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Combined experimental and theoretical study of fast atom diffraction on the β2(2×4)
reconstructed GaAs(001) surface
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A grazing incidence fast atom diffraction (GIFAD or FAD) setup, installed on a molecular beam epitaxy
chamber, has been used to characterize the β2(2×4) reconstruction of a GaAs(001) surface at 530 ◦C under
an As4 overpressure. Using a 400-eV 4He beam, high-resolution diffraction patterns with up to eighty well-
resolved diffraction orders are observed simultaneously, providing a detailed fingerprint of the surface structure.
Experimental diffraction data are in good agreement with results from quantum scattering calculations based on
an ab initio projectile-surface interaction potential. Along with exact calculations, we show that a straightforward
semiclassical analysis allows the features of the diffraction chart to be linked to the main characteristics of the
surface reconstruction topography. Our results demonstrate that GIFAD is a technique suitable for measuring
in situ the subtle details of complex surface reconstructions. We have performed measurements at very small
incidence angles, where the kinetic energy of the projectile motion perpendicular to the surface can be reduced
to less than 1 meV. This allowed the depth of the attractive van der Waals potential well to be estimated as
−8.7 meV in very good agreement with results reported in literature.
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I. INTRODUCTION

The reconstruction of a surface largely determines its
interaction with the environment affecting the growth of
subsequent overlayers. Since thin films and sharp interfaces
remain a technological challenge, significant research has been
devoted to accurately measure and predict the detailed surface
structure, in particular at elevated temperatures where thin
film growth is usually conducted. Experimentally, electron
diffraction techniques, such as low-energy electron diffraction
(LEED) [1] and reflection high-energy electron diffraction
(RHEED) [2–4], provide a simple and practical means to
access basic crystallographic properties (symmetry, lattice
parameter). In addition, RHEED is compatible with the real
time analysis of conventional thin-film growth techniques such
as molecular beam epitaxy (MBE). However, due to the impor-
tance of electron multiple scattering, a comparatively complex
dynamical scattering theory is required to determine the atomic
positions from RHEED data. In contrast, x-ray diffraction
is well described by kinematical theory, which assumes that
each photon is scattered only once, and is considered as the
reference technique for the accurate determination of complex
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structural information [5,6]. The only limitation is that, due to
the large x-ray mean free path, surface sensitivity is achieved
only at grazing incidence (GIXRD), which requires high fluxes
available only at synchrotron radiation facilities.

A less commonly used alternative is thermal energy helium
atom scattering [7–10] (HAS) where the probing atoms are
repelled by the surface, a few angstroms above the terminal
layer, thus ensuring exclusive surface sensitivity of the diffrac-
tion pattern. HAS has been used to benchmark theoretical
descriptions of gas-surface interactions [11–13] as well as
the surface arrangement of atoms. However, the diffracted
intensity, governed by the Debye-Waller factor, tends to vanish
as soon as the helium wavelength becomes comparable to
the amplitude of the thermal fluctuation of the surface atoms.
For this reason, most HAS studies have been performed on
nitrogen cooled surfaces and with helium atom energies below
60 meV [12,14]. Thus surface reconstructions, which occur
at elevated temperatures, cannot be analyzed. Moreover, as a
consequence of the low collision energy, the HAS is affected
by the polarization van der Waals (vdW) interaction between
the probe atom and the surface, which somewhat complicates
the interpretation of the data [11,12,15–18].

More recently, a new diffraction regime has been identi-
fied [19–22] using fast helium atoms in the keV range, and
a grazing incidence geometry similar to that of RHEED.
Since the scattering of the fast helium atoms occurs over
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tens of successive surface atoms, the thermal decoherence
is drastically reduced [23–26] and, unlike HAS, diffraction
can be observed at elevated temperatures and/or higher
effective energies. Well-resolved diffraction patterns have
been reported for dielectric [20–22], semiconductor [27,28],
and metal surfaces [29,30]. Since these first observations,
GIFAD has been used to obtain valuable information on the
surface structure and reconstruction [22,30–37]. In practice,
just as in RHEED, the whole diffraction cone is recorded at
once on an imaging detector allowing real-time monitoring
of semiconductor growth, as we recently demonstrated for
GaAs [28].

