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Terahertz radiation as a probe of the dynamics of coherently injected photocurrents in quantum
well and graphene systems
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We calculate the terahertz radiation that would be emitted from rotating current densities coherently injected by
two-color optical pulses in GaAs and graphene samples in a magnetic field. This is done for realistic experimental
geometries and parameters, with scattering and relaxation processes taken into account phenomenologically.
Results are presented in the time domain for the expected terahertz signal observed at a detector. We include
predictions for bilayer graphene as well as monolayer graphene, and compare with results expected in the absence
of a magnetic field.
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I. INTRODUCTION

Interference between the amplitudes of quantum mechan-
ical pathways can be used to control various properties of
matter. This technique of “coherent control” has been applied
to a host of atomic, molecular, and condensed matter systems
[1–3]. In particular, coherent control has been applied to
semiconductor systems to control the direction and magnitude
of optically injected photocurrents by adjusting the relative
phase parameter of incident laser beams [4–6]. Previously, we
investigated theoretically the possibility of the optical control
of photocurrents in the presence of an external magnetic field,
for GaAs quantum well [7] and graphene [8] systems subject
to pulses centered at frequencies ω0 and 2ω0. For both these
systems, we found that interference between one-photon and
two-photon excitation pathways could give rise to injected
photocurrents of electrons and holes that rotate in time at
frequencies determined by the energy differences between the
two interfering pathways. This contrasts with the situation in
the absence of a magnetic field, where the injected currents
are expected to be static after injection, apart from scattering
and decay processes.

These injected photocurrents can be experimentally ob-
served by detecting the terahertz radiation emitted during
their injection and decay. Such experiments have already been
performed on GaAs and graphene systems in the absence of
a magnetic field [9,10]. Since the photocurrents are not static
when a magnetic field is applied, the terahertz radiation pattern
is expected to be qualitatively different from that in the absence
of a magnetic field.

The object of the current paper is to calculate explicitly
the radiated fields from these photocurrents in the presence
of a magnetic field in various excitation and detection
scenarios. We present results for three systems: GaAs quantum
wells, monolayer graphene, and bilayer (Bernal-stacked)
graphene.

In the limit of excitation by pulses that are superpositions of
plane waves with fields uniform over the plane of the sample,
the calculated injected current density is necessarily uniform
in the plane of the quantum well or graphene layer(s), but

*krao@physics.utoronto.ca

rotates in time [see Fig. 1(a)]. We showed previously [7]
that the optically induced current density in a GaAs quantum
well can be written as a sum of contributions from electron
and hole charge densities associated with a basis of coherent
states, each centered at a particular point in the plane of the
material. In this decomposition, as we illustrate in Fig. 1(b),
around each point in the sample one can identify a localized
electron and hole density, each consisting of a particular
superposition of Landau orbitals excited by the optical pulses.
The electron density rotates counterclockwise in time about
the point in the plane, while the hole density rotates clock-
wise, with frequencies determined by the energy differences
between the two interfering pathways that give rise to these
densities. Similar considerations apply to graphene and bilayer
graphene.

This decomposition is the natural one to use to extend
the calculation to a system subject to exciting pulses that are
confined both in time and space; such an extension is necessary
to make a realistic calculation of the THz radiation from the
system. Since the radii of the Landau orbits involved are far less
than the typical distance characterizing the transverse variation
of the exciting fields over the sample, we can calculate the
current injection at any point from the results of the plane
wave calculation, but using the actual values of the electric
fields present at that point. The associated electron and hole
charge densities induced can then be used to calculate the
various multipole moments associated with that point. Since
the size of the Landau orbits is also far less than the wavelength
of the THz radiation emitted, we can then use these multipole
moments to determine the radiation pattern. This is the strategy
we adopt in this paper. Not surprisingly, the electric dipole
moment is by far the dominant multipole moment, and this is
the only one we need to consider.

This paper is structured as follows. In Sec. II we provide
general expressions for the optically induced electric dipole
moments in the sample. Expressions for the radiated electric
field are presented in Sec. III, and we use previous results to
calculate the dipole moments specific to GaAs quantum wells
and mono- and bilayer graphene in Sec. IV; even in the limit
of plane wave excitation, the optical injection of currents in
bilayer graphene in a magnetic field has not been presented
before. Numerical results for the detected fields are given in
Sec. V, and we conclude in Sec. VI.
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(a) (b)

FIG. 1. (Color online) (a) Illustration of rotation of electron (e)
and hole (h) current densities in a uniform optical field. (b) Illustration
of electron and hole densities about points in the sample, injected by
a pulse finite in space and time; the charges rotate about the points as
shown.

II. INDUCED DIPOLE MOMENTS

In this section we calculate the electric dipole moments pro-
duced by the optical field by considering the optically induced
charge density distributions. The system under consideration
is in a static, uniform magnetic field directed perpendicular to
the plane of the sample. We begin by taking the optical field to
be normally incident and uniform over the plane of the sample,
with a Gaussian dependence in frequency and thus in time,

E(t) =
∫ ∞

0

dω

2π

[
Eω0e

−(ω−ω0)2/�2
1 + E2ω0e

−(ω−2ω0)2/�2
2
]
e−iωt

+ c.c. (1)

We assume that the pulses extend over many optical
periods, so �1 � ω0 and �2 � 2ω0. The expression (1) can
be identified with the field at the sample position z = z0, with
the sample taken to lie in the (xy) plane. Of course, whether
the system is a semiconductor quantum well, graphene, or
bilayer graphene, there is some extension of the sample in
the z direction, but such distances are so small compared to
the wavelengths of light involved that the spatial variation in
z can be neglected. Previously [7] we calculated, to second
order in the optical field, expressions for the amplitudes of
exciton states |CV 〉 in a GaAs quantum well and in a graphene
monolayer [7], where C and V represent the conduction
and valence states that form the exciton, and each comprise
a set of quantum numbers, as described in Sec. IV. For
any of the systems we consider here, among these quantum
numbers are two numbers n and l associated with the wave
functions of a two-dimensional electron in a uniform magnetic
field perpendicular to the plane (Landau levels) [11], which
appear here as envelope functions modulating the periodic
functions associated with the lattice [7,8]. The Landau levels
are degenerate in l, and for any particular choice of the other
quantum numbers we can construct in the l subspace a new
(overcomplete) basis of coherent states, each of which is
spatially localized around a point in the plane [11].

