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A low-energy theory for the helical metallic states, residing on the surface of cubic topological Kondo
insulators, is derived. Despite our analysis being primarily focused on a prototype topological Kondo insulator,
samarium hexaboride (SmBg), the surface theory derived here can also capture key properties of other heavy
fermion topological compounds with a similar underlying crystal structure. Starting from an effective mean-field
eight-band model in the bulk, we arrive at a low-energy description of the surface states, pursuing both analytical
and numerical approaches. In particular, we show that helical Dirac excitations occur near the T' point and the
two X points of the surface Brillouin zone and generally the energies of the Dirac points exhibit offset relative
to each other. We calculate the dependence of several observables (such as bulk insulating gap, energies of the
surface Dirac fermions, their relative position to the bulk gap, etc.) on various parameters in the theory. We also
investigate the effect of a spatial modulation of the chemical potential on the surface spectrum and show that this
band bending generally results in “dragging down” of the Dirac points deep into the valence band and strong
enhancement of Fermi velocity of surface electrons. Comparisons with recent ARPES and quantum oscillation

experiments are drawn.
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I. INTRODUCTION

Samarium hexaboride (SmBg) has recently emerged as a
prominent candidate for an ideal time-reversal- and inversion-
invariant topological insulator—a material which is insulating
in the bulk, but hosts topologically protected metallic sur-
face [1-9]. The hallmark signatures of these gapless surface
states are the helical spin structure and their robustness against
time-reversal invariant perturbations [10,11]. In SmBg, the
hybridization between the conduction electrons occupying d
orbitals and predominantly localized electrons residing on f
orbitals drives an insulating gap opening at low temperatures.
What also makes SmByg special is the presence of strong
on-site Hubbard interaction between the samarium f electrons
[12-14]. In particular, the Hubbard interaction is strong
enough to favor the valence configuration with odd number of
electrons, 4 £ and the hybridization between the conduction
and f electrons drives the system into a mixed-valence regime
between 4 £ and 4 f© configurations [15].

While this theoretical work mainly concentrates on SmBg,
we allude to its possible generalization to address electronic
properties of other cubic Kondo insulators (including other
possible topological insulators in hexaboride family). Due to
the presence of the strong electronic correlations in SmBg
all the recent analytical approaches of computing the Z,
topological invariant are based on either effective low-energy
approximations [1,2,16] or various types of large- N mean-field
theories [17-20]. Generally, the main outcome of these studies
is that a topologically nontrivial insulating state emerges due
to the odd number of d- and f-band inversions at the high-
symmetry points of the Brillouin zone (BZ). First-principle
calculations [21] as well as studies based on dynamical
mean-field theory (DMFT) [22] also confirm this result [23].
In addition, the existence of various topologically distinct
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phases has been predicted from the DMFT analysis, which, for
example, can be accessed by continuously tuning the strength
of the on-site Hubbard interaction of the f electrons from
Usr =0to Ugy — oo. Since the transition between the two
topologically distinct states must necessarily be separated by
a gapless phase, trivial band insulators and topological Kondo
insulators cannot be connected adiabatically [24,25].

The appearance of topologically nontrivial states in the
f electron insulators stems from the fact that the hybridization
between the d and the f electrons necessarily needs to be
an odd function of momentum to preserve the time-reversal
and inversion symmetries. Therefore, the hybridization matrix
element vanishes at the high-symmetry points of the BZ.
Consequently, the Z, topological invariant is determined by
the relative position of the renormalized f electron (due to
the Hubbard interaction) and conduction d electron energies
computed at the high-symmetry points of the BZ (see the
Appendix). In particular, for a wide range of the parameters,
corresponding to an average valence on samarium, even and
odd parity bands invert at the three X points of the BZ,
suggesting that a three-dimensional topological insulating
state can be realized in SmB¢. Note that band inversion at
the X points implies the existence of three Dirac points on
the surface; one at T (in red) and two at X and Y (in blue)
points of the two-dimensional (2D) surface BZ, as shown in
Fig. 1, which has been confirmed experimentally through a
number of ARPES measurements [6,7,26-30]. Interestingly,
a similar surface band structure has been observed in an-
other hexaboride compound—YbB¢ [31-33], although the
underlying interaction-induced mechanism of the possible
topological behavior has been argued to be different from
Kondo hybridization [32,34].

In this paper we derive an effective model for the surface
states in prototype cubic topological Kondo insulators, on the
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FIG. 1. (Color online) Left: position of the Dirac points at the T’
and X relative to the valence and conduction bands. It is in principle
possible to drag down one or both the Dirac points into the valence
band, by tuning some parameters in the effective theory, defined in
Eq. (5) or introducing a band bending potential, shown in Eq. (50). E¢
and E g are the energies of the surface Dirac fermions at I and X of the
surface BZ (see right panel). The dotted line represents a generic offset
among these two Dirac points. The arrows represent the helical texture
of the spin of the surface states. For the sake of simplicity we here
assume that all three surface Dirac cones have identical chirality, and
the corresponding spin-texture constitutes vortex in the momentum
space. Right: arepresentative surface BZ, when the chemical potential
(4y) at the surface resides in between two Dirac points at I' and X
points, i.e., Ex < uy < Er. The red and blue pockets, respectively,
correspond to hole- and electronlike Fermi pockets. However, nature
of the Fermi pockets depends on the location of w, with respect to
Er and E.

surfaces perpendicular to the main axes. Our effective surface
model is derived from the bulk Hamiltonian, which takes into
account a realistic band structure of SmBg [19]. Otherwise,
near all three Dirac points, namely at the T', X, and Y points
of the surface BZ, the effective low-energy description of
the surfaces is captured by two-dimensional massless Dirac
Hamiltonians. In the vicinity of the T = (0,0) point it goes as

H.. = vi(ok, — oyky), (D)
representing an isotropic conical dispersion, where k is
measured from the T point. On the other hand, in the vicinity
of the X = (7,0) and Y = (0,7) points, the two-dimensional
Dirac Hamiltonian is