In the present work, we show the ability of GIFAD to
provide high-resolution diffraction images for the case of
a large surface cell and strong surface corrugation giving
rise to numerous diffracted beams. For this purpose we have
selected the well-documented β2(2×4) reconstruction of the
GaAs(001) surface [2–4,14] stable around 500–580 ◦C under
an arsenic overpressure >10−6 mbar, which is known to have
corrugation exceeding 3 Å. Experimental results are compared
with quantum scattering calculations. As an input for the
theoretical study of diffraction we use the interaction potential
between a He projectile and the reconstructed GaAs(001)
surface computed through the density functional theory (DFT).
The paper is organized as follows. Section II describes the
experiment and details the theoretical calculations. Section III
is devoted to the results and their discussion, and finally,
Sec. IV presents summary and conclusions. Atomic units (a.u.)
are used throughout the paper unless otherwise stated.

II. METHODS

A. Experiment

The GIFAD neutral helium source is made of a commercial
hot filament ion gun where He+ ions are produced and
extracted at the desired voltage, here 400 eV. These ions
pass through a neutralization cell where approximately 10%
become neutral as a result of resonant charge exchange with the
helium background gas before exiting via a tiny diaphragm of
diameter D1. This diaphragm serves two purposes, it limits
gas flooding from the cell towards the beam line and it
defines the source extension of the neutral helium beam. At a
distance L1 = 50 cm downstream from D1, another variable
aperture, of a diameter D2 limits the angular divergence to
�φ = (D1 + D2)/2L1. For typical values of 50 μm for both
D1 and D2, the angular divergence is 10−4 rad (5.7 mdeg).
This final aperture D2 is located inside the growth chamber
at a distance L2 = 10 cm from the center of the GaAs wafer
mounted on a rotatable sample holder. The ions that have not
been neutralized are deflected away by a weak steering electric
field at the exit of the neutralization cell (Fig. 1). The whole
beam line is attached to the MBE chamber via a gate valve and a
flexible bellows, with stepper motors controlling both the beam
position and the angle of incidence. After grazing reflection
on the GaAs wafer, the diffracted helium beam is collected
at L3 = 95 cm downstream on an imaging detector made of a
pair of microchannel plates which convert the impact of helium
atoms into an electron cascade accelerated onto a conventional
phosphor screen mounted on a UHV glass viewport (Photonis

FIG. 1. (Color online) Schematic representation of the experi-
mental setup showing a GIFAD ion source, consisting of an ion
gun and neutralization chamber mounted by a flexible bellows onto
an MBE growth chamber, shown here in side view. The angle of
incidence of the atom beam on the sample is φin < 1◦. The imaging
detector is mounted on the opposite side of the chamber, and consists
of two microchannel plates, a phosphor screen and a CDD camera.

APD 3075FM). Outside the vacuum chamber, a low noise CCD
camera (Hamamatsu C8484-05) records up to ten diffraction
images per second [28] without dead time due to interline
features. This system allows single-particle detection if the
atomic flux is low enough while also allowing atomic fluxes as
high as 106 atoms per second to be recorded without saturation
of the CCD detector. The spatial calibration of the optical
system was measured to be 67μm per CCD pixel, which
corresponds to an angular calibration of 0.004◦ per pixel.

The GaAs surfaces used here are undoped GaAs(001)
substrates (miscut <0.1◦). Following thermal deoxidation at
600 ◦C, a thick (>200 nm) GaAs buffer layer was grown at
550 ◦C, and then annealed under As4 at this temperature for
one hour. GIFAD measurements were then carried out with the
GaAs surface held at 530 ◦C, under an As4 beam-equivalent-
pressure of 10−6 mbar, corresponding to an arrival rate of
2 × 1014 As4 molecules cm−2s−1 as calibrated by Arsenic
RHEED oscillations. Ex situ atomic force measurements
carried out after growth showed that the surface consisted
of large GaAs terraces, typically larger than 500 nm in the
[110] direction and larger than 1 μm in the [11̄0] direction.
Under our experimental conditions, the GaAs(001) surface is
in the β2(2×4) reconstruction [2–4] as further confirmed by
the analysis of GIFAD data presented below. Figure 2 gives
a schematic representation of the reconstructed surface, and
indicates the main crystallographic directions. The unit cell is
large (Lx × Ly = 15.98 Å×7.99 Å) and it can be seen that
there is a pronounced axial channel along the [11̄0] direction
with a corrugation exceeding one GaAs monolayer.