For the present consideration of an optical field uniform
over the plane of the sample, we can focus our attention
only on the states centered at the origin, as the states at other
locations will behave identically. The coherent state centered
at the origin is the same as the state in the l basis with l = 0, and
so the state centered at the origin and having its other quantum

numbers identical with those of C or V can be identified by c

or v, where the latter states are identical to the former but with
l = 0. Focusing only on these localized exciton states |cv〉,
we can identify the time derivatives of the amplitudes of these
states from our earlier studies [7,8],

ċ(j )
cv (t) = −iωcvc

(j )
cv (t) + f (j )(t), (2)

where ωcv ≡ ωc − ωv , and f (1)(t) and f (2)(t) can be consid-
ered as driving terms leading to the growth of the amplitude of
the state |cv〉. The first-order coefficient (j = 1) represents a
one-photon excitation process by a single photon at frequency
ω0 or 2ω0, as represented by the forcing term f (1)(t) which
is dependent on the peak amplitudes of the ω0 and 2ω0

pulses, while the second-order coefficient (j = 2) represents
a two-photon excitation process by two photons each at
frequency ω0, or by one photon at ω0 and one photon at
2ω0, as represented by the forcing term f (2)(t), which is also
dependent on the amplitudes of the pulses. In order to take
into account scattering and dephasing, we can introduce a
phenomenological decay time τcv into (2):

ċ(j )
cv (t) = −iωcvc

(j )
cv (t) − 1

τcv

c(j )
cv (t) + f (j )(t). (3)

Solving this equation using the explicit expressions for f (j )(t)
we find

c(j )
cv (t) = [

�(j )
cv T (j )

cv (t) + �(j )
cv U (j )

cv (t)
]
e−iωcv t e−t/τcv , (4)

where

T (j )
cv (t) =

∫ t

−∞
dt ′exp

(−γ 2
(j )t

′2)et ′/τcv ei(ωcv−2ω0)t ′ ,

U (j )
cv (t) =

∫ t

−∞
dt ′exp

(−ε2
(j )t

′2)et ′/τcv ei(ωcv−ω0)t ′ ,

with γ 2
(1) ≡ �2

2/4, γ 2
(2) ≡ �2

1/2, ε2
(1) ≡ �2

1/4, ε2
(2) ≡ (�2

1 +
�2

2)/4; and

�(1)
cv = e

4
√

π�

�2

ω0

(
E2ω0 · vcv

)
, (5)

�(1)
cv = e

2
√

π�

�1

ω0

(
Eω0 · vcv

)
, (6)

�(2)
cv = e2�2

1

4πi�2ω2
0

[∑
c′

(
vcc′ · Eω0

)(
vc′v · Eω0

)
ωc′v − ω0

−
∑
v′

(
vcv′ · Eω0

) (
vv′v · Eω0

)
ωcv′ − ω0

]
, (7)

�(2)
cv = − e2�1�2

8πi�2ω2
0

[∑
c′

(
vcc′ · E2ω0

)(
vc′v · E∗

ω0

)
ωc′v + ω0

−
∑
v′

(
vcv′ · E∗

ω0

)(
vv′v · E2ω0

)
ωcv′ + ω0

+
∑
c′

(
vcc′ · E∗

ω0

)(
vc′v · E2ω0

)
ωc′v − 2ω0

−
∑
v′

(
vcv′ · E2ω0

)(
vv′v · E∗

ω0

)
ωcv′ − 2ω0

]
, (8)
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with vcv , etc., denoting the matrix elements of the velocity
operator between the indicated states. The functions T

(j )
cv and

U
(j )
cv encapsulate the time dependence of the exciting pulses

and the resulting buildup of amplitude in the excited states; the
quantities �

(j )
cv and �

(j )
cv encapsulate the selection rules for one-

and two-photon transitions in the relevant system, as discussed
earlier [7,8].

We now generalize these results to optical pulses that
are confined both in time and space. We assume that the
transverse widths of the pulses are much larger than the
wavelengths that appear in them with significant amplitudes.
Then to good approximation we can identify the field E(R,t)
in the plane of the sample, where R = (x,y), by multiplying
the Eωo

and E2ωo
appearing in (1) by optical envelope

functions that depend on R. We assume that these functions
are Gaussian, although that could be easily generalized.
Then the ω0-pulse amplitude Eωo

in (1) is replaced by
Eωo

[L1(R)] ≡ Eωo
exp(−R2/R2

1), and the 2ω0-pulse amplitude
E2ωo

by E2ωo
[L2(R)] ≡ E2ωo

exp(−R2/R2
2), where R = |R| and

R1 and R2 specify the transverse extent of the two pulses. Since
both R1 and R2 will be much larger than the radii of the Landau
orbits involved, for the magnetic fields we consider, we can
assume that a localized state centered at a particular point
R in the plane experiences a spatially uniform field over its
extent, but that states centered at different points experience
different fields according to where they are located. Thus
the excitation amplitude into the exciton state at R having
the quantum numbers of |cv〉 can be written in terms of the
amplitude in a uniform field, as calculated above, modulated
by the appropriate spatial function:

dcv(R,t) = e−iωcv t e−t/τcv
[
�(1)

cv T (1)
cv (t)L2(R) + �(1)

cv U (1)
cv (t)L1(R)

+�(2)
cv T (2)

cv (t)[L1(R)]2 + �(2)
cv U (2)

cv (t)L1(R)L2(R)
]
.

(9)

We look next at the electron and hole charge densities
associated with each point R. In our earlier work [7] these
were calculated for the case of a uniform excitation field, and
were therefore independent of R. For the present situation of a
nonuniform field, they are modified by the spatial dependence
that dcv(R,t) has acquired and take the form

ρe
R(re,t) = e

∑
cc′v

dcv(R,t)d∗
c′v(R,t)�†

c′,R(re)�c,R(re), (10)

ρh
R(rh,t) = −e

∑
cvv′

dcv(R,t)d∗
cv′ (R,t)�†

v,R(rh)�v′,R(rh), (11)

where e < 0, and �n,R is the envelope function associated
with the state n centered at position R. It is a one-component
function in the case of a GaAs quantum well (within our
model), a two-component function for a graphene monolayer,
and a four-component function for a graphene bilayer.