HY, = (v]ocke — vioyky) 2
for j = X,Y and generically v} # v}. In addition, we show
that v¥ = v?, and v¥ = v, reflecting the underlying cubic
symmetry in the bulk of the system. Therefore, in the vicinity
of X and Y points the conical Dirac dispersions are anisotropic.
A representative two-dimensional surface BZ and the helical
spin texture of low-energy quasiparticles are shown in Fig. 1.
Although the spin textures near I', X, and Y in Fig. 1
correspond to vortices in the surface BZ, the ones associated
with Hp, Hz 3 in Egs. (1) and (2), respectively, correspond
to antivortices in the momentum space. Nevertheless, both
situations are protected by bulk strong Z, topological invariant.
These features are in qualitative agreement with a number
of ARPES measurements in SmBg, and we obtain such
low-energy description of the surface state both analytically
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as well as numerically (see Sec. III). A subsequent mean-field
theory approximation for the bulk Hamiltonian is controlled
by the parameter 1/N with N =4 for SmB¢ corresponding
to the fourfold degenerate f-orbital multiplet [19]. We here
also determine the effective Fermi velocities, location of the
Dirac points (Er and Ey in Fig. 1), and penetration depth
of the surface states for each of the three Dirac cones. When
possible, we obtain closed analytical expressions for these
quantities as a function of various microscopic parameters,
appearing in the effective theory, describing a bulk Kondo-
insulating state. In particular, we find that the values of the
Fermi velocities are primarily controlled by the renormalized
strength of the hybridization amplitude (due to the particle-
hole anisotropy in the bulk) between d and f states on the
surface.

Our method of finding the effective theory on the surface is
similar to the one used to derive the model for surface states
in Bi-based topological insulators [35-38]—systems where
electronic correlations are weak. Our main assumption in the
first part of the paper is that the self-consistent mean-field
theory for the “bulk plus surface” system will not significantly
modify the values of the hybridization and chemical potentials
compared to the mean-field theory for the bulk system only.
In other words, we assume there that the boundary does not
significantly affect the parameters of the bulk. However, the
nonuniversal boundary effects resulting in band bending are
also considered later (see Sec. IV), by introducing a spatially
modulated profile of the chemical potential for the f electrons,
and it is demonstrated that the band bending can qualitatively
modify the surface band structure [39—44]. We here show that
in the presence of spatially modulated chemical potential, the
Dirac points at T' and X points can be gradually dragged
down into the valence band, when its characteristic decay
length into the bulk (Ag) and/or its magnitude (Up) is large
enough. In addition, we find that the Dirac point at the I" point
gets immersed into the valence band for relatively weaker
modulation of the chemical potential, while that near the X
point continues to live inside the bulk Kondo insulating gap
for a wider range of A g and U (see Figs. 7 and 8). Such peculiar
behavior arises from the fact that the penetration depth for the
surface state near the " point is smaller than that near the X
point.

This paper is organized as follows. In the next section
we formulate the effective tight-binding model for cubic
topological Kondo insulators, which may serve as minimal
model in various hexaboride compounds at low energies, and
discuss the bulk band structure. In Sec. III, we explicitly
derive the surface states and obtain surface Hamiltonians.
In this section, we also present the band structure of the
surface BZ, and demonstrate the explicit dependence of
various quantities such as Fermi velocity, energies of the Dirac
fermions, penetration depths, etc., of the surface states on the
band parameters. Section IV is devoted to address the effects
of spatial modulation of the chemical potential or the band
bending on the structure of the surface states. In Sec. V we
summarize our main findings and compare the results with
recent ARPES and quantum oscillation measurements. We
show the computation of the bulk topological invariant within
the framework of our effective minimal model in the Appendix.
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II. MODEL HAMILTONIAN IN BULK

Let us first introduce the effective tight-binding or mean-
field model for the cubic Kondo insulators, with our focus
being on a prototype system, SmB¢ [19]. SmB¢ has a simple
cubic structure with a cluster of six boron (B) atoms located
at the center of the unit cell, acting as spacers which mediate
electronic hopping among the samarium (Sm) sites. Recent
“LDA + Hubbard-U” band structure calculations suggest that
the Kondo hybridization is strongest between samarium 4 f
orbitals and dispersing d bands which form electron pockets
around the X points of the BZ [45]. Based on these predictions,
we wish to promote here an effective model for a family of
topological Kondo insulators, which share similar underlying
cubic symmetry of SmBg, such as PuBg, for example [46].

A. Orbital structure and cubic symmetry

Due to the underlying cubic symmetry of the local
crystalline field environment of a samarium ion, the fivefold
degenerate d orbitals get split into doubly degenerate e, and
triply degenerate t,, orbitals. The cubic environment also
splits the J =5/2 f orbitals into a I'; doublet and a I'g
quartet. Raman spectroscopy studies show that the dominant
hybridization channel involves f states of the I's quartet
and the conduction e, states, e~ + 4f5(Fé°‘)) = 4f6 [47]. Tt
should be noted that the e, doublet is composed of d,>_ > and
ds,2_,2 orbitals, while the F;D’) (¢ = 1,2) f quartetis composed
of the following linear combination of orbitals:

e = 23+ i) IrQ) =12l @)

From the above symmetry analysis on the cubic crystal field
driven splitting of the d and the f orbitals, it follows that the
minimal tight-bonding model must involve the I'g quartet of
the localized f states, and the e, quartet of the dispersive
d electrons, which besides being Kramers degenerate, are
enriched by additional twofold orbital degeneracy. Ultimately,
the hybridization among the d and the f electrons gives rise to
the Kondo insulating phase. Therefore, a minimal Hamiltonian
representing a three-dimensional cubic topological insulator,
e.g., SmBg, can essentially be described in terms of an eight
component spinor, organized according to W' = [Vg, /],
where W, are four-component spinors defined as

U = [l 0y by oy ], 4)

for / =d, f. Here 1,2 correspond to two orbitals of d and f
electrons, and 1 , | are two projections of spin. For the sake of
notational simplicity, we use ¢ = 1, for the Kramers doublet
components of the f multiplet as well.

It should be noted that here we have taken into account
only the I'g quartet and neglected I'; doublet, whereas various
recent numerical studies have considered both multiplets of the
f electrons [23]. However, we strongly believe that inclusion
of the hybridization of d electrons with I'; doublet can only
lead to some quantitative, but nonuniversal corrections for
various quantities. In the Appendix we have demonstrated
that hybridization with I's quartet is sufficient to produce a
topologically nontrivial bulk insulating gap. Hence the model
we study serves the purpose of a minimal description that
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can succinctly capture the topologically robust features of this
system, including the surface states, about which in a moment.

