–20,24].

In this paper, we theoretically investigate the electronic
structures of moiré superlattices arising in monolayer and
bilayer graphene stacked on the hBN layer with and without
magnetic field. We develop an effective continuum model start-
ing from a microscopic tight-binding lattice Hamiltonian and
calculate the electronic structures of graphene-hBN systems
with several different rotation angles. The model is expressed
in terms of a few parameters, which are analytically extracted
from the microscopic parameters in the given tight-binding
model. We verify the validity of the effective model by
demonstrating that the calculated band structure agrees with
that of the original tight-binding model. In the band structure
calculation, we find that we generally have a band gap at
the zone corners of the superlattice Brillouin zone (so-called
mini-Dirac point) due to the inversion symmetry breaking, and
the gap width is shown to be greater in the hole side than in
the electron side. We analytically explain the origin of the
electron-hole asymmetric gap opening in terms of the matrix
elements of the effective model.

We then study the energy spectrum and quantum Hall effect
of graphene-hBN systems in uniform magnetic fields and
demonstrate the evolution of the fractal spectrum as a function
of the magnetic field. We find that the spectrum generally splits
in the valley degrees of freedom (K and K ′) due to the lack of
the inversion symmetry. The valley splitting is more significant
in bilayer graphene on hBN than in monolayer graphene on
hBN, because the inversion symmetry is severely broken in
the bilayer case, where only a single layer out of two graphene
layers feels the effective potential from hBN.

The paper is organized as follow. In Sec. II, we derive an
effective continuum model for graphene on hBN structures
from a tight-binding Hamiltonian. On the basis of the effective
and tight-binding models, we study the band structures of
both monolayer and bilayer graphene on hBN in Sec. III. In
Sec. IV, we investigate the fractal energy spectrum and the
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quantum Hall effect of electrons under magnetic field. Finally,
conclusions are given in Sec. V.

II. THEORETICAL METHODS

A. Atomic structure and moiré lattice vectors

We consider a bilayer system composed of graphene and
hBN. Graphene is a two-dimensional honeycomb lattice of
carbon atoms, of which the unit cell includes A and B

sublattices. The hBN is a similar honeycomb lattice but
composed of nitride atom on A site and boron atom on B

site. The lattice constant (i.e., the distance between the nearest
A sites) of hBN is given by ahBN ≈ 0.2504 nm [38], which is
slightly larger than a ≈ 0.246 nm for graphene. We assume
that the interlayer distance between graphene and hBN is
constant at dG-hBN = 0.322 nm [39].

We define the stacking geometry of the graphene-hBN
bilayer system by starting from a nonrotated arrangement,
where a B site of graphene and a B site of hBN share the same
in-plane position (x,y) = 0, and the A-B bonds are parallel to
each other. We then rotate the hBN with respect to graphene by
an arbitrary angle θ around the origin. We define a1 = a(1,0)
and a2 = a(1/2,

√
3/2) as the lattice vectors of graphene. The

primitive lattice vectors of hBN become

ãi = MR ai (i = 1,2), (1)

where R is the rotation matrix by θ , and M = (1 + ε)1
represents the isotropic expansion by the factor 1 + ε =
ahBN/a ≈ 1.018. We define the reciprocal lattice vectors a∗

i

and ã∗
i for graphene and hBN, respectively, so as to satisfy

ai · a∗
j = ãi · ã∗

j = 2πδij .
The mismatch of the lattice periods of graphene and hBN

gives rise to the moiré interference pattern. An atom on
hBN located at position r has its counterpart on graphene at
R−1M−1 r. The displacement vector between two sites (from
graphene to hBN) is

δ(r) = (1 − R−1M−1)r. (2)

When δ(r) coincides with a lattice vector of graphene, then
graphene and hBN share the same phase of the lattice
periodicity (i.e., the corresponding positions of their hexagonal
unit cells) at the position r, in the same way as in the origin.
Therefore, the primitive lattice vector of the moiré superlattice
LM

i is obtained from the condition δ(LM
i ) = ai , which leads to

LM
i = (1 − R−1M−1)−1ai (i = 1,2). (3)

The corresponding moiré reciprocal lattice vectors satisfying
GM

i · LM
j = 2πδij are written as

GM
i = (1 − M−1R)a∗

i (i = 1,2), (4)

where we used R† = R−1 and M† = M . The moiré lattice
period LM = |LM

1 | = |LM
2 | is [17]

LM = 1 + ε√
ε2 + 2(1 + ε)(1 − cos θ )

a, (5)

and the angle from ai to LM
i is

φ = arctan

( − sin θ

1 + ε − cos θ

)
. (6)
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FIG. 1. (Color online) (a) Graphene-hBN moiré superlattice with
θ = 0◦ and an exaggerated lattice constant ratio ahBN/a = 10/9. Unit
cell is indicated by a hexagon. (b) Superlattice Brillouin zone with
the reciprocal lattice vectors spanned by GM

i .