The polarization (electric dipole moment per unit area) of
the electron or hole charge distribution is found by multiplying
the dipole moment associated with R by the areal density of
orbitals in a magnetic field [12], |e|B/2π�; we obtain

Pe,h(R,t) = |e|B
2π�

∫
d2re,hre,hρ

e,h
R (re,h,t). (12)

(a) (b)

FIG. 2. (Color online) Experimental geometries for (a) GaAs and
(b) graphene and bilayer graphene.

This expression will be used, along with the explicit forms of
the envelope functions (see Refs. [7,8] and bilayer expressions
in Sec. IV) to find the polarizations for the various systems
we consider, along with the fields they radiate, in the next few
sections.

It is possible to extend this approach and calculate the
radiated fields resulting from the induced magnetic dipole
moments and the induced electric quadrupole moment of the
localized charged distributions ρ

e,h
R (re,h,t); we have done this,

but for the systems and configurations considered here we
found these contributions to be much smaller than those from
the electric dipole moments, and so in the following we only
present the radiation generated by the polarization (12).

III. RADIATED FIELDS

In this section, we present expressions for the fields radiated
from sources in the experimental situations we consider.
Figure 2 shows the configurations of interest. In Fig. 2(a), the
source is a GaAs quantum well embedded in a slab of AlGaAs,
for instance, which we take to have a dielectric constant ε3.
The surrounding materials, 1 and 2, will be taken as air. In
Fig. 2(b), the source is monolayer or bilayer graphene, which
is assumed to be in material 1 (air) on top of a substrate
layer, for instance SiC (material 3); material 2 is air. In both
geometries, we think of the exciting pulses as entering from
material 1, and inducing a source polarization. The subsequent
radiation from the source, after multiple reflections from the
two interfaces, could be detected either on the same side as
the laser source (reflection geometry) or on the other side
(transmission geometry). Below we give general expressions
for the radiation received at a detector in the transmission
geometry, in terms of a general areal source polarization
P(R,t).

We very generally write the terahertz electric field at a point
r in the detector region (z < −D) as a superposition of plane
waves propagating (or evanescent) in the −z direction,

E(r,t) =
∫ ∞

0

dω

2π

∫
d2κ

(2π )2
E(κ,ω)ei(κ ·R−w2z−ωt) + c.c., (13)

where κ is the in-plane component of a wave vector and
wi(κ) ≡

√
εiω2/c2 − κ2, with the convention Im

√
Z � 0 and,

if Im
√

Z = 0, then Re
√

Z � 0. For the terahertz frequency
range we consider we take the εi to be frequency-independent.
The polarization vectors associated with upward (+) and
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downward (−) propagating (or evanescent) waves in medium
i are given by ŝi± = κ̂ × ẑ and p̂i± = ŝi± × ν̂i±, and νi± ≡
κ ± wi ẑ; in the detector region there are only downward waves
[13].

Though we do not show the details, we can calculate E(κ,ω)
using a transfer matrix approach that includes the Fresnel
coefficients for reflection and transmission at each interface
[13]. These Fresnel coefficients for s- and p-polarized light
are given by

t sij = 2wi

wi + wj

, t
p

ij = 2
√

εiεjwi

wiεj + wjεi

,

(14)

rs
ij = wi − wj

wi + wj

, r
p

ij = wiεj − wjεi

wiεj + wjεi

.

Note that these are dependent on κ through the wi,j . Assuming
the source to be localized in the plane z = z0, after calculating
an expression for E(κ,ω), placing this expression into (13), and
taking the asymptotic far-field limit [13], we finally obtain, for
the s and p components of the detected field, the following
result for the GaAs geometry [Fig. 2(a)]:

Eq(r,t) = − t
q

32

4πc2ε0r

w2(κ̄)

w3(κ̄)

×
∞∑

n=0

∫
d2R

[(
r

q

32r
q

31

)n
q̂3− · P̈(R,Tn)

+ r
q

31

(
r

q

32r
q

31

)n
q̂3+ · P̈(R,T ′

n)
] + c.c., (15)

where q stands for either s or p, q̂ = ŝ or p̂; all Fresnel
coefficients and polarization vectors here are evaluated at κ̄ ,
where κ̄ ≡ √

ε2ωsinθ/c, κ̄/κ̄ points along the projection of r̂
in the xy plane, and θ is the angle between the detector position
r and the −z axis. In this expression, the first term in square
brackets represents light that is initially emitted downward
from the source, subsequently undergoing n pairs of reflections
from the bottom and top interfaces before going to the detector.
The second term represents light that is initially emitted
upwards and undergoes a reflection from the top interface
before undergoing n pairs of reflections from the bottom and
top interfaces and then going to the detector. Owing to the
different travel times of the light in going from the source to
the detector, the second derivative of the source dipole moment
is evaluated at retarded times Tn and T ′

n, where

Tn = t − W3 [(2n + 1)D + z0] + W2D + √
ε2

r̂ · R
c

− √
ε2

r

c
,

T ′
n = t − W3 [(2n + 1)D − z0] + W2D + √

ε2
r̂ · R

c
− √

ε2
r

c
,

and we have defined Wi ≡ wi(κ̄)/ω. For example, in the
expression for Tn, the last term represents the retardation due
to the travel from the system to the detector, the second last
term represents the retardation or advancement that results
from different parts of the source being at different distances
from the detector at nonnormal detection angles, while other
terms represent the travel time within the sample including the
various reflections.

The same type of calculation can be performed for the
radiation resulting from graphene monolayer and bilayer
samples [Fig. 2(b)] with the detector in a transmission
configuration. We find

Eq(r,t) = − t
q

31t
q

32

4πc2ε0r

w2(κ̄)

w1(κ̄)

∞∑
n=0

(
r

q

31r
q

32

)n
q̂1− · P̈(R,T ′′

n )

+ c.c., (16)

where all Fresnel coefficients are, again, evaluated at κ̄ , and
the retarded times are given by

T ′′
n = t − W1z0 + W2D − (2n + 1)W3D

+√
ε2r̂ · R/c − √

ε2r/c.