B. Mean-field Hamiltonian

At the mean-field level the full Hamiltonian of the
describing Kondo insulators contains single particle terms
as well as the Hubbard interaction term (Uyy) for the f
electrons. In the limit of infinitely strong Hubbard repulsion
(i.e., Uys — 00) the doubly occupied f electron states are
projected out and the corresponding projection operators
are replaced with their mean-field values, which are then
determined self-consistently. As a result, within the mean-field
approximation, the effective Hamiltonian is defined through
the following three terms: the hopping elements for the con-
duction d electrons and f quasiparticles, and the hybridization
between these two species, however, with the renormalized
hopping and hybridization amplitudes [19]. Therefore, the
eight-dimensional effective bulk Hamiltonian describing cubic
topological Kondo insulators conforms to the generic form

H(k)

Vit &)

Vi(k
Hyuk (k) = ( B )),

H (k)

where HY(k), H/(k), and V,(k) are four-dimensional
matrices. For [ = d and f, H'(Kk) is given by

$1(K) + mda(k)

u—m@®)
(1 — n)gs(k) ’

H’(k):e’i4+t’( . .
no1(K) + ¢a(k)

(6)

where t¢ and t/ are the hopping amplitudes and €4 and
e/ are the corresponding chemical potentials for the
d and f electrons, respectively. In the above equation,
(]3 i(K) = 60¢;(k), where 6 and i4 = 6y ® &y are respectively
the two- and four-dimensional identity matrices. Different
components of the ¢ (k) functions are

1
d)l(k) = E(Cx + Cy + 461),

3 3
bo(k) = S(er +cy). pak) = %—(Cx —¢) (D

with ¢, = cosk,, for o = x,y,z (in what follows next we
choose the units in which the lattice spacing a = 1). The
hybridization matrix reads as

V[ 36, — 6y)
al

V3G, +6y)
Vi(k) = — ’ 8
(k) V3G, +6,) > ®

G — G, +46.

where &, = 6, sink, fora = x,y,z,and 6y,  are the standard
two-dimensional Pauli matrices. The bare hybridization
amplitude is represented by V. In this work we restrict
ourselves with holelike f states, i.e., t9tf <0, only for
which a topologically nontrivial insulating state emerges
below the Kondo transition temperatures, which for SmBg
is ~50 K [1,20,22]. The resulting band structure in the bulk
is shown in Fig. 2, with the following choice of various
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FIG. 2. (Color online) Bulk band structure, obtained by diago-
nalizing Hyy,x(K) in Eq. (5), as a function of k from the points I" to
X to M (along k, = 0), showing a strongly dispersing (i.e., nearly
vertical) d band and a relatively flat f band (i.e., nearly horizontal),
with an approximate gap of 15 meV, for the chosen values of the
parameters quoted in Eq. (9). Inset: same bulk band structure, but
shown over a larger window of energy.

parameters
“=2eV, t/ =-005eV, V =0.0365¢eV,
a=-03, n;=-029, € =02eV-3t"1+ny),
S = —0.01 eV —3t/(14y)), ©

appearing in Hypy(K). Interestingly, with such choice of
the parameters, the bulk Kondo insulating gap is ~15 meV,
resembling in this regard the observed bulk gap in SmBg in
various ARPES measurements [26-30].

The above eight-dimensional Hamiltonian for the cubic
topological Kondo insulators, Hyy(K), should be contrasted
with the model Hamiltonian for weakly interacting strong Z,
topological insulators [ Hr;(K)], such as Bi,Ses, which, on the
other hand, is four dimensional. In the low-energy and long
wavelength limit Hy; (k) takes the form [36]

Hr1(K) = (A 4+ Dk*)(fo ® 60) + (M — Bk?)(£3 ® 60)
+ Vik - (81 ®6), (10)

where Vg is the Fermi velocity. The second term represents
a parity odd but time-reversal even, inverted-band (when
M B > 0) Dirac mass. The first term gives rise to particle-hole
anisotropy, and the last term yields Dirac kinetic energy in three
dimensions. Here we have neglected the anisotropy among
the Fermi velocities along different directions, arising from
the underlying crystalline structure [36]. Two sets of Pauli
matrices, T and o, respectively, operate on the even-odd parity
band and the spin index. Next we argue although Hyy (k)
is eight dimensional, it still represents three-dimensional Z,
topological insulators, however, generalized for multi-band
systems. To perform this exercise we first need to reorganize
the spinor basis according to

= [li4,l24,11,12, ], (1D

forl =d, f and define W' = [¥,, ¥ 7. This reorganization is
tantamount of a unitary transformation that exchanges second
and third entries, and also sixth and seventh entries in Hyy(K).
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In the unitarily rotated spinor basis
Hyuk(K) = (£ ® 69) ® Hy + (3 ® 60)
®H_+ (11 ®63) @ V. + (11 ®61) ® Vi
+(E ®6)®V,. (12)

The Pauli matrices ; tj operate on (d, f) states, while 6; operate
in spin space, and H.,V,, operate in orbital subspace, spanned
by I/, and [, for / = d, f. The orbital components of various
matrices go as

A V(3 3\ .

x = kx»
SHERE

V(=3 3.

= — , 13
V=7 (\/§ _1>s1nky, 13)

N V(0 0) .
VZ=Z<0 4>s1nkz,

and Hy = 3[Hy(k) £ Hy(K)], where forl = d, f
A el +1'p1(K) + ' (K) 1'(1 = n)3(K)
H(k) = i 14 4l ! -
(1 —npes(k) e +t'da(k)+t'mepi(k)

14

The following identification of various terms appearing in
Eq. (12), in conjunction with its comparison with Eq. (10),
allows us to conclude that Hyyx(K) represents a multiband
strong Z, topological insulator in three dimensions: terms
proportional to V, define Dirac kinetic energy in three di-
mensions, H_ represents time-reversal symmetric, odd-parity,
inverted-band Dirac mass, and H, gives rise to particle-hole
asymmetry. Equivalent quantities in H7;(K) are replaced by
scalar entries. The parity operator in this basis reads as
P = 73 ® 69 ® I, where I, is a two-dimensional unit matrix,
here operating on the orbital subspace. It should be noted
that Hpuk(K) describes strong Z, topological insulator only
when H_ is not diagonal, which is satisfied for any 4 r # 1.
Hence Hyyk(k) can be generalized for multiband strong Zz
topological insulators, where the dimensionality of V., H_,
and H, corresponds to the number of orbitals participating in
the low-energy dynamics. To further substantiate our claim, we
also compute the topological invariant with the above model,
shown in the Appendix, confirming that Hy, (K) represents a
strong Z, topological insulator in three dimensions.