The scattering geometry is sketched in Fig. 3. The helium
atom beam of energy E and momentum k = √

2ME (M stands
for the projectile mass) impinges the β2(2 × 4) reconstructed
GaAs(001) surface at a grazing polar incidence angle φ and
at (small) azimuthal misalignment angle � measured from the
low-index direction. The z axis is pointing into the vacuum, and
it is perpendicular to the surface (x,y) plane. In the experiments
presented here, the beam was aligned close to the [11̄0] axial
channel oriented along the y axis in Fig. 3. We have also
observed well resolved diffraction patterns for the incidence
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FIG. 2. (Color online) Schematic representation of the β2(2×4)
reconstruction of the GaAs(001) surface. The atomic arrangement
plotted in the bottom is the one probed when the beam is aligned
along the [11̄0] direction. The left gray square shows the projected
bulk unit cell while the gray rectangle shows the reconstructed surface
unit cell. Topmost atoms are represented with larger radii.

along the [110] axial channel. However, the effective surface
corrugation as seen by the projectiles is quite low in this case
resulting in a small number of populated diffraction orders
and mild variations of the diffracted intensities with incident
conditions. In the following, we concentrate exclusively on

FIG. 3. (Color online) Sketch of the scattering geometry. A he-
lium atom of momentum k impinges the β2(2×4) reconstructed
GaAs(001) surface. φ stands for the polar incidence angle and �

stands for the azimuthal incidence angle. The � angle is measured
with respect to the low-index [11̄0] direction. The diffracted beams
leave the surface at exit angles φj and �j detected in the momentum
space (kx,kz). The index j stands for the diffraction order. Note that
to be consistent with the convention used in the quantum scattering
formalism, j = 0 is taken to be the diffraction spot in the axial
channeling direction, rather than the specular spot. The blue Laue
circle corresponds to the case where the low-index direction at the
surface is perfectly aligned the incident beam, whereas the black
one corresponds to a misalignment angle � of two lattice vectors G

through the relation sin(�) = 2G/k.

the diffraction observed with the atom beam incident along
the [11̄0] direction. Here, the greater surface corrugation
gives rise to a more complex diffraction pattern allowing a
more sensitive comparison between experimental data and
theoretical calculations.

The motion of the projectiles perpendicular to the surface
(z axis) is slow, and is characterised by energy E⊥ = E sin2 φ,
and momentum component kz = k sin(φ) = √

2ME⊥. The
motion parallel to the surface is fast with momentum k‖ ∼ k. In
this paper, we use the axial surface channeling approximation
(ASCA), where the slow motion perpendicular to the surface
and the fast motion parallel to the axial channel are decoupled.
Only the diffraction with reciprocal lattice vector exchange
along the x axis, i.e., perpendicular to the atomic rows forming
the axial channel is possible [22,25,31,38–43]. Thus, in
contrast to HAS, the “effective” projectile-surface interaction
potential appears averaged along the axial channel, and the
complex 3D diffraction problem reduces to the 2D diffraction
of slow projectiles with energy

E2D = E − k2
y/2M = (

k2
x + k2

z

)
/2M, (1)

where ky = k cos φ cos � is the momentum component of
the incident beam along the low-index direction, and kx =
k cos φ sin � is the momentum component of the incident beam
along the x axis.