This can be interpreted physically in terms of the various
reflections and transmissions on the way to the detector as
before.

The fields presented above can be calculated once the form
of the induced dipole moment distribution is known, according
to the particular system under consideration; these will be
specified in the next section.

IV. QUANTUM WELLS, GRAPHENE, AND BILAYER
GRAPHENE

In previous work [7,8], we discussed the selection rules for
one- and two-photon excitation processes in GaAs quantum
wells and monolayer graphene in a magnetic field. These
are summarized in Table I. In a quantum well, it was found
that a time-dependent electron current could be induced
through an interference between a one-photon transition,
involving a photon at 2ω0 traversing the band gap, and a
two-photon transition, involving two photons at ω0, which
cause an electron to be excited from a given valence band
state v to two different conduction band states c and c′
(where c, v, and c′ each label a set including a Landau level
index, an index describing the quantum well confinement,
and a spin index). As can be seen from the selection rules,
the one- and two-photon processes place electrons in final

TABLE I. Selection rules for GaAs, monolayer graphene, and bilayer graphene in a magnetic field, for transitions from a valence band to
a conduction band. For GaAs and monolayer graphene, the Landau indices for the conduction and valence bands are n and m respectively; for
bilayer graphene, they are rc and rv , respectively. Bilayer conduction (valence) bands are labeled by Ic (Iv). In all cases, the spin index sc = sv ,
and for monolayer and bilayer graphene, the valley index dc = dv .

GaAs Graphene monolayer Graphene bilayer

1-photon transition n = m n = |m| ± 1 Ic = C1 or C2, Iv = V1 or V2

rc = rv ± 1
2-photon transition n = m ± 1 n = |m| ± 2 Ic = C1 or C2, Iv = V1 or V2

rc = rv ± 2
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states that differ by ±1 in their Landau indices, with no
difference in their spin indices. The electron current rotates
counterclockwise at a frequency corresponding to the energy
difference between these final Landau levels. Similarly, a hole
current is produced which arises from an interference between
one- and two-photon transitions putting an electron in the same
conduction state c but originating from adjacent Landau levels
in the valence band. This hole current rotates clockwise at
a frequency corresponding to the energy difference between
these two valence levels v and v′.

For the material polarization induced by the incident pulses,
using (10), (11), (12) and the explicit expressions for the
envelope functions [7], we find

Pe(R,t) = eβ

2π

(
1

i

) ∑
cvc′

dcv(R,t)d∗
c′v(R,t)

× (
√

nδn′+1,n ± √
n + 1δn′,n+1)δnwn′

w
δscs ′

c
(17)

for the electron contribution, and

Ph(R,t) = − eβ

2π

(
1

i

)∑
cvv′

dcv(R,t)d∗
cv′ (R,t)

× (
√

m′δm+1,m′ ± √
m′ + 1δm,m′+1)δmwm′

w
δsvs ′

v

(18)

for the hole contribution. Here, the upper (lower) signs and
quantities in parentheses refer to the x (y) components. Also
n and n′ (m and m′) are the Landau indices associated with
the states c and c′ (v and v′), respectively, nw and n′

w (mw and
m′

w) are the well quantum numbers, sc and s ′
c (sv and s ′

v) are
the spin indices, and β = √|e|B/2�.

We see from the above that, analogous to the current density,
the electron contribution to the source polarization consists
of a sum of terms involving interference of two transitions
connecting the same initial state v with two final states c

and c′ differing by 1 in their Landau indices, while in the
hole contribution, each term involves an interference of two
transitions connecting two initial states v and v′, differing
by 1 in their Landau indices, with the same final state c.
In both cases, the dipole moment vector rotates in the plane
counterclockwise (in the case of electrons) or clockwise (in the
case of holes) at a frequency equal to the spacing between the
two final states (in the case of electrons) or the two initial states
(in the case of holes). It should be pointed out that since the
Landau level spacing in GaAs in each band is constant—a
result of the parabolic band structure—each term in the
summation oscillates with the same frequency, so there is only
one overall rotation frequency for the electron contribution and
one overall frequency for the hole contribution.

A similar analysis can be performed for a graphene
monolayer. In this case, the states in the conduction and
valence bands are labeled by a Landau level index (n > 0
for conduction states, m < 0 for valence states), a spin
index s, and a valley index d. The polarization and current
density for graphene can be calculated the same way as
for GaAs, using the expressions for the envelope functions
presented in our previous work [8]. The result for the

polarization is

Pe(R,t) = eβ

4π

(
1

i

)∑
cvc′

dcv(R,t)d∗
c′v(R,t)[(

√
n′ + √

n′ + 1)

× δn′,n−1 ± (
√

n + √
n + 1)δn′−1,n]δscs ′

c
δdcd ′

c
(19)

for the electron contribution, and

Ph(R,t) = − eβ

4π

(
1

i

)∑
cvv′

dcv(R,t)d∗
cv′ (R,t)

× [(
√

|m| +
√

|m| + 1)δ|m|,|m′|−1

± (
√

|m′| +
√

|m′| + 1)δ|m|−1,|m′|]δsvs ′
v
δdvd ′

v
(20)

for the hole contribution. Similar expressions were found for
the current density [8].

As in the case of GaAs, it can be seen from these expressions
and the selection rules in Table I that the polarization and
current result from interferences between one- and two-photon
processes sharing an initial state but having adjacent final states
(electron contribution), or sharing a final state but having
adjacent initial states (hole contribution). Each term again
rotates at a frequency corresponding to the energy difference
between the two final or initial states; but since the Landau
levels in graphene are not evenly spaced—a result of the
linear dispersion which leads to energy levels proportional
to the square root of the Landau index in a magnetic field
[8]—several different frequencies will contribute.

Furthermore, for linearly polarized incident light, for each
term in the summation in the electron contribution there
is a corresponding term in the hole contribution which is
equal in magnitude, due to the symmetric band structure
of graphene, but rotating in the opposite direction. Thus
the overall material polarization will simply oscillate along
one particular direction, which depends on the polarization
directions of the exciting pulses.