In the bulk Hamiltonian Hy,(K), we can add a term M =
Apr(th ® 69 ® iz), representing a parity and time-reversal
odd Dirac mass, which anticommutes with Hyy(K), i.e.,
{ Hpui(K), M} = 0. Therefore, together Hy,(k) + M repre-
sents an axionic state of matter. The time-reversal operator
in our representation reads as It = () ® 62 ® fg)K , where
K 1is the complex conjugation. Recently, axionic ground
state has been proposed for various magnetic topological
insulators [48-50], as well as for paired ground state in
various three-dimensional narrow gap semiconductors with
p + is pairing symmetries [51]. On the other hand, in the
present situation the parity and time-reversal odd Dirac mass
corresponds to a Kondo singlet state [52], and can, in principle,
be favored by strong interactions between the conduction d and
localized f electrons.
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III. SURFACE STATES

The nontrivial Z, topological invariant of the bulk makes
topological insulators distinct from a trivial vacuum, and
therefore an interface between these two systems hosts topo-
logically protected metallic surface states. Next we proceed to
find the low-energy Hamiltonian for such surface states. Let
us first outline the strategy of finding the surface Hamiltonian.
Without any loss of generality, we will only consider surfaces
that are perpendicular to the main cubic axes in this paper.
For definiteness, we focus on the (001) surface on which
the momentum components k, and k, remain good quantum
numbers.

Here we assume that the even (d electron) and odd
(f electron) parity bands invert at one of the high-symmetry
points of the BZ, denoted by k,,. To determine the energy E,,
of the electrons at the Dirac point, we expand Hypy(K) up to
the second order in 8k = k — k,,, and then set §k, = §k, =0,
while replacing 8k, — —id,. The energy E,, is then an
eigenvalue of the Schrodinger equation

Hpu (8k; — —i9)W¥(2) = EpV(2). s5)

We here consider a semi-infinite sample, occupying the region
z >0, with a sharp boundary at z =0 and vacuum for
z < 0. Therefore, the wave function of the surface bound state
W(z) o e %, where A corresponds to the penetration depth of

J
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the surface states into the bulk. One of the boundary conditions
Y(z - 00) =0 imposes a constraint over A, Re(A) > 0.
The effective surface Hamiltonian will then be obtained by
averaging out Hyy evaluated at finite 8k, , over W(z) [35-37]:

Hsurf(kkay):/ dz(V(2)| Hpu(kyx  ky; 2)|W(2)). (16)
0

Below, we subscribe the above methodology to derive the
surface Hamiltonian for the family of cubic topological Kondo
insulators, such as SmBg, with the bulk Hamiltonian shown in
Eq. (12).

A. Effective Hamiltonian near Y = (0,7) point

To obtain the effective Hamiltonian near the ¥ point of the
surface BZ we need to expand Hyyk(K) around (0,7,0) point.
In the vicinity of (0,7,0) point various functions appearing in
Hyyik(K) to the leading order are

$r(k) —> 2 —2k2, ¢o(k) > 0, (k) — /3,

sink, = k;, sink, — k., sink, - —k,. (17)

For the calculation of surface states, we, once again, need to
organize the spinor basis slightly different than in Eq. (11). For
convenience, let us define the eight-component spinoras W' =
[V, W, ], where U = [di5,d20, fio, 2o ), foro = 1, |.Inthis
basis the eight-dimensional Hamiltonian Hyy (k) becomes

i 7. 6 ity A G | 0 O
V. —H_ |V, —iV 0, A, |0, 0 Hy | H
Hyu (k) = z : y + 2 + 2 2 — g N , (18)
0, V, +lVy H_ -V, 0, 0, H, 0, HTi H¢¢
Vx + iVy 62 — Vz —-H_ 62 62 62 ﬁ_;,_

where 0, represents two-dimensional null matrix, and Hyy,
Hy,, Hy, are 4x4 matrices. For the calculation of surface
bound states we first set Vx, Vy = 0,. After obtaining the solu-
tions of the surface states, say |[W;) and |W, ), the eigenstates
of Hy4 and H |, respectively, we will perform a perturbative
expansion of Hj, HTT B in the two-dimensional basis spaced
by |¥4) and |[¥) to obtain the surface Hamiltonian.

Next we make an ansatz for the surface states (dropping the
spin index in |W; ;) from now on for the sake of notational
simplicity) W(z) ~ exp (—Az)W()1). Taking k, — —id,, we
here first wish to solve

Hyp(k, = —in)W(h) = EpW(h), (19)

where Ey is the energy of the surface states at ¥ = (0,7)
point of the surface BZ. The above equation introduces a set
of constraints among various spinor components as follows:

dr(A) = Gg(M)di(A) and  fL(A) = G () f1(A), (20
where
i 112 _ g
Q@ﬁr(iiﬂfli>

€3

e =€ +2, &=v3'01-n), (1)

(
forl = d, f. The remaining two spinor components are related
according to f1(A) = H(A)d;(}), where

iVAG4(X)

H() =
(e +1/nA2 — Ef)G () — €]

. (2Y

and eé = ¢! + 2nt!. A nontrivial solution of all the spinor
components yields the secular equation

5242 2, %2 Hfl 2, %2 H?‘
VAV+|AV+A———= ||V +A; — —— | =0,
[ d ,\2+A§,][ ! /\2+A§}

(23)
where
. V2 — Ey
VZ:d—’ AIZZGI ] Y,
1t nany t
_ — 3(1 —n)?
A12=€21 Y’ [‘[12= ( 7)1)’ (24)
' m
forl =d, f.