When θ = 0◦, we have LM = 13.8 nm. Figure 1(a) shows the
atomic structure and unit cell of graphene-hBN moiré with θ =
0◦ and an exaggerated lattice constant ratio ahBN/a = 10/9.
Figure 1(b) is the superlattice Brillouin zone spanned by GM

i .

B. Tight-binding model

We consider the tight-binding model for pz atomic orbitals.
The Hamiltonian is written as

H = −
∑
i,j

t(Ri − Rj )|Ri〉〈Rj | +
∑

i

V (Ri)|Ri〉〈Ri |, (7)

where Ri and |Ri〉 represent the lattice point and the atomic
state at site i, respectively, V (Ri) is the on-site potential at site
i, and t(Ri − Rj ) is the transfer integral between the sites i

and j . We assume VC = 0 for carbon atom, and

VB = 3.34 eV, VN = −1.40 eV, (8)

for boron and nitride atoms, respectively [40].
For the transfer integral, we simply adopt the common

Slater-Koster-type function for any combinations of atomic
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species [3,41–43],

−t(R) = Vppπ

[
1 −

(
R · ez

R

)2]
+ Vppσ

(
R · ez

R

)2

,

Vppπ = V 0
ppπ exp

(
−R − a0

r0

)
, (9)

Vppσ = V 0
ppσ exp

(
−R − d0

r0

)
.

Here ez is the unit vector perpendicular to the graphene plane,
a0 = a/

√
3 ≈ 0.142 nm is the distance of neighboring A and

B sites on graphene, and d0 ≈ 0.335 nm is the interlayer
spacing of graphene. V 0

ppπ is the transfer integral between
the nearest-neighbor atoms of monolayer graphene and V 0

ppσ

is that between vertically located atoms on the neighboring
layers. We take V 0

ppπ ≈ −2.7 eV, V 0
ppσ ≈ 0.48 eV to fit the

dispersions of monolayer graphene and AB-stacked bilayer
graphene [3]. r0 is the decay length of the transfer integral,
and is chosen as 0.184a so that the next nearest intralayer
coupling becomes 0.1V 0

ppπ [3,42].
In the tight-binding band calculation, the lattice structure of

a graphene-hBN composite system must have a finite unit cell,
and for this purpose we take θ = 0 and rationalize the relative
lattice period ahBN/a ≈ 1.018 to 56/55. We do not need
the lattice rationalization in the continuum model argued in
the next section, where the atomic period a is smeared out
and the Hamiltonian is governed only by LM.

Figure 2(a) illustrates the Brillouin zone (BZ) folding where
ahBN/a is taken as 5/4 (instead of 56/55) for the illustrative
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FIG. 2. (Color online) (a) Brillouin zone (BZ) folding in
graphene-hBN moiré superlattice, where ahBN/a is taken as 5/4 for
the illustrative purpose. (b) Relative positions of the BZs centered at
K and K ′ valleys in the common BZ.

purpose. The solid large hexagon is the graphene’s BZ spanned
by a∗

i , and the small hexagon is the reduced BZ spanned by
GM

i . In the tight-binding model, K and K ′ are inseparable and
all the energy bands are folded in the common BZ. In the
continuum model, on the other hand, K and K ′ valleys are
treated independently, and the energy bands can be separately
plotted in the BZ centered at K (red, solid) and that centered
at K ′ (blue, dashed). Figure 2(b) shows the relation between
the separate BZs in the original common BZ.1

C. Effective continuum model

When the rotation angle θ is small and the moiré superlattice
period LM is much larger than the lattice constant a, the
interaction between the two graphene layers is dominated
by long-wavelength components, allowing one to treat the
problem in the effective continuum model. In the litera-
ture, the continuum approach has been introduced for the
twisted graphene-graphene bilayer [2,6,7,9,10] and also for the
graphene-hBN system [26,28,32]. Here we derive an effective
continuum model starting from the microscopic tight-binding
Hamiltonian using the approach developed for the twisted
graphene bilayer [10]. The effective Hamiltonian is expressed
in terms of a few parameters, which are directly extracted from
the microscopic parameters in the given tight-binding model.

The low-energy spectrum of graphene is dominated by the
states near K and K ′ points, and the effective Hamiltonian is
approximated by the effective Dirac cones centered at those
points [44–48]. In the present case, the K points of graphene
are located at Kξ = −ξ (2a∗

1 + a∗
2)/3 where ξ = ±1 for K and

K ′, respectively. The Hamiltonian of monolayer graphene near
Kξ is written as

HG ≈ −�vk · σ ξ , (10)

where k is the relative wave number measured from Kξ

point, and σ ξ = (ξσx,σy) with Pauli matrices σx and σy .
The parameter v is the band velocity of the Dirac cone,
which is given in the present tight-binding parametrization
as v ≈ (

√
3a/2�)V 0

ppπ (1 − 2e−a0/r0 ) ≈ 0.80 × 106 m/s [10].
K valleys of hBN are given by K̃ξ = −ξ (2ã∗

1 + ã∗
2)/3. The

effective Hamiltonian of hBN monolayer includes a similar
kinetic term linear to the relative wave number from K̃ξ ,
plus the on-site potential term VN and VB. This gives a
massive Dirac cone separated by an energy gap VB − VN

with a quadratic dispersion centered at K̃ξ . Here we adopt an
approximation in which we completely neglect the dispersion
of hBN by dropping k [26], i.e.,

HhBN ≈
(

VN 0

0 VB

)
. (11)

This is justified when θ is small, because Kξ and K̃ξ are then
close to each other, and the graphene’s electronic states near
Kξ are coupled only with the hBN’s states near K̃ξ by the
long-range interlayer coupling.