The calculations previously performed for GaAs quantum
wells and monolayer graphene can be extended to the case of
a graphene bilayer; this calculation will be outlined here. The
Hamiltonian for Bernal-stacked bilayer graphene in a magnetic
field can be obtained by applying minimal coupling to the 4 ×
4 envelope function Hamiltonian for a bilayer in the absence
of a magnetic field [14], which yields

H =

⎛
⎜⎜⎜⎝

0 0 0 vF π−
0 0 vF π+ 0

0 vF π− 0 γ1

vF π+ 0 γ1 0

⎞
⎟⎟⎟⎠ , (21)

where vF is the Fermi velocity for a monolayer, γ1 is
the coupling constant between the two sheets, and π± ≡
[(�/i)∇x − eAB

x ] ± [(�/i)∇y − eAB
y ]; AB is the vector po-

tential describing the magnetic field in the symmetric gauge.
The four components of the Hamiltonian refer to, in order, the
A sublattice of the upper sheet, the B sublattice of the lower
sheet, the A sublattice of the lower sheet, and the B sublattice
of the upper sheet [14]. Ignoring for now the coupling γ1, the
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eigenstates of the system can be written as

�̄nlS = Qn

⎛
⎜⎜⎜⎝

−δS,1sgn(n)iφ|n|−1,l

δS,2φ|n|,l
−δS,2sgn(n)iφ|n|−1,l

δS,1φ|n|,l

⎞
⎟⎟⎟⎠ , (22)

where φ|n|,l is the wave function for a two-dimensional electron
in a magnetic field with |n| and l representing the right- and
left-circular quantum numbers, respectively, Qn = 1/

√
2 for

n 	= 0 and 1 for n = 0, and S = 1 (S = 2) refers to states on the
upper (lower) sheet. To determine the eigenstates, accounting
for the coupling between the sheets, we perform a numerical
calculation using an expansion in terms of the above uncoupled
eigenstates:

�Ir,l =
∑
n,S

a
Ir,l
nS �̄nlS . (23)

Note that the Hamiltonian does not couple states of different
l. The new states are characterized by quantum numbers I

and r which are explained below. The numerical calculation
shows that there are two degenerate states at zero energy, and
that the energy spectrum is symmetric about the zero energy,
as it is for monolayer graphene. For monolayer graphene, we
found that Landau states in a particular band (conduction or
valence) have a nonzero velocity matrix element only with
states with adjacent Landau indices. Motivated by this fact,
we can construct a chain of states for the bilayer, starting from
one of the zero-energy states, with each subsequent addition
to the chain being the state that is the closest in energy to the
previous state and connected to it by a nonzero matrix element
of the velocity operator v̂ = ∂H/∂p̂.

Working in this manner, we find that the states fall into
four such chains or sets of states, which correspond to the four
bands that are present in the absence of a magnetic field. These
sets are shown schematically in Fig. 3. The states can then be
characterized by the quantum numbers I and r , where I labels
one of the four bands (valence bands V1 and V2, and conduction
bands C1 and C2), while r labels the states within each band,
starting from r = 1. All of these states are degenerate in l,
and the velocity operator does not connect states of different
l. Further, we find that any level has a nonzero velocity matrix
element with a level in any of the four bands which has its
r value differing from it by ±1, while it has a zero matrix
element with all other states, including itself.

From these properties of the velocity matrix elements, we
can deduce the allowed optical transitions from (5), (6), (7),
(8), and (9). These selection rules are summarized in Table I.
From (5) and (6), which contain one velocity matrix element,
we see that a one-photon transition can occur from any valence
band to any conduction band, changing the value of r by
±1. On the other hand, the second-order coefficient contains
terms that have two velocity matrix elements [see (7) and (8)],
representing a transition from a valence state v to a conduction
state c through an intermediate conduction or valence state
c′ or v′. Thus a two-photon transition can occur from any
valence band to any conduction band, changing the value of
r by ±1 twice, so that the overall change in r is ±2. [The
two-photon processes by which r changes by 0 are disallowed

FIG. 3. (Color online) Schematic of energy levels of bilayer
graphene.

as the two terms in (7), and the first pair of terms as well as
the last pair of terms in (8)—the virtual electron and virtual
hole terms—cancel.] Note that this is similar to the situation
in monolayer graphene, except for the presence of four bands
instead of two.

The behavior of the induced current density can be deduced
from a consideration of these allowed transitions. Just as we
found for GaAs and monolayer graphene, a counterclockwise-
rotating electron current results from the interference of one-
and two-photon transitions from a state in the valence band
to states in the conduction band whose r values differ by
±1 (electron current). Meanwhile a clockwise-rotating hole
current results from interference between transitions to a
conduction state from valence states whose r values differ by
±1. In principle, the two final states in the electron current, or
the two initial states in the hole current, do not have to be in the
same band. However, if they are in different conduction bands,
or different valence bands, the current rotation frequency will
be at least 30 times greater than that which results from their
being in the same band, and we will therefore not focus on the
former situation in our results.

In Fig. 4 we present polar plots of the total current, including
both the electron and hole contributions, as a function of the
polarization angle between the linear polarization directions
of the incident pulses, at time t = 0 corresponding to the time
when the pulses have their peak intensity. For the purpose
of comparison to the case of no magnetic field treated by
Rioux et al. [14], we adopt their classification of the two-
photon processes into four types, distinguished by the initial,
intermediate, and final bands involved in the transition. This
classification is presented in Table II. Separate plots are made
in Fig. 4 for the current contributions resulting from each of
the four classes of two-photon transition. We note that our
results for t = 0 for the 2BT, 3BT, and SOT match the shape
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FIG. 4. Injected current density (in A/m) vs relative polarization angle for GLT [(a) and (e)], 2BT [(b) and (f)], 3BT [(c) and (g)], and SOT
[(d) and (h)]. Top row shows x components, bottom row shows y components. The angle is measured from the 2ω0-pulse polarization direction
(here assumed to be the +x direction) to the ω0-pulse polarization direction. The experimental parameters are identical to those given in Sec. V
for the bilayer, but with the pulse frequencies doubled and infinite scattering time.

of the corresponding plots found in Rioux et al. Of course,
as time goes by, the current oscillates with various frequency
components corresponding to the different pairs of transitions
that are excited, whereas the current is static in the absence of a
magnetic field. Again, the nonparabolicity of the band structure
leads to Landau levels that are not equally spaced, and therefore
to currents that have multiple frequency components.