The diffraction pattern is observed only when the misalign-
ment angle � is small [44–46]. When � = 0, the incident beam
is perfectly aligned with the low-index crystal direction, and
the diffraction spots lie along the gray Laue circle as shown
in Fig. 3. If the alignment is not perfect the diffraction spots
are located on a bigger Laue circle (black) with its center
shifted due to the misalignment angle �. Note that the image
on the detector corresponds to a projected velocity map of
the scattered projectiles and therefore to a reciprocal space
image. The scattering geometry is completely determined as
soon as the incidence angle φ and azimuthal angle � are known
and these two angles are readily measured in each diffraction
image. The position of the primary beam can be measured
before inserting the surface into the beam or, alternatively the
surface may be inserted only partially, leaving a small fraction
of the direct beam unaffected.

In Fig. 4, we show a typical diffraction image obtained with
an incident 400 eV 4He atom beam aligned close to the [11̄0]
direction of the β2(2 × 4) reconstructed GaAs(001) surface.
Bright diffraction spots are located along the well-defined half
Laue circle of radius R = k

√
cos2 φ sin2 � + sin2 φ centered

at (xc,zc). The bright spot in the lower half of the image
corresponds to the fraction of the direct beam that did not hit
the surface. The vertical solid white line connects the specular
spot to the direct beam. The azimuthal angle � is given by
the distance between the center of the Laue circle and the
vertical white line. The incidence polar angle φ is given by
half of the length of the vertical white line. The data allow
direct measurement of the lattice period in the x-direction
Lx = 16.1 Å. This corresponds to the polar angle difference
between two neighbor diffraction spots of 4.47 × 10−4 rad,
and a momentum exchange Gx = 2π/Lx = 0.392 Å−1. Here,
Gx is the reciprocal lattice parameter in the x-direction
perpendicular to the axial channel. Thus the misalignment
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FIG. 4. (Color online) Diffraction image recorded for 400-eV
helium atoms impinging at the β2(2 × 4) reconstructed GaAs(001)
surface. The incident beam is oriented with an incidence angle φ =
0.65◦ (E⊥ = 51.8 meV), and with a misalignment angle � = 0.06◦

with respect to the [11̄0] direction. The diffraction spots are located
along the Laue circle of radius R, centered at (xc,zc). The vertical
white line linking the specular and the direct beam spots is the
intercept with the scattering plane.

angle � when expressed in momentum via sin � ≈ � ≈ (kx/k)
corresponds to the momentum component of the incident beam
kx ≈ −2Gx . The misaligned incidence is at the origin of the
asymmetry of the diffraction image with respect to the center
of the Laue circle (xc,zc).

Figure 5 shows the integrated intensity taken along the
Laue circle, as obtained from the diffraction image shown
in Fig. 4 by applying a polarlike transform that converts the
Laue circle into a line. The integration window is 2.5 mrad,
equivalent to the measured FWHM of the direct beam. The
relative intensities of each diffraction order are extracted

FIG. 5. (Color online) The raw intensity profile taken along the
Laue circle from the diffraction image (Fig. 4) is given by the blue
dashed line. The intensity after the inelastic contribution has been
interpolated and substracted is given by the red solid line.

by fitting each peak to a Voigt profile. This Voigt profile
is a simple convolution of a Lorentzian function with a
Gaussian one, where the latter is the experimental resolution
measured directly on the beam profile. Depending on the total
and perpendicular energy, the intensity below and above the
Laue circle can become quite significant compared to the
intensity on the Laue circle itself. The analysis of this diffuse
intensity, which also displays clear diffraction features with
elongated streaks separated by Gx , is beyond the scope of the
present paper. When needed this diffuse contribution to the
intensity on the Laue circle can be subtracted (see Fig. 5) by
interpolating its dependence on φ below and above the Laue
circle. The error in the measurement of the relative intensity
of the peaks is estimated to be only a few percent, mainly
due to nonuniformity in the detector response. By carrying
out measurements under conditions of uniform illumination
using background sources such as ion gauges in the chamber,
a correction to the detector response to recover a spatially
uniform response has been applied. The images reported here
correspond to regions of the detector where the correction
made is less than 30% of the measured intensity.