1The relative position of K and K ′ in the folded BZ actually depends
on the rounded value of LM/a in the modulo 3, and it is equivalent in
the exaggerated ahBN/a = 5/4 and in the original 56/55.
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The interlayer coupling term between graphene and hBN
can be derived in a similar manner to the twisted bilayer
graphene [10]. When θ is small, the local lattice structure
is approximately viewed as a pair of identical honeycomb
lattices shifted by a displacement vector δ with no rotation. δ

slowly depends on the position r in accordance with Eq. (2).
The interlayer coupling term for the nonrotated honeycomb
bilayer with a constant δ can be derived from a tight-binding
model in a straightforward manner, which is described in
the Appendix A. By replacing constant δ with δ(r), we
obtain the interlayer Hamiltonian for the moiré system. As a
result, the effective Hamiltonian of the graphene-hBN system
near the Kξ point is written as

HG-hBN =
(

HG U †

U HhBN

)
, (12)

with

U =
(

UA2A1 UA2B1

UB2A1 UB2B1

)
= u0

[(
1 1

1 1

)

+
(

1 ω−ξ

ωξ 1

)
eiξGM

1 ·r +
(

1 ωξ

ω−ξ 1

)
eiξ (GM

1 +GM
2 )·r

]
,

(13)

and ω = exp(2πi/3). Here the 4 × 4 matrix is written for the
basis of {A1,B1,A2,B2}, with A1,B1 for graphene, A2,B2 for
hBN. The only parameter u0 is defined by the in-plane Fourier
transform of the transfer integral t(R),

u0 = 1

S

∫
t(R + dz)e

−iKξ ·RdR, (14)

where S = |a1 × a2| is the unit cell area, dz = dG-hBN ez is the
perpendicular displacement between graphene and hBN, and
the integral in R is taken over an infinite two-dimensional
space. The u0 does not depend on ξ , and we have u0 ≈
0.152 eV in the present tight-binding parameters.

Since the energy band of hBN is gapped, the low-energy
spectrum near E ≈ 0 is dominated by graphene’s electronic
states. Then the effective Hamiltonian is even reduced to a
2 × 2 form by eliminating the hBN bases by the second order
perturbation. The result is

H(red)
G-hBN = HG + U †(−HhBN)−1U

≡ HG + VhBN, (15)

where the additional term VhBN is explicitly written as

VhBN = V0

(
1 0

0 1

)

+
{
V1e

iξψ

[(
1 ω−ξ

1 ω−ξ

)
eiξGM

1 ·r +
(

1 ωξ

ωξ ω−ξ

)
eiξGM

2 ·r

+
(

1 1

ω−ξ ω−ξ

)
e−iξ (GM

1 +GM
2 )·r

]
+ H.c.

}
, (16)

and

V0 = −3u2
0

(
1

VN
+ 1

VB

)
, (17)

V1e
iψ = −u2

0

(
1

VN
+ ω

1

VB

)
. (18)

In the present parameters, we have V0 ≈ 0.0289 eV, V1 ≈
0.0210 eV, and ψ ≈ −0.29(rad).

The effective term VhBN can be generally divided into the
scalar potential V eff , the vector potential Aeff , and the Dirac
mass term Meff as [26,28]

VhBN = V eff(r) + Meff(r)σz + evAeff(r) · σ ξ . (19)

For the present VhBN of Eq. (16), we have

V eff(r) = V0 − V1

3∑
l=1

cos αl(r)

Meff(r) =
√

3V1

3∑
l=1

sin αl(r) (20)

evAeff(r) = 2ξV1

3∑
l=1

(
cos[2π (l + 1)/3]

sin[2π (l + 1)/3]

)
cos αl(r)

with

αl(r) = GM
l · r + ψ + 2π

3
, (21)

where we defined GM
3 = −GM

1 − GM
2 so that the vectors GM

1 ,
GM

2 , and GM
3 are pointing to the trigonal symmetric directions.

The effective vector potential Aeff gives the effective magnetic
field,

Beff(r) = ∇ × Aeff = ξB0

3∑
l=1

cos αl(r), (22)

where

B0 = 2V1G
M

ev
cos φ. (23)

Here GM ≡ |GM
l | = (4π/

√
3)/LM, and φ is defined by Eq. (6).