The above equation altogether yields eight roots of the
form £A;, for j =1,2,3,4. Upon imposing the boundary
condition W(z — oo) = 0, the surface state gets restricted to
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FIG. 3. (Color online) Dependence of four roots of X [solutions
of Eq. (26)], for fixed value of the parameter n, = —0.3, but as
a function of 7y, appearing in Eq. (6). Rest of the parameters of
Hy,i (K) are the same as in Eq. (9). Dependence of the location of the
Dirac points (Ex) on this parameter is shown in Fig. 4. The smallest
root of A determines the penetration depth of the surface state into
the bulk.

the following form:

V@)= Y Ciexp(—A;2)%R,)), (25)
j=1,2,3.4

where C;’s are arbitrary constants, which can now be elim-
inated from the second boundary condition W(z = 0) = 0.
Here we have assumed that Re(A); > 0, for j = 1,2,3,4. This
assumption is justified, since all the coefficients in Eq. (23) are
real. Upon imposing the above boundary condition we obtain
the following algebraic equation:

GyH,—XGH,—YG}H; — ZGHy =0, (26)

from which one can immediately determine the energy Ey. The
above equation is too complicated to obtain a closed analytic
expression for Ey. We here obtain its solution numerically.
Scaling of four roots of A as a function of the parameter 7,
while keeping the rest of the parameters in Hpy (k) fixed at
their values, quoted in Eq. (9), is shown in Fig. 3. Various
quantities appearing in the last equation are

x o M- H; 4Gy
- 2,3,4°
Hy — H3 4G

1
Y = m[(% -Gy - (Gi—-Gyx]. @D

Gl —G* G> - G*
e ((58) (35)
G, — Gy G, — Gy
where

G} =Gi(x)), H;=HG®)),

HeiGR3 — B Gy — Gy
34G; 7" = Ha+(H3 —H)| —5—— ), (28)
Gy =Gy

l=d,f, j=1,2,3,4, and k = 1,2. Arbitrary coefficients
appearing in Eq. (25) are related to the above parameters
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according to
c d
By (_) (29)

where l,{ =L forl=d,f, j=1234andk=12.In
terms of these new parameters the surface state is

1
Gy
@) =C1 Y Xexp(—ha | | G0)
g=123.4 qq
H, Gy

where X} =1, XA, = —X, X5 = —Y, Xy = —Z. Here we have
reintroduced the spin index in the wave function. The remain-
ing arbitrary constant C; determines the overall normalization
factor of |W4(z)). After some lengthy but straightforward
calculation it can be shown that the other surface bound state
¥, (z)), satisfying

Hli(kz — l)»)\lfi()\) = EY\I’i()‘)’ (31)

is identical to |W4(z)), shown in Eq. (30). From the numerical
solution of the wave functions |W4,,(z)), we find that magni-
tudes of all the four components of the spinor wave functions
are comparable with each other.

Next we perform the perturbative expansion of the off-
diagonal components of Hy,k in Eq. (18), yielding the surface
Dirac Hamiltonian at ¥ = (0,7) point of the surface BZ

_ o0 0 Hy |¥
i = / dz|: T (Y12 Hyy | ¢(Z)):|
0 <w¢(Z)|H¢¢|wT(Z)> 0

= (v ocke — v1oyky). (32)

X
In the above Hamiltonian v} # v, and thus H,. describes an
anisotropic Dirac cone at Y point. However, due to the complex
nature of the algebraic equation [Eq. (26)], expressions for
vfﬁy and As are quite lengthy and they cannot be expressed
compactly. We, therefore, perform numerical diagonalization
to obtain the surface band structure (see Fig. 4) that captures

the essential properties of the surface states.

B. Effective Hamiltonian near X = (m,0) point

To arri_ve at the effective Hamiltonian for the surface states
near the X point, we need to expand Hpyk(K) around (i7,0,0),
yielding

1K) — 2—2k2, da(k) = 0, ¢3(k) — —+/3,

sink, — k;, sinky - —k,, sink, — k. (33)
Otherwise, the calculation of the surface states near (;7,0,0)
are exactly the same as the one near (0,7,0) point, shown in the

previous subsection. The surface Hamiltonian in the vicinity
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=)

Energy (meV)

0 x .M
Wave vector

FIG. 4. (Color online) Surface band structure plotted along the
same directions (but not all the way to M) shows an isotropic Dirac
point at I' and a strongly anisotropic Dirac point at X. The relative
shift of the Dirac points at X and I" are controlled by the parameters
na and n,, which are tuned so that the Dirac point at X is below I'.
The anisotropy (i.e., ratio of the velocities v, /v,) of the Dirac cone
at X varies from v, /vy, =20 in the vicinity of the Dirac point to
v, /v, = 3 at energies away from the Dirac point.

of the X = (;,0) point reads as

HY = (vo.ke — vioyky), (34)

sur X

and once again v}’ # v). Therefore, HJ, also represents
an anisotropic Dirac cone near the X point of the surface
BZ. We also notice that v} =v) and v} =), reflecting
a fourfold Cy4 rotational symmetry on the surface, resulting
from the underlying cubic symmetry in the bulk, which has
been confirmed in recent measurement of magnetoresistance
[53,54]. The location of the Dirac fermions near X and Y
points are also the same, i.e., Ex = Ey. From now on we will

refer X and ¥ points of the surface BZ together as X points.

C. Effective Hamiltonian near T = (0,0) point

Next we proceed to find the surface state and the corre-
sponding Hamiltonian near the I' = (0,0) point of the surface
BZ. In this case we can obtain analytical expression for
both penetration depth (1) and Fermi velocity (vg) of the
surface states. In the vicinity of (0,0,7) point various function
appearing in Hy, (k) are

$i1(k) > —1+kZ, $a(k) = 3,¢3(k) — 0,

sink, - —k;, sink, — k,, sink, — k,. (35)
Once again we can bring the bulk Hamiltonian in the form
as in Eq. (18) to calculate the surface bound states and
surface Hamiltonian, and solve for Hys(k; — —iA)Ws(X) =
ErWy(A). In the vicinity of (0,0,7) point this equation
simplifies significantly, immediately yielding (once again here
we are dropping the spin index from the spinor components
for notational simplicity)

di(0) = fi(k) = 0. (36)
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The rest of the components satisfy