A difference, however, is found in the shape of the plot for
the GLT compared to that in the absence of a magnetic field.
The GLT in the paper of Rioux et al. was of the same shape
as that of the SOT, which had the same shape as the SOT in
Fig. 4. This difference arises because the authors of the above
paper account only for the current arising from interference
between absorption of one photon at 2ω0 [represented by (5)]
and absorption of two photons at ω0 [represented by (7)]. It did
not include the current that arises from the other interference

TABLE II. Classification of two-photon transitions of bilayer
graphene in a magnetic field into four types distinguished by the
combination of initial band, intermediate band, and final band.
The four types are the gapless term (GLT), the 2-band term (2BT),
the 3-band term (3BT), and the split-off term (SOT).

Initial band Intermediate band Final band

GLT V2 V1,V2,C1,C2 C1

2BT V1 V1,C1 C1

V2 V2,C2 C2

3BT V1 V2,C2 C1

V2 V1,C1 C2

SOT V1 V1,V2,C1,C2 C2

process, that which involves a one-photon process where a
photon at ω0 is absorbed [represented by (6)], along with a
two-photon process where a photon at 2ω0 is absorbed and a
photon at ω0 is emitted [represented by (8)] [15]. In the latter
interference mechanism, the one-photon process excites an
electron from V2 to C1 directly, while the two-photon process
excites an electron from V2 to C1 through an intermediate state
in V1 or C2. Since the photon energies we used in these plots
are large enough to connect band V2 to C2, or band V1 to C1,
with a 2ω0 photon, the two-photon process is greatly enhanced
compared to what it would be otherwise, as the transition to
or from the intermediate state is near resonance with one of
the photon frequencies. Normally, in monolayer graphene, this
particular interference process would not be as significant in
magnitude because there is no intermediate state such that a
transition to or from this state would be near resonance. In
addition to the presence of 2BT, 3BT, and SOT contributions,
this constitutes a notable qualitative difference between the
behavior of a bilayer and that of a monolayer.

To conclude this section, we mention the material polariza-
tion induced in the bilayer. This is calculated using (10), (11),
(12), and the eigenfunction (23). It is found that the behavior
of the polarization can qualitatively be described similarly
to that of the current density, as a superposition of rotating
electron and hole contributions resulting from interfering one-
and two-photon transitions. This is as one would expect from
the classical expression J = dP/dt .

V. NUMERICAL RESULTS

In this section we present results for the fields at the detector
that result from the induced charges and currents. Note first that
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the electric field amplitudes in (1) and appearing in subsequent
formulas refer to the electric field from the applied pulses
experienced at the position of the sample. To relate this to
the field incident on the structure, which is experimentally
controllable, one can perform an analysis similar to that
in Sec. III, accounting for the various transmissions and
reflections of the incident light. These will cause a Gaussian (in
time) incident pulse to become non-Gaussian at the sample,
since the pulses will reach the sample multiple times. For
simplicity, we assume that z0 = 0 for graphene, and the GaAs
QW is so close to the upper interface, that for both structures
the induced polarization will decay by the time a reflected wave
reaches the sample. For the structures and pulse lengths we
assume below, this holds, and ensures that the reflected fields
from the lower interface do not come into play during the time
window in which we are interested; thus the field at the sample
can be considered Gaussian and our formulas are valid. The
field at the sample is then equal to the incident field multiplied
by t13(κ = 0) for GaAs and [1 − r31(κ = 0)] for graphene.
The calculation can be performed for the more general case,
but the formulas in Sec. II become more complicated. The
intensities quoted in what follows refer to the light incident on
the structure.

In calculating the radiated fields, we have also neglected the
radiation reaction, or the decay of induced charges and loss of
energy due to the radiation [16]. The time scale for this decay
is estimated to be much longer than the relevant timescale we
consider here, so our neglect is justified.

For the case of a GaAs quantum well, we take the incident
ω0 pulse from region 1 to have a duration of 150 fs FWHM with
a peak intensity of 200 GW/cm2, and the 2ω0 pulse to have
a duration of 106 fs with a peak intensity of 200 MW/cm2;
the pulse durations are related by a factor of

√
2 as would

occur when the second harmonic pulse is derived from the
fundamental using a doubling crystal, as is the usual practice;
and the intensities are selected to be low enough that our
perturbative treatment of the optical field is valid. We choose
�ω0 = 878 meV, the same value as adopted earlier [7], chosen
such that the ω0 pulse is insufficient to cross the band gap
but the 2ω0 pulse can. In the 2-band effective mass model
that we are using [7], the 2ω0-pulse energy should be less
than about 2 eV to avoid connecting other bands; the pulse
energies we have chosen satisfy this condition. The relative
phase parameter of the pulses is chosen to be �ϕ ≡ 2ϕω0 −
ϕ2ω0 = π/2 to maximize the induced current. The thickness of
the sample in which the quantum well is embedded (medium
3) is assumed to be D = 400 μm with a dielectric constant
ε3 = 12. As in earlier experimental work [10], we choose R1 =
R2 = 9 μm. The detector is taken to be at a distance of 10 cm
below the sample detecting at an angle of θ = 0.