The effective magnetic field is opposite between the different
valleys ξ = ±1 due to the time-reversal symmetry. In the
present model, the magnitude of the effective magnetic field is
B0 ∼ 0.022 T at θ = 0◦.

The lattice structure of the graphene-hBN hybrid system
is not invariant in the spatial inversion, and accordingly, the
effective Hamiltonian Eq. (15) lacks the inversion symmetry
as shown in the following. The spatial inversion changes r to
−r, and at the same time it swaps A and B sublattices and K

and K ′ valleys. If the system has the inversion symmetry, then
the Hamiltonian H (ξ )(k,r) yields to

H (−ξ )(k,r) = σx[H (ξ )(−k, − r)]σx. (24)

The Hamiltonian of pristine graphene, Eq. (10), satisfies
this condition. For the effective potential terms in Eq. (19),
the condition Eq. (24) is rewritten as V eff(−r) = V eff(r),
Meff(−r) = −Meff(r), and Aeff(−r) = Aeff(r). The effective

155406-4



ELECTRONIC PROPERTIES OF GRAPHENE/HEXAGONAL- . . . PHYSICAL REVIEW B 90, 155406 (2014)

E
ne

rg
y 

(e
V

)

Monolayer graphene / hBN (θ = 0)

(a) Tight-binding 

0.2

0.3

0.1

0

-0.1

-0.2

-0.3

(b) Continuum

Γ K K’ Γ X K Y X
Y’ X’ K’ Y’

X K
YXY

YX

E
ne

rg
y 

(e
V

)

0.2

0.1

0

-0.1

-0.2

(c) Continuum (K-valley)

K valleyK’ valley

FIG. 3. (Color online) Band structures of monolayer graphene/hBN system with θ = 0◦ calculated by (a) the tight-binding model and (b)
the effective continuum model, on the k-space path shown in Fig. 2(b). (c) Three-dimensional plot of the first and second electron and hole
bands of K-valley, calculated by the continuum model.

terms in Eq. (20) meet these conditions only when ψ +
2π/3 = nπ (n: integer), while it is not the case in the present
model (ψ + 2π/3 ≈ 0.57π ).

We can also consider AB-stacked bilayer graphene + hBN
monolayer system using the same approach. Here we number
the layer 1, 2 for graphene bilayer where the layer 1 is faced
to the hBN layer, and assume that the two graphene layers
are stacked so that B1 site and A2 site are vertically located
as shown in Fig. 10(a). After eliminating the hBN bases in
a similar manner, the effective Hamiltonian in the basis of
{A1,B1,A2,B2} is written as

HBLG-hBN =
(

HG + VhBN U
†
BLG

UBLG HG

)
, (25)

where UBLG is the interlayer coupling between AB-stacked
graphenes [49],

UBLG =
(

0 γ1

−�v3(ξkx − iky) 0

)
. (26)

The parameter γ1 represents the band splitting and v3 describes
the trigonal warping [49]. In the present tight-binding param-
eters, we have γ1 = 0.34 eV and v3 = 0.051 × 106m/s.

We have another possibility of graphene AB-stacking in
which A1 site and B2 site are vertically located, as shown in
Fig. 10(b). This is just 180◦ in-plane rotation of the previous
B1-A2 stacking, but they are not equivalent when hBN is added
to the third layer, since neither graphene bilayer nor hBN
are invariant in 180◦ rotation. The effective Hamiltonian for
the second case is obtained by interchanging the off-diagonal
blocks in Eq. (25). We find the energy spectra of the two
models make no qualitative difference, although they are not
identical. In the following calculation, we concentrate on the

case of Eq. (25), while the energy spectrum for the second case
is argued in Appendix B.

III. BAND STRUCTURE

First, we calculate the band structure of monolayer
graphene-hBN system at θ = 0◦, both in the tight-binding
model and in the effective continuum model. Figures 3(a)
and 3(b) compare the energy band structure calculated by the
tight-binding model (with ahBN/a = 56/55) and the effective
continuum model, respectively, on the k-space path shown in
Fig. 2(b). Here and in the following, the origin of the energy
axis is reset to the charge neutral point. We see that the agree-
ment between the two models is almost complete, showing
that the effective continuum model describes the detail of the
low-energy spectrum quantitatively well. Figure 3(c) is the
three-dimensional plot of the first and second electron and
hole bands of K-valley, calculated by the continuum model.

In the spectrum, we see a band splitting between the
first and the second electron (hole) bands, due to the band
anticrossing at the Brillouin zone boundary. The splitting is
fairly large in the hole side leading to an actual spectral
gap from E = −0.14 eV to −0.12 eV, while it is much
narrower in the electron side. This feature is consistent with
the experiments, showing that the hole side exhibits a stronger
resistance peak than the electron side [17,20,24]. At the central
Dirac point, there is a tiny energy gap about 2 meV, which
is proportional to the third order to the interlayer coupling
u0 [26]. It should be mentioned that the recent experiments
[19,50] reported that a much larger band gap opens at the
central Dirac point in graphene/hBN systems with small twist
angles. There are several theoretical approaches to explain the
origin of the band gap in terms of the strain effect [31–33]
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FIG. 4. (Color online) Band structures of a monolayer graphene/hBN system with (a) θ = 1◦, (b) 2◦, and (c) 5◦, calculated by the effective
continuum model.

and many-body interaction [31] which are not captured in the
present calculation.