(A1 = XD (M) + i Vrfr(M) = 0,

(AT =2H ) +iVerdr(2) = 0, (37)
where
e —Er . 1%
Al = 2 1 L 9 ‘/l -
it m

= +1Cu—-1, é=€+'CG-n), (38

for! = d, f. Notice that e{ , are slightly different near (0,0,7)
and (0,7,0), although to avoid notational complication, we
are using the same symbols. Nontrivial solutions of the spinor
components yield four roots of A, of the form +A;, and for
Jj = 1,2 we have
A= i[(Ad+Af)— 172%
J \/i avf

+ (=1 (AL 4 AT = V07 - 4AdATT (39)

Imposing boundary condition W;(z — 00)=0, we can
write the surface bound state as
0 0

dl d?
Wi(@) = Crje™ | F |+ AT 40

f 13
Upon imposing the second boundary condition W4 (z =0) =0,
we obtain (A? — A%)Ay = (A? — A3)A4, yielding

- — egtdnd — egtfr;f
R L ek Ll
ting —tny
tIn (e +193 —na)) — t4nae’ +17 3 —ny)

= . 4D
tiny —ting

The wave function for the surface state can then be compactly
written as

0

W1 (2)) = Ci(e™7 — ™) (42)

1
2
0 9
f
where l{yz =l2(xj)for j=12and !/ =d, f, and C; stands
as an overall normalization constant. Performing the similar
analysis for the surface bound state for the |, component of the
spin projection, we find that |¥ (z)) = |W4(z)). A perturbative
expansion of H; and HTTi in the basis of |W4(z)) and |W (z))
yields the surface Hamiltonian in the vicinity of the T point

r
HSUI'

= vh(orky — oyky), (43)

which represents an isotropic Dirac cone, with the Fermi

velocity
= —thlfT]dnf
vp =2V | ———— - (44)
(at® —mgt?)

Note that the Fermi velocity is of the order of hybridization
amplitude, which implies that v, < pr/m, where m is a bare
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electron mass and pr is a Fermi momentum. From the solution
of the wave functions, we find that in |V |(2)), da(A1) K
Jf>(&1). Therefore, the overlap between the d and f electrons
for the surface states near the T’ point is small, in contrast to
the situation near X points.

D. Surface band structure

Next we numerically compute the surface state of the bulk
SmB¢ from the model Hamiltonian Hp,(k) on the (001)
surface. For this purpose we can treat momentum k, and
ky to be constant, and represent the bulk Hamiltonian as
Hyux(K) = Hpuk(ky ,ky k), where

Hyui (ke y k) = hke,ky) + [o(ke,ky)e™ +Hel,  (45)
and h(k,,ky), p(ky,ky) are defined as follows:

Hyuk (k. ky,0) + Hou (kx . ky, T)

h(ky,ky) = 5 , (46)
Hyu (k. ky,0) — Hyue (ko Ky, =
pllerky) = bk (kK y,0) : butk (kx Ky, )
i T i
5 Hiyix kx,ky,z + Eh(k)mky)- 47)

To compute the surface states as well as the surface band
structure, we first need to Fourier transform the Hamiltonian
Hyu(kx ,ky,k;) to real space along the z axis yielding

N
Hi(ke,ky) = Y [h(ke,ky) ® n)(n|
n=0

+ plky,ky) ® In)(n + 1| +He], (48)

and we set N = 180. Upon numerically diagonalizing the
above Hamiltonian H,(k,,k,), we obtain the spectrum of the
surface states, shown in Fig. 4, for a particular set of parameters
quoted in Eq. (9).

Therefore, generically (unless ny = ny) there exists an
offset among the position of the Dirac points, residing at the
" and X points. For the chosen values of the parameters as
in Eq. (9), all the Dirac points are placed within the bulk
insulating gap. However, tuning various parameters in the
effective model Hpy(K), one can tune various measurable
quantities in the bulk such as the hybridization gap, as well
as on the surface, such as the energies of the Dirac fermions
near different points and the offset among them. In Fig. 5, we
demonstrate the variation of these quantities as a function of
a single tuning parameter 1y, while the rest of the parameters
are kept fixed at their values quoted in Eq. (9). This plot shows
that surface Dirac points can be moved over a certain range in
energy and Kondo insulators with different bulk gaps can be
realized by changing band parameters, which may be relevant
for other Kondo systems with cubic symmetry.

Perhaps one of the most intriguing recent experimental
results concerns the measurement of the effective mass, and
concomitantly the effective Fermi velocity of the surface
carriers [55]. Quantum oscillations measure the area of the
Fermi surface A(E) at each of the pockets I and X and can
be used to estimate the Fermi wave vector

kp(Ep) = v A(EF)/7, (49)
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FIG. 5. (Color online) Dependence of various quantities in the
bulk as well as on the surface on 1, while rest of the parameters are
kept fixed to their values quoted in Eq. (9). Here, EY /x represents
the top of the valence band at I'/ X point (shown in red/orange) and
Efx stands for the bottom of the conduction band at I'/ X point of
the bulk BZ (shown in black/green), of the 3D bulk BZ. Er (brown)
and Ey (blue) are the energies of the Dirac fermions near the I' and
X point of the surface BZ. This figure shows that at least the Dirac
point at the X point can be dragged down into the valence band by
tuning some parameter (1, for example here) in the theory.

where Er is the Fermi energy. The scaling of kr near each
pockets, as a function of energy of the surface states, obtained
from our effective model, are plotted in Fig. 6. From this
scaling, the Fermi velocity (vr) and corresponding mass (1)
can be computed since vp(Ef) = (ka/E)EF)’1 andm(Efp) =
krp(EF)/vp(EF). Comparing these results with the quantum
oscillations [55] and ARPES experiments [6,7,26-28], we
observe that the ratio of the Fermi wave vectors near the
X point along k, and k, directions can be consistent with
ARPES measurements and the ratio of the Fermi velocities at
the X and I points is also consistent with quantum oscillation

N
h
T
I
™

|

[\S]

-1
wave vector (nm )
—

o Wi

0.5

)5 45 -4 35 3 25 2
Energy (meV)

FIG. 6. (Color online) Fermi wave vector (kr) as a function of
Fermi energy (Er) that would be measured by quantum oscillation
around each of the Dirac points at T' and X, showing approximately
linear dispersions. The average Fermi velocity at the I point is
vl =2.3x10° m/s and that around the X point is larger and given by
vl =5.7x10° m/s.
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measurements. In contrast, the typical values of the Fermi
velocities and &k, obtained in our calculation, are off by more
than an order of magnitude than the one extracted from the
quantum oscillation and ARPES measurements, respectively.