The two components of the detected electric field can
be calculated using (15), (17), and (18). These are plotted
in Fig. 5 as Lissajous figures to show the polarization of
the emitted light, for the case of applied pulses collinearly
polarized in the +x direction. It can be seen that the field
from the electron contribution [Fig. 5(a)], after an initial
buildup during the period that the exciting pulses are at play,
is circularly polarized. This is to be expected considering that
the electrons in the sample undergo cyclotron motion, at a
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FIG. 5. Lissajous figures for GaAs with collinear incident pulses.
For τ = 5 ps, we plot the (a) electron contribution, (b) hole contri-
bution, and (c) total contribution; (d) shows the total contribution for
τ = 200 fs. The time T , measured at the sample, runs from −200 fs
to 1.5 ps, where T = 0 corresponds to the peak incident intensity at
the sample. See text for pulse parameters.

frequency corresponding to the Landau level spacing in the
conduction band, which is also the frequency of oscillation of
the detected field. Similar considerations apply for the hole
contribution to the current, shown in Fig. 5(b). The period
during which the applied pulse is passing through the sample
manifests itself as the large swing to the right and back to the
left. After the pulse passes, the holes start to undergo cyclotron
motion in the direction opposite to the electrons, and this is
indicated by the smaller circular region in Fig. 5(b), rotating in
the direction opposite to that in Fig. 5(a). Additional physical
insight into the nature of these curves can be obtained by
considering the behavior of the charges in the sample. As
we showed in our previous work [7], the hole charge density
around any point in the plane at t = 0 is localized toward
the +y direction of the point, and so the initial buildup of
the dipole moment occurs along the y direction. Keeping in
mind that s polarization corresponds to the −y direction for
normal detection angle while p polarization corresponds to the
+x direction, as well as the fact that the cyclotron period for
hole motion is large compared to the time scale of the initial
buildup, this means that the primary contribution to the emitted
field should be polarized along the s direction. Then, after the
initial stage, we should see a circularly polarized field with
an amplitude that is small compared to the field of the initial
stage, due to the comparatively slow rotation of the holes. This
is indeed the behavior that is observed in Fig. 5(b). Similar
physical considerations apply to Fig. 5(a); the differences in
its appearance compared to Fig. 5(b) are due to the fact that
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FIG. 6. Lissajous figures for GaAs for total (electron + hole) field
for (a) cross-linear polarization τ = 5 ps; (b) cross-linear polarization
and τ = 200 fs; (c) co-circular polarization and τ = 5 ps; (d) co-
circular polarization and τ = 200 fs. The time T , measured at the
sample, runs from −200 fs to 1.5 ps, where T = 0 corresponds to the
peak incident intensity at the sample. See text for pulse parameters.

the time scale for electron cyclotron rotation is comparable to
that of the exciting pulses, and therefore the amplitudes during
each stage are comparable.

In Fig. 5(c), we plot the sum of the electron and hole
contributions. As described above, the behavior after the
exciting pulses have passed is dominated by the electron
contribution. In all of the above plots, we have assumed a long
scattering time of 5 ps for all of the τcv in order to illustrate the
cyclotron behavior. Figure 5(d) shows the sum of the electron
and hole contributions with a more realistic scattering time
[17] of τ = 200 fs. As we expect, the field builds up and then
undergoes circular motion while decaying rapidly.

Figures 6(a) and 6(b) display the fields for the case of
cross-linear polarization, plotted against time, for the long and
short scattering times. The ω0 pulse is taken to be polarized
along the +x direction and the 2ω0 pulse along the +y

direction. As before, there is an initial stage where the applied
pulses are passing through the sample, corresponding to the
large variation along the Ep direction, followed by a stage of
cyclotron motion, corresponding to the smaller loops in the
plot. The large variation in the Ep direction is mainly caused
by the buildup of hole density and dipole moment along the
x direction, which corresponds to the p direction, before the
cyclotron motion gets going.

The fields are plotted for the case of co-circular polarization
in Figs. 6(c) and 6(d) for long and short scattering times,
respectively, where both incident pulses are σ+-polarized.
The plots are similar to those for collinear polarization, as
similar charge distributions are induced in the sample. Indeed,
the collinear case can be considered to be a combination
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FIG. 7. Total field vs time for monolayer graphene for (a)
collinear polarization, τ = 5 ps; (b) collinear polarization, τ = 50 fs;
(c) co-circular polarization, τ = 5 ps; (d) co-circular polarization,
τ = 50 fs. Solid line represents the p component and dashed line
represents the s component. The time T is measured at the sample,
where T = 0 corresponds to the peak incident intensity at the sample.
See text for pulse parameters.

of the case of co-circular σ+ polarization and the case of
co-circular σ− polarization. Finally, we emphasize that for
all types of polarization, we obtain circularly polarized light
at the detector, since electrons and holes will always move
in cyclotron orbits in a magnetic field. For GaAs quantum
wells we will obtain two light frequencies corresponding to
the cyclotron frequencies of electrons and holes.

Next we look at the results for graphene monolayers and
bilayers. For both cases, following earlier work [8,10], we
choose �ω0 = 259 meV and we take the applied ω0 pulse
to have a duration of 220 fs FWHM with a peak intensity
of 50 MW/cm2, and the 2ω0 pulse to have a duration of
156 fs with a peak intensity of 1 MW/cm2; the intensities
are again chosen such that the perturbative treatment is valid.
For both the monolayer and bilayer, the pulse energy should
be less than about 2 eV to stay within the linear regime [8]
(for monolayer graphene) or within the regime of validity of
our tight-binding Hamiltonian [14] (for bilayer graphene); our
chosen pulse energies satisfy this condition. The relative phase
parameter is �ϕ = π/2 as before. The substrate is assumed
to be SiC with a dielectric constant ε3 = 6.8 and thickness
D = 400 μm. We take R1 = R2 = 9 μm, and the detector is
again at a distance of 10 cm below the sample at θ = 0.

For monolayer graphene, the components of the detected
field are calculated using (16), (19), and (20). Plots of the
field are given in Fig. 7 for collinearly polarized incident
pulses [Figs. 7(a) and 7(b)] for long (5 ps) and short [18]
(50 fs) scattering times, as well as for co-circularly polarized
σ+ incident pulses [Figs. 7(c) and 7(d)]. Looking first at the
results for collinear polarization, we find that the s component
of the detected field is zero, and that the p component, shown
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in Fig. 7(a), is nonzero. This is to be expected because,
as mentioned in the previous section, the symmetric band
structure of graphene ensures that the electron and hole
contributions to the current density are equal in magnitude but
rotate in opposite directions, resulting in an overall current—
and therefore emitted field—oscillating along one direction,
the x direction. From (19) and (20) we see that the electron
dipole moment is composed of terms each involving two
transitions, from a particular valence state to two conduction
states, while the hole dipole moment is also composed of
terms each involving two transitions, from two valence states
to a particular conduction state. Due to the symmetric band
structure, the term in the electron dipole moment involving, for
example, the transitions −15 → 16 and −15 → 17 will have
the same magnitude as the term in the hole dipole moment
involving the transitions −16 → 15 and −17 → 15. These
electron and hole contributions will therefore cancel in one
direction, since they are equal in magnitude but oppositely
rotating.