The gap opening at the Dirac point and the zone corners
(mini-Dirac points) is all due to the absence of the inversion
symmetry in VhBN which was argued in the previous section.
Generally, the coexistence of the spatial inversion symmetry
and the time reversal symmetry requires vanishing of the Berry
curvature at any nondegenerate points in the energy band,
[51,52], and this guarantees the robustness of band touching
points in two-dimensional systems [53]. Therefore the original
Dirac point at K in intrinsic graphene is never gapped without
breaking either the time-reversal or the inversion symmetry.
If we have a band touching point under the time-reversal and
the inversion symmetries, it requires the existence of another
band touching point somewhere in the same energy band. This
is because if we only have a single Dirac point in the band,
the integrated Berry curvature over the superlattice Brillouin
zone except for that Dirac point becomes ±π (from the only
Dirac point), and never vanishes.2 In the present effective
Hamiltonian, when VhBN is modified by hand so as to have
the inversion symmetry (e.g., ψ is set to π/3), we actually see
that the adjacent bands touch at either of X, Y , or  and all the
energy bands are connected [28].

The electron-hole asymmetric splitting at the zone corners
can be explained by the matrix elements in the effective model.
The electronic states at zone corner X(Y ) are originally from
three k points on the equienergy surface of the intrinsic Dirac
cone, and they are mixed by the effective potential VhBN, as
shown by dashed arrows in Fig. 1(b). For example, the matrix

2In the twisted bilayer graphene, in contrast, the lowest energy band
has two Dirac points at zero energy (from two K points of the top
and bottom layer) so that we can have an energy gap between the first
and the second bands even though the system is inversion symmetric.

element between two X points (denoted as X1,X2) connected
by GM

2 in Fig. 1(b) are obtained by

〈X2| V1e
iξψ

(
1 ωξ

ωξ ω−ξ

)
|X1〉, (27)

where |X1〉 and |X2〉 are Dirac spinors corresponding to the
k points, and the matrix in the middle comes from the term
having eiξGM

2 ·r in Eq. (16). The matrix elements connecting
the triplets are shown to be all identical, and their amplitude
determines the energy scale of the band splitting. In θ = 0◦, the
absolute value of the matrix elements in units of V1 are shown
to be 3/2 and 2 for X and Y on the hole side, respectively, and
they are actually larger than those for the electron side, 1/2
and 0 for X and Y , respectively.

The continuum model can be easily extended to other twist
angles, which are generally hard to treat in the tight-binding
model due to the lattice incommensurability. Figure 4 plots the
band structures of monolayer graphene + hBN with (a) θ = 1◦,
(b) 2◦, and (c) 5◦, calculated by the continuum model. We
see that the band structures all look similar, while the energy
scale expands in increasing θ , according to the increase of
the characteristic scale 2π�v/LM. At the same time, the band
splitting, which is of the order of u0, becomes relatively small
compared to the bandwidth.

Figure 5 plots the band structure of AB-stacked bilayer
graphene on a hBN system stacked at θ = 0◦. We see good
agreement between the tight-binding model and the continuum
model. Unlike a monolayer graphene-hBN system, we observe
a relatively large spectral gap about 40 meV at zero energy,
which is accompanied by flat band edges. This is actually
due to the interlayer potential difference in bilayer graphene,
which is caused by V0 terms in VhBN for the layer 1. The width
of the central gap should also depend on the gate electric
field and other electrostatic environments, which contribute
to the interlayer potential asymmetry. We also see a band
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FIG. 5. (Color online) Plots similar to Fig. 3, calculated for AB-bilayer graphene/hBN system with θ = 0◦.

gap between the first band and the second band, and it is
larger on the hole side than on the electron side similar to
the monolayer graphene-hBN system. The recent experiment
observed consistent features where a stronger resistance peak
appeared on the hole side [24].

IV. SPECTRUM IN MAGNETIC FIELD

We calculate the energy spectrum of monolayer graphene
on a hBN system under a uniform perpendicular magnetic
field. Here we use the tight-binding lattice Hamiltonian [12]
with a Peierls phase

φij = − e

�

∫ i

j

A(r) · dr (28)

between sites i and site j . Here A(r) = (0,Bx,0) is the vector
potential giving a uniform magnetic field B perpendicular
to the layers. We take the wave functions of low-lying
Landau levels of monolayer in |ε| � 1.0 eV, and compose the
Hamiltonian matrix by writing H in terms of the reduced
basis [12]. For simplicity, we neglected spin Zeeman splitting
throughout the calculation.