IV. BAND BENDING

As we have already discussed in the Introduction, our
derivation of the effective theory for the surface states is based
on the mean-field theory for the interacting Hamiltonian in
the bulk. In particular, we have assumed that the hybridization
amplitude, as well as the chemical potential, remain spatially
homogeneous even close to the surface of the material. An
implicit assumption that has been made in this work so far
is that the valence of the f-ions remains the same both
on the surface and in the bulk. Recent experimental studies
on SmB¢ [56], however, suggest that the valence state of
samarium ion is close to 4 f°, which is different from the mixed
valence state in the bulk. Therefore, coupling between surface
and bulk lattice degrees of freedom may play an important role
in determining the values of various parameters for the surface
electrons [42—44]. We here address this issue by numerically
computing the spectrum of the surface states assuming a
spatially modulated profile of the chemical potential.

While the tight-binding model captures the topological
properties of the surface states, the details of the electronic
structure depend on details of the surface. In particular,
generically one can expect a shift in the surface potential from
broken bonds at the surface, charged impurities and defects,
polar surface termination [57], and surface reconstruction [58].
We model this surface potential, which requires accounting for
self-consistency effects in addition to details of the surface, by
an exponential decaying potential with amplitude Uj and decay

O
-~
w

Energy (meV)
S & o

'
—
w

)
2

0 X
Wave vector

—_
2]
2
b o w»n

Energy (meV)
S

-15

205

Wave vector

0
Wave vector

FIG. 7. (Color online) Surface band structure for screening
length Az =2a for various surface potential amplitude (a)
Uy=0meV, (b) Uy = 5SmeV, (c) Uy=10meV, and (d) Uy = 15 meV.
As the potential increases towards the band gap, the Dirac point
at I' is found to approach the valence band and for sufficiently
strong band-bending potential, the Dirac cone at I disappears into
the valence band. The velocity of the I' surface state increases
significantly (by an order of magnitude) in (d) relative to (a). The
modification to the X point is comparatively minor.
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FIG. 8. (Color online) Surface band structure for screening
length Ap = 12a for various surface potential amplitude (a)
Uy=2meV, (b) Uy=5meV, (c) Uy=12 meV, and (d) Uy =20 meV.
In addition to a stronger, but otherwise qualitatively similar, effect on
the Dirac cones as in the Ay = 2 (i.e., Fig. 7) we find the appearance
of multiple states in addition to the Dirac cone. These states would
likely have small k.

length scale A p, represented by
Vi(x,y,z) = Upexpl—z/Agl, (50)

which we add to the tight-binding Hpyk(K). The strength of
the band-bending potential (Uy) is not tied with the Kondo
insulating gap in the bulk, and therefore it is likely that
Uy > V.

We first consider the situation of short-ranged screening by
taking A5 = 2a in Fig. 7, where a is the lattice constant. As the
potential increases towards the band gap, the Dirac point at I is
found to approach the valence band and for sufficiently strong
band-bending potential (Uj), the Dirac cone at T' disappears
into the valence band. It is interesting to notice that the velocity
of the surface states at T point increases significantly as one
increases the band-bending potential (Up), in particular by an
order of magnitude in (d) relative to (a) in Fig. 7. On the other
hand, the modification of the surface states near the X point is
comparatively minor in comparison to that near the I" point.

Next we consider the limit of long-ranged screening by
choosing Ap = 12a, and the resultant modification in the
surface band structure is shown in Fig. 8. A stronger, but
otherwise qualitatively similar, effect on the surface Dirac
cones is observed in comparison to that for Az = 2a (i.e.,
Fig. 7). In addition to the Dirac cones, we also find the
appearance of multiple states at the surface when the screening
length is large. These states would likely have a small kp.
Thus band bending not only significantly renormalizes the
Fermi velocity (vr), but also modifies the Fermi wave vector
(k). It is worth pointing out that a realistic strength of the
band-bending potential can drag down the Dirac points into
the valence band and place it outside the bulk insulating gap,
which in SmBg is ~15 meV, much smaller than that in Bi,Se;
(~300 meV). This may stand as a possible explanation for
the absence of surface Dirac points in ARPES measurements
[6,7,26-30].
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V. DISCUSSION AND CONCLUSIONS

To conclude, we have derived the effective Hamiltonian for
the helical metallic states on the surface of cubic topological
Kondo insulators, such as SmBg. The bulk band structure here
has been obtained within the mean-field approximation. To
derive the surface state Hamiltonian we have projected the
inverted even- and odd-parity bands near the high-symmetry
points (X points) of the 3D BZ onto the one of the main
surfaces. We show that helical Dirac fermionic excitations
live around T and X points of the surface BZ. While the
conical dispersion near the " point is isotropic, that near X
point is anisotropic. We have also obtained the expressions
for the penetration depth and effective Fermi velocities near
each of these points. Finally we wish to put forward some
connections with recent ARPES [6,7,26-30] and quantum
oscillation measurements [53-55].

ARPES. A number of recent ARPES measurements suggest
the existence of an insulating bulk at low temperatures, as well
as they have revealed the structure of the surface states in
SmBg [6,7,26,29,30]. In particular ARPES has shown a circu-
lar/isotropic pocket around the I point, and oval/anisotropic
pockets in the vicinity of the X points of the surface BZ [6,26].
Otherwise, among the energies of the surface Dirac fermions
at different points of the BZ, generically there exists an offset,
and that near the T and X points are ~18 meV and 15 meV,
respectively [7,26]. More recent ARPES measurements has
also revealed the similar band structure of the surface BZ of
SmBg [6,30]. Fermi surface cuts within the window +4 meV
discern pockets near I as well as near the X points [6]. These
observations are in excellent qualitative agreement with our
findings, reported in Sec. III. A recent spin-resolved ARPES
measurement [59] has confirmed the helical spin texture for
the surface states around the X and Y points of the surface BZ,
we found here.