B. Theoretical methods

1. Calculation of the diffraction intensities

In our theoretical approach, we consider the scattering
of 4He atoms from a perfect rigid β2(2 × 4) reconstructed
GaAs(001) surface, with a grazingly incident projectile beam
aligned close to the [11̄0] axial channel. The problem can
be described in a single-particle picture by the stationary
Schrödinger equation for the projectile wave function �,

H�(r) = E�(r), (2)

with total energy E and Hamiltonian

H = −∇2/2M + V (r), (3)

where M is the projectile mass, and V (r) is the projectile-
surface interaction potential periodic in the (x,y) plane parallel
to the GaAs(001) surface. We use r = (x,y,z) to define the
position of the He projectile with the z axis perpendicular to
the surface and pointing into the vacuum and with the y axis
along the axial channel. The V (r) potential is obtained on the
basis of the ab initio DFT study detailed in the next section.

The experimental observation of a single Laue circle
for the present system and scattering conditions justifies
the use of the axial surface channeling approximation
(ASCA) [22,25,31,38–43]. The 3D scattering problem can be
thus greatly simplified by considering 2D scattering of He
projectiles by the potential averaged along the [11̄0] axial
channel:

V2D(x,z) = 1

Ly

∫ Ly

0
V (r)dy, (4)

where Ly is the period along the y-direction. With replace-
ment V (r) → V2D(x,z) in Eqs. (2) and (3) the problem has
translational invariance. The wave function of the projectile
can be sought in the form

�(r) = eikyyψ(x,z), (5)
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where ψ(x,z) is the solution of the stationary Schrödinger
equation:⎡
⎢⎢⎢⎣− 1

2M

(
∂2

∂x2
+ ∂2

∂z2

)
+ V2D(x,z)︸ ︷︷ ︸

H2D

−E2D

⎤
⎥⎥⎥⎦ψ(x,z) = 0. (6)

The energy E2D of the slow motion in the (x,z)-plane
perpendicular to the surface is given by Eq. (1) Note that at
grazing incidence conditions E ∼ k2

y/2M so that E2D 
 E.
Thus the fast motion along the y axis is factorized out. The
problem reduces to the diffraction of slow projectiles with an
energy E2D by the 2D potential V2D periodic in x coordinate.

Owing to the periodicity, the wave function ψ(x,z) can be
represented as a Fourier series:

ψ(x,z) =
N/2∑

j=−N/2

fj (z)
1√
Lx

exp[i(kx + jGx)x], (7)

where Lx is the period, Gx = 2π/Lx is the reciprocal lattice
parameter, and N defines the maximum number of reciprocal
lattice vectors involved in the treatment of the scattering
problem. In the present case, we use typically N = 200.
Substitution of Eq. (7) into the Schrödinger equation Eq. (6)
results in a system of coupled equations for z-dependent
coefficients fj (z) [47], which can be cast in matrix form as

[
− ∂2

∂z2
+ 2MW(z)

]
F(z) = 0, (8)

where F(z) is a column vector of fj (z) coefficients, and the
coupling matrix W(z) is given by

Wj ′j (z) =
[

(jGx + kx)2

2M
− E2D

]
δj ′j

+ 1

Lx

∫ Lx

0
V2D(x,z)ei(j−j ′)Gxxdx. (9)

Far from the surface in vacuum V2D = 0, so that the W(z)
matrix is diagonal, and the eijGxx/

√
Lx basis functions define

the asymptotic states. The scattering (equivalently diffraction)
channel j is open (o) when (jGx + kx)2/2M < E2D, i.e., free
particle propagation is possible along the z axis with energy

E
j

⊥ ≡ (kzj )2

2M
= E2D − (jGx + kx)2

2M
. (10)

When E
j

⊥ < 0, the corresponding scattering channel is closed
(c). Note that while E⊥ defined earlier in the paper stands
for the perpendicular energy of the incident beam, E

j

⊥ stands
for the perpendicular energy of the outgoing j th diffracted
beam. Similarly kz stands for the perpendicular to the surface
momentum of the incident projectiles, while kzj stands for the
perpendicular to the surface momentum in the j th diffracted
beam. Obviously, for small momentum exchange with the
lattice, kzj ≈ kz.