Figure 6(a) shows the energy spectrum of graphene
monolayer on hBN with θ = 0◦, as a function of magnetic
field strength, with the magnetic flux per a superlattice unit
cell � measured in units of �0 = h/e. The quantized Hall
conductivity inside the energy gaps are represented by numbers
in units of −e2/h as well as shading filling the gaps. While
we concentrate on θ = 0◦ in the following discussions, the
spectrum should look similar in other twist angles θ (<10◦)
except for the characteristic energy scale, as naturally expected
from the similarity in the zero-field band structures in Fig. 4.

On the electron side, the spectrum can be viewed as
the Landau levels of intrinsic monolayer graphene with the
fine structure inside, while on the hole side, in contrast, the
monolayer’s Landau levels are completely reconstructed into
the fractal spectrum. This feature coincides with the zero-field

band structure, Fig. 3, in which the hole side is strongly
modified by a large gap opening at the mini-Dirac point.
Figure 6(b) shows the spectrum near zeroth Landau level. The
width of the modulated Landau level rapidly grows in the high
field region B > 10 T , where the minigap structure inside the
level becomes significant.

In a pristine monolayer graphene, the Landau levels are
completely valley (K , K ′) degenerate because of the intrinsic
inversion symmetry [54]. As a result, the quantized Hall
conductivity can only have the values of 4m + 2 (m ∈ Z),
where the factor 4 is from the spin-valley degeneracy. In
monolayer on a hBN system, the valley degeneracy is broken
by the inversion asymmetric VhBN. In Fig. 6(d), we plot the
energy spectrum with different shadings (colors) for K and K ′
valleys. We can see that the degeneracy between K and K ′
levels is actually lifted, and the levels from different valleys
simply cross each other, since the two valleys are hardly
hybridized by the superlattice potential. As a consequence of
the valley splitting, we have the Hall conductivity 4m outside
the standard sequence of monolayer graphene, as seen in
Figs. 6(a) and 6(b).

When the Dirac point in graphene is gapped by a time-
reversal symmetric potential, generally, the zeroth Landau
level of one valley sticks to the top of the gap, while that of the
other valley sticks to the bottom of the gap [55]. Therefore, a
larger energy gap in the Dirac spectrum is always accompanied
by the larger valley splitting in the magnetic field. In Fig. 6(d),
we actually see a large valley splitting of ∼20 meV at the
hole-side mini-Dirac point (marked by arrows), which exactly
corresponds to the energy gap in the zero-field band structure,
Fig. 3. Similarly, the valley splitting of the zeroth Landau
level in small B corresponds to a tiny energy gap 2 meV at the
central Dirac point.

Figure 6(c) is the Wannier diagram [56], which indicates the
positions of energy gaps in the space of charge density n and
magnetic field B. The thickness of each line is proportional to
the width of the corresponding energy gap. In the Wannier
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FIG. 6. (Color online) Energy spectrum of monolayer graphene on a hBN system with θ = 0◦ as a function of magnetic field strength in
(a) wide and (b) narrow ranges of energy. In each figure, the quantized values of Hall conductivity inside energy gaps are indicated by numbers
in units −e2/h as well as shading filling the gaps. The Hall conductivity of the gray area cannot be determined by the present calculation. (c)
Wannier diagram calculated for the energy spectrum in (a). Each gap is plotted as a line of which thickness is proportional to the gap width,
and the color represents the quantized Hall conductivity. The color map for the Hall conductivity is the same as that in (a) and (b), except that
the black circle represents the gap with Hall conductivity 0 in (c). (d) Energy spectrum originating from monolayer’s K region (black) and K ′

region (red).

diagram, each single energy gap always follows a linear
trajectory [57,58]

n

n0
= t

�

�0
+ s, (29)

where n is the electron density, n0 = 1/S is the electron density
per each Bloch band, and t and s are topologically invariant
integers. The quantized Hall conductivity is given by −te2/h

[57,58]. In the vicinity of the Dirac point at weak-field regime,
we see a conventional Landau fan diagram where the gap

trajectories originate from the charge neutral point at B = 0
(i.e., s = 0). In a fractal band regime, on the other hand, we
see a different series of trajectories having nonzero y intercept
(i.e., s = 0) at B = 0, which are an evidence of Hofstadter’s
spectrum [24]. In accordance with the large gap opening at
the mini-Dirac point of the hole side, we have strong signals
from the mini-Landau fan centered at n/n0 = −4. At the cross
points with the conventional Landau fan and mini-Landau fan
(e.g., n/n0 = −2 at �/�0 = 1) we have the second generation
of the Landau fan as a part of the recursive structure.
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FIG. 7. (Color online) Plots similar to Fig. 6 for AB-stacked bilayer graphene on a hBN system with θ = 0◦.