The helical nature of the surface states can, for example, be
established through the mapping of the chirality of the orbital
angular momentum using circular dichroism ARPES measure-
ment [7]. Upon mapping the Fermi surfaces using right and
left circular polarized light, it has been shown that the ARPES
intensities in the portion of the Fermi surface with positive and
negative k, is stronger, respectively. Otherwise, this feature is
present near I' and X points. Consequently, the difference of
the ARPES intensities with right and left circular polarized
light clearly discerns an antisymmetric structure for all the
Fermi pockets about the k, = 0 axis. Thus circular dichroism
ARPES measurements are suggestive of the helical nature of
the surface states, which causes locking of spin and orbital
angular momenta, yielding helical spin texture of the surface
states of SmBg, shown in Fig. 1. The helical quasiparticle exci-
tations at low energies near the " and X points are, respectively,
captured by the low-energy Dirac Hamiltonians H, and HX ,
shown in Egs. (43) and (34) or (32). It is worth mentioning
that the circular dichroism ARPES technique has successfully
established the helical structure of the surface states in weakly
correlated topological insulators, such as Bi,Se; [60—62].

Recently, an ARPES measurement for another member
of the hexaboride family, YbBg, became available [31-33],
clearly suggesting the existence of surface states in the vicinity
of T and X points, similar to SmBg. Furthermore, circular
dichroism ARPES measurements with right and left circular

PHYSICAL REVIEW B 90, 155314 (2014)

polarized light also suggests the helical structure of these
surface states, which may arise due to the presence of a
topologically nontrivial bulk. However, it has been argued
that YbBg is possibly not a topological Kondo insulator [32].
Nevertheless, our analysis on the band-bending phenomena
due to the spatial modulation of the chemical potential may
as well be applicable in YbBg, and provide an explanation for
the absence of the Dirac points in this material.

Quantum oscillations. Recent quantum oscillation mea-
surements also provide valuable insight into the Fermi surface
topology of the surface BZ in SmBg. The angular dependence
of the out-of-plane component of magnetoresistance, mea-
sured in the presence of in-plane magnetic fields, discerns a
fourfold periodicity, for any field B > 4 T, and at temperature
> 5-10 K [53,54], which may arise from the underlying
fourfold rotational symmetry among the anisotropic Fermi
pockets around the X points in the surface BZ. On the other
hand, the isotropic Fermi pocket near the " does not contribute
to the oscillation of magnetoresistance.

In addition, quantum oscillation has also been observed
in SmBg¢ using torque magnetometry (de Haas—van Alphen
effect) in strong magnetic fields (B > 5 T), which, through
the formation of Landau levels for the two-dimensional surface
states, yields a very sensitive tool to probe the Fermi surface
topology [55]. First, the quantum oscillation confirms the
existence of two different pockets on (100) surface, which is in
accordance with our explicit calculation and also with number
of ARPES measurements. The fast Fourier transformation of
the torque oscillation gives the oscillation frequencies (v) for
different Fermi pockets, which in turn provides the area of the
Fermi pockets (A), since

h

V= 2neA’ (628)
where e is electronic charge and consequently the Fermi
momentum (k) [63]. On the other hand, from the temperature
dependence of the oscillation amplitude one finds the effective
mass (m) of the quasiparticle excitation (Lifshitz-Kosevich
formula) [64]. From the notion of these two quantities, one
can find the effective Fermi velocity (vg =~ kr/m), yielding
~ (2.9 +0.4)x10° m/s near T and ~ (6.5 & 0.21)x10° m/s
near X point [55]. The measured values of vy are roughly
two orders of magnitude larger than their values obtained in
ARPES measurement (0.3 eV A) [6], which, on the other hand,
may arise due to the band-bending phenomena [43]. Tracking
the Landau level index to infinite field limit, which measures
the geometric Berry phase, one obtains an interception
~ — 1/2as H — o0, for both the pockets in residing on (100)
plane [55]. This observation strongly suggests the existence
of topologically protected two component massless Dirac
fermionic excitation around T and X points.
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APPENDIX: CALCULATION OF THE
TOPOLOGICAL INVARIANTS

To compute the topological invariants we need to evaluate
the Hamiltonian at the high-symmetry points (HSP) of the BZ.
Since the hybridization matrix elements vanish at HSPs, the
Hamiltonian can be diagonalized immediately. The resulting
band structure consists of four (two d-like and two f-like)
doubly degenerate bands:

B (k) = €+ (1 4+ 1)@ + d20)

£ (1= 10y @1 — B + 403, ).

E£Kn) = €/ + L{(1+ 1)1 + f2m)

£ (1= 0y @1 — d2) +462, ). (A

where
Gam = Pa(Kp), o =1,2,3. (A2)
In the basis defined in Eq. (4) the inversion operator is
P =6.® t) = diag(1,1,—1,—1). (A3)

Consider the Hamiltonian I:Ibulk(km) = I-AIm from Eq. (5) eval-
uated in the HSP in the basis of the eigenstates corresponding
to the eigenvalues (Al):

H, = diag[E] (kn),E; (k) Ef (), E7 (k)] (A4)

It follows that Eq. (A4) can be written as a sum of four
operators:

A, =% f’ S ES () — E7 (k) — EFky) + E7 (Kp)]
@t i .
n %[Ej(km) — E;(Kn) + Ef (k) — E7(Ky)]
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+ D k) + B (K) + EE () + E7 (k)]
G, @ T _ _
+ 2O k) + By ) — Ef ) — E; ()L

(A5)

Note that the last term in this expression is proportional to the
parity operator.

To compute the invariant we need to consider the bands
which are occupied at least at one point of the BZ. Since the
d-band Ej(km) is highest energy it remains unoccupied at
all points of the BZ and therefore it can be ignored. For the
remaining three bands we can set the parity eigenvalues to

bn = +1: By (k) > Ef(kn) > Ef (Ky),

‘Sm =—1 E;(km) > Ed_(km) > E;(km)’ (A6)

8n=—1: E;(ky) > E}r(km) > E; (Kp).

Note that E- > E }L since we are considering d electron bands
and f-hole bands to ensure that insulating gap does not vanish
anywhere in the BZ. Therefore, the parity eigenvalue is

S = sgnlE; (Ky) — E; (Kp)]. (A7)
Then, the topological invariant is determined by
8
(=1’ = ]_[ S (A8)
m=1

The dependence of §,, and v on the microscopic parameters
such as bare hybridization V and f-level energy ¢ has been
analyzed in Refs. [16] and [19]. It was found that strong
topological Kondo insulator, v = —1, is realized for a wide
range of values of V,¢&¢.
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