In Fig. 7(c) we show a similar plot for co-circular
polarization, including both the s and p components. Note
in this case that both the s and p components are nonzero,
unlike in the case of collinear polarization. This can be
understood by looking at the various transitions involved in
the dipole moments. In the example above, the transitions
in the hole dipole moment, −16 → 15 and −17 → 15, are
required in order to cancel one component of the corresponding
electron contribution. However, these transitions cannot be
excited by σ+-polarized light because σ+-polarized light can
only increase the absolute value of the quantum number in
a transition, and thus the cancellation does not occur. The
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FIG. 8. Total field vs time for bilayer graphene for (a) collinear
polarization, τ = 5 ps; (b) collinear polarization, τ = 50 fs; (c) co-
circular polarization, τ = 5 ps; (d) co-circular polarization, τ = 50
fs. Solid line represents the p component and dashed line represents
the s component. The time T is measured at the sample, where T = 0
corresponds to the peak incident intensity at the sample. See text for
pulse parameters.

cancellation is present for linearly polarized incident light
because it contains a σ−-polarized component that can excite
these transitions. Also, it should be mentioned that multiple
frequencies of oscillation contribute to the plots, since the
Landau level spacings are not all the same, as they are in
GaAs.

Finally, Fig. 8 shows the same plots for bilayer graphene.
As for monolayer graphene, the s component cancels for
collinear polarization, while both components survive for
co-circular polarization. The reasons are the same as for
monolayer graphene: the symmetric band structure along with
the different selectivity of transitions of σ+ and σ− light. The
main differences between the plots for monolayer graphene
and bilayer graphene are due to the presence of different
frequencies of oscillation as determined by the bilayer Landau
level structure, as well as the additional complexities resulting
from the presence of four bands instead of two.

Finally, we mention that the electric field magnitudes
predicted from our calculations are comparable to those
predicted in the absence of a magnetic field; the latter have
been detected in similar coherent control experiments [9,10].
Thus it is expected that the effects outlined here should also
be experimentally observable.

VI. CONCLUSION

In this paper we have calculated the time-dependent
terahertz signal emitted by coherently injected photocurrents
in the presence of a magnetic field. We have looked in detail at
the predictions for a GaAs quantum well, monolayer graphene,
and Bernal-stacked bilayer graphene. In a GaAs sample,
it was found that circularly polarized radiation is emitted,
corresponding to electrons and holes executing cyclotron
motion after injection. Similar results are found in graphene
and bilayer graphene, but with the presence of multiple
frequencies, and linearly polarized radiation when the incident
beams are collinear, which results from the symmetrical band
structure in these systems. For each system, the particular
frequencies excited reflect the underlying dispersion relation
of the structure. In all cases, we have accounted for the finite
beam size and shape, and for decay processes in a phenomeno-
logical manner, and so we expect the experimentally obtained
terahertz radiation pattern to be similar to what we have
presented here. A more detailed calculation would account
more rigorously for the different kinds of scattering and decay
processes, but for our purposes, a phenomenological treatment
is sufficient. We emphasize that our predictions show a rich
behavior strongly dependent on the phenomenological times
introduced, and thus from experimental results one should
be able to approximately extract the phenomenological time,
as well as see evidence for the necessity of extending the
simple theory presented here for transport in these structures.
The terahertz radiation that we have calculated here should be
detectable by these experiments.

We have also calculated numerically the current injected in
a graphene bilayer sample and compared it with that previously
obtained for a monolayer. In particular, it was found that the
presence of two additional bands, as well as an additional
interference process—that between a one-photon process of
absorption at ω0 and a two-photon process of absorption at
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2ω0 and emission at ω0—can significantly alter the quali-
tative behavior of bilayer graphene compared to monolayer
graphene. This can be seen especially in the dependence of the
current on the relative polarization angle of the two incident
beams, and should be detectable experimentally. As in the
example of monolayer and bilayer graphene in the absence of
a magnetic field, experiments in the presence of a magnetic
field should be able to distinguish between these two versions
of graphene. They should also provide an important probe

of transport in these structures, and more generally how it is
different in different versions of graphene.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada, in part
through a CGS-M to K.M.R.

[1] N. S. Ginsberg, S. R. Garner, and L. V. Hau, Nature (London)
445, 623 (2007).

[2] L. Zhu, V. Kleiman, X. Li, S. P. Lu, K. Trentelman, and R. J.
Gordon, Science 270, 77 (1995).

[3] M. J. Stevens, R. D. R. Bhat, J. E. Sipe, H. M. van Driel, and
A. L. Smirl, Phys. Status Solidi B 238, 568 (2003).

[4] H. M. van Driel and J. E. Sipe, in Ultrafast Phenomena in
Semiconductors, edited by K. T. Tsen (Springer-Verlag, New
York, 2001), pp. 261–306.

[5] R. D. R. Bhat and J. E. Sipe, Phys. Rev. Lett. 85, 5432 (2000).
[6] A. Najmaie, R. D. R. Bhat, and J. E. Sipe, Phys. Rev. B 68,

165348 (2003).
[7] K. M. Rao and J. E. Sipe, Phys. Rev. B 84, 205313 (2011).
[8] K. M. Rao and J. E. Sipe, Phys. Rev. B 86, 115427 (2012).
[9] H. M. van Driel, J. E. Sipe, and A. L. Smirl, Phys. Status Solidi

B 243, 2278 (2006).
[10] D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer,

P. N. First, and T. B. Norris, Nano Lett. 10, 1293 (2010).

[11] C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics,
Vol. 1 (Wiley, New York, 2006).

[12] Z. F. Ezawa, Quantum Hall Effects: Field Theoretical Ap-
proach and Related Topics (World Scientific, Singapore,
2000).
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