Figures 7(a) and 7(b) show the energy spectrum of AB-
stacked bilayer graphene on a hBN system with θ = 0◦
and quantized Hall conductivity in the magnetic field. The
spectrum in the low-energy region |E| < 0.1 eV exhibits a
complicated fractal structure, corresponding to the strong
modification in the zero-field band structure. In the valley
separated spectrum, Fig. 7(d), the valley splitting is much
greater than in the monolayer-hBN case. The spectra of K

and K ′ exhibit completely different configurations, and cannot
be regarded as a shifted pair of the same spectrum. In a
bilayer-hBN system, only a single layer out of two graphene
layers feels the effective potential of hBN, and it severely
breaks the inversion symmetry which swaps the two layers. In
a monolayer-hBN system, in contrast, the inversion symmetry
breaking solely comes from r dependence of VhBN(r), and the
effect is relatively minor.

The complicated level structure in a bilayer-hBN system
can be better understood by comparing the spectrum to
Fig. 8, which plots the Landau levels of the bilayer graphene
with interlayer asymmetric potential V0 and 0 for the layer
1 and 2, respectively (the origin of the energy axis is set to
the gap center). This corresponds to the situation where we
neglect all the spatially-modulating terms in VhBN, leaving
only the constant term V0. The central energy gap and the
valley splitting of n = −1,0 levels roughly coincide with
the properties in the original spectrum. In addition, among the
four levels (n = −1,0 at K and K ′) which comprise the lowest
Landau levels, only the two levels of K ′ evolve into a clear
fractal spectrum, and the other two of K remain almost intact.
This is because the wave function of the zero-energy Landau
levels (n = −1,0) in bilayer graphene are layer polarized
depending on the valley: K levels are localized on layer 2
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FIG. 8. (Color online) Landau level structure in bilayer graphene
with the interlayer potential asymmetry ±V0/2.

while K ′ levels are on layer 1. Since the hBN layer influences
layer 1, the fractal evolution of the spectrum is much clearer in
K ′ than K . In K valley, we see that the n = −1 level remains
almost Landau level-like, while the n = 0 level exhibits a small
minigap structure. This is because the wave function of n = −1
is almost completely localized on layer 2, while the state with
n = 0 has small amplitude on layer 1, which is proportional to
interlayer asymmetric potential V0 [55,59].

The lift of valley degeneracy directly affects the quantized
value of the Hall conductivity in Figs. 7(a), 7(b), and 7(c). In
regular bilayer graphene, the Hall conductivity can take the
values of 4m (m ∈ Z), where the factor 4 is from the spin-
valley degeneracy. In moiré system 4m + 2 can also appear
due to the valley splitting [24].

It should be noted that the Hofstadter butterfly in this
work arises from the competition between the long-period
moiré superlattice potential (of the order of 1–100 nm) and
magnetic field. On the other hand, there is another rich spectral
structure which comes from the competition between the
atomic lattice period of constituent layers (order of 0.1 nm)
and magnetic field [60,61]. Considering the condition for the

δ

layer 1 layer 2

FIG. 9. (Color online) Nonrotated, shifted bilayer of tight-
binding honeycomb lattices with the same lattice constant.

fractal spectrum, Ba2/(h/e) ∼ 1, the latter effect becomes
conspicuous in a relatively high magnetic field range. In the
present calculation, both interference effects are fully taken
into account in the tight-binding Hamiltonian, while the effect
of the atomic periodicity is almost negligible in the magnetic
range of 0–50 T considered here.

V. CONCLUSION

We calculated the band structures of moiré systems com-
posed of monolayer and bilayer graphene on the hBN layer.
We developed an effective continuum theory in the framework
of a tight-binding method and analytically investigated several
characteristic properties in the band structure. We showed that
the inversion-asymmetric term generally opens an energy gap
both at the intrinsic Dirac point and the mini-Dirac point,
and the gap width exhibits a strong electron-hole asymmetry.
We investigated the energy spectrum and quantum Hall effect
of graphene-hBN systems in uniform magnetic field, and
demonstrated the evolution of the fractal spectrum as a function
of the magnetic field. The lack of the inversion symmetry is
responsible for the breaking of the valley degree of freedom.
The valley splitting is more significant in bilayer graphene
on hBN than in monolayer graphene on hBN because of
the stronger inversion-symmetry breaking in a bilayer-hBN
system.
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APPENDIX A: INTERLAYER COUPLING IN
NONROTATED BILAYER OF HONEYCOMB LATTICES

Here we derive the interlayer coupling Hamiltonian for
a nonrotated, shifted bilayer of tight-binding honeycomb
lattices. We assume the two layers are identical honeycomb
lattices with the same lattice constant, and they are arranged
in parallel fashion with a constant in-plane displacement δ

and interlayer spacing d, as illustrated in Fig. 9. The unit cell
includes Al and Bl for the layer l = 1,2. We assume that the
transfer integral between any two sites is given by Eq. (9).

We define the Bloch wave basis of a single layer as

|k,Xl〉 = 1√
N

∑
RXl

eik·RXl |RXl
〉, (A1)

where k is the Bloch wave vector, X = A,B is the sublattice
index, l = 1,2 is the layer index, and N is the number of
monolayer graphene unit cells (containing a single pair of A

and B sites) in the whole system. The interlayer matrix element
is then written as

UA2A1 (k,δ) ≡ 〈k,A2|H |k,A1〉 = u(k,δ),

UB2B1 (k,δ) ≡ 〈k,B2|H |k,B1〉 = u(k,δ),
(A2)

UB2A1 (k,δ) ≡ 〈k,B2|H |k,A1〉 = u(k,δ − τ 1),

UA2B1 (k,δ) ≡ 〈k,A2|H |k,B1〉 = u(k,δ + τ 1),
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FIG. 10. (Color online) (a) and (b): two different configurations of AB-stacked bilayer graphene on a hBN layer. (c) Electronic structures
of the configurations (a) (dotted blue) and (b) (solid red).

where

u(k,δ) =
∑
n1,n2

−t(n1a1 + n2a2 + dz + δ)

× exp[−ik · (n1a1 + n2a2 + δ)], (A3)

and τ 1 = (−a1 + 2a2)/3 is a vector connecting the nearest
A and B sublattices, and dz = dG-hBN ez is the perpendicular
displacement between graphene and hBN.

The function u(k,δ) is obviously periodic in δ with periods
a1 and a2, and it is then Fourier transformed as

u(k,δ) =
∑

m1,m2

t̃(m1a∗
1 + m2a∗

2 + k)

× exp[i(m1a∗
1 + m2a∗

2) · δ], (A4)

where t̃(q) is the in-plane Fourier transform of t(R) defined by

t̃(q) = 1

S

∫
t(R + dz)e

−iq·RdR, (A5)

with S = |a1 × a2|, and the integral in R is taken over an
infinite two-dimensional space. In the present tight-binding
model, t(R) exponentially decays in R � r0, so that the Fourier
transform t̃(q) decays in q � 1/r0. In Eq. (A4), therefore, we
only need to take a few Fourier components within |m1a∗

1 +
m2a∗

2 + k| � O(1/r0).
In the following we only consider the electronic states near

Kξ point, and then we can approximate u(k,δ) with u(Kξ ,δ).
Equation (A4) then becomes

u(Kξ ,δ) ≈ u0[1 + eiξa∗
1 ·δ + eiξ (a∗

1+a∗
2)·δ], (A6)

with

u0 = t̃(Kξ ), (A7)

which gives Eq. (14). In the present tight-binding parameter,
we have u0 ≈ 0.152 eV. The second largest Fourier component
is t̃(2Kξ ) ≈ 0.0025 eV and is safely neglected.

Finally, Eq. (A2) becomes

UA2A1 = UB2B1 = u0[1 + eiξa∗
1 ·δ + eiξ (a∗

1+a∗
2)·δ],

UB2A1 = u0[1 + ωξeiξa∗
1 ·δ + ω−ξ eiξ (a∗

1+a∗
2)·δ], (A8)

UA2B1 = u0[1 + ω−ξ eiξa∗
1 ·δ + ωξeiξ (a∗

1+a∗
2)·δ].

In the moire system, δ is not constant but slowly depends on
the position r. By replacing δ in Eq. (A8) with δ(r) in Eq. (2),
we obtain the interlayer Hamiltonian U for the moiré system,
Eq. (13). Here we used the relation a∗

i · δ = GM
i · r.

APPENDIX B: AB BILAYER AND BA BILAYER WITH HBN

For AB-stacked bilayer + hBN system, we have two
different stacking geometries illustrated by Figs. 10(a) and
10(b), which we call type 1 and type 2, respectively. The
effective Hamiltonian for type 1 is given by Eq. (25), and for
type 2 is

H(type2)
BLG-hBN =

(
HG + VhBN UBLG

U
†
BLG HG

)
, (B1)

which is actually distinct from Eq. (25) in that the off-diagonal
blocks are interchanged. Figure 10(c) compares the energy
spectra of type 1 and type 2, calculated by the tight-binding
model and the effective continuum model. There are small but
finite differences in the band structures, especially at the BZ
boundary.
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McCann, and V. I. Fal’ko, Phys. Rev. B 89, 075401 (2014).

[31] M. Bokdam, T. Amlaki, G. Brocks, and P. J. Kelly, Phys. Rev.
B 89, 201404 (2014).

[32] J. Jung, A. Raoux, Z. Qiao, and A. H. MacDonald,
arXiv:1312.7723.

[33] P. San-Jose, A. Gutiérrez-Rubio, M. Sturla, and F. Guinea, Phys.
Rev. B 90, 075428 (2014).

[34] J. C. Song, P. Samutpraphoot, and L. S. Levitov,
arXiv:1404.4019.

[35] B. Uchoa, V. N. Kotov, and M. Kindermann, arXiv:1404.5005.
[36] M. Neek-Amal and F. Peeters, Appl. Phys. Lett. 104, 041909

(2014).
[37] L. Brey, Phys. Rev. Applied 2, 014003 (2014).
[38] L. Liu, Y. P. Feng, and Z. X. Shen, Phys. Rev. B 68, 104102

(2003).
[39] G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and

J. van den Brink, Phys. Rev. B 76, 073103 (2007).
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