The scattering matrix S comprising the full in-
formation on the population transfer between ingo-
ing χin = 1√

2πLx
exp[i(jGx + kx)x − ikzj z] and outgoing

χout = 1√
2πLx

exp[i(mGx + kx)x + ikzj z] states is calculated

following the procedure described in detail in Ref. [48]. In
brief, with N linearly independent initial conditions F(zini),
the coupled equations (8) are solved using the Numerov-Fox-
Goodwin method. We start the z propagation close to the
surface in the classically forbidden region. The wave functions
F(z) are then propagated up to the large positive z = z0 far
in the vacuum region. Matching the calculated numerical
solutions to the proper asymptotic form, allows the scattering
matrix extraction:

AF(z0) = k−1/2

[(
exp(−ikz0)

0

)

−
(

exp(ikz0) 0

0 exp(−kz0)

)(
Soo

Sco

)]
, (11)

where A is a N × N matrix, k−1/2 is the diagonal N ×
N matrix, where the diagonal elements are given by
1/

√
|2ME2D − (jGx + kx)2|. The diagonal matrices e±ikz

have the dimension No × No, where No is the number of
open channels. The matrix elements are given by [e±ikz]jj ′ =
e±ikzj zδjj ′ , where the wave vector describing the asymptotic
z propagation in the channel j , kzj is defined by Eq. (10).
The diagonal e−kz matrix has a dimension Nc × Nc, where
Nc = N − No is the number of closed channels. The matrix

elements are given by [e−kz]jj ′ = e−
√

|2ME2D−(jGx+kx )2|zδjj ′ .
The No × No matrix Soo is the scattering matrix. The

matrix elements |(Soo)jj ′ |2 give the diffraction probabilities
from the incident j ′ to the outgoing j channel. Thus, when the
incidence beam is perfectly aligned with the axial channeling
direction, the intensities of the diffracted beams Rj are given
by Rj = |(Soo)j0|2. The general matrix element |(Soo)jm|2
corresponds to the diffraction probabilities for the misaligned
incidence, where the misalignment angle with respect to the
low index direction is given by � ≈ (mGx + kx)/

√
2ME. In

a single calculation, one obtains results for several misaligned
incidence cases. Note that, following this approach, the
diffraction order labeled zero in all the figures, is not the
specular one but the one aligned with the axial channeling
direction (Fig. 3).

2. He-GaAs interaction potential

For the present study, the projectile-surface interaction
potential V (r) has to be adequate over a wide range of
projectile energies E⊥ perpendicular to the surface: from a
few meV, as in HAS experiments, up to several hundred
meV. Because of the large number of atoms involved in the
surface unit cell, the full ab initio study of the He atom
interaction with GaAs(001) β2(2 × 4) reconstructed surface
becomes computationally heavy if the interaction potential
V (r) is required on a dense mesh in spatial coordinates. We
then choose the following strategy allowing the computational
effort to be reduced, and an efficient and precise interpolation
of the ab initio potential to be obtained at any desired (x,y,z)
point.

Firstly, ab initio density functional theory calculations
are used to obtain the z-dependent potential VDFT(xn,yn,z)
for a set of (xn,yn) impact points within the surface unit
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cell. Secondly, the DFT data have been fitted using binary
interaction potentials VGa, and VAs of the He projectile with
Ga and As atoms, respectively,

V (r) =
∑
RGa

VGa(r − RGa) +
∑
RAs

VAs(r − RAs), (12)

where the sum runs over the positions of the surface atoms
[49–51]. The binary interaction potentials are cast in the
Ziegler, Biersack, and Littmark (ZBL) form [52],

VS(r) = 1

r

JS∑
j=1

aS
j exp

(−bS
j r

)
, (13)

where JS defines a number of screened exponentials used
in the potential expansion, and S = (Ga,As) stands for the
atomic species at the surface. The parameters (aGa

j ,bGa
j ) and

(aAs
j ,bAs

j ) are obtained from a least squares fit to VDFT(xn,yn,z)
with V (r = (xn,yn,z)) given by Eqs. (12) and (13). Once the
parameters of the binary potentials are fixed, from the fit to the
ab initio calculations, Eq. (12) provides the interaction poten-
tial between the He projectile and the β2(2 × 4) reconstructed
GaAs(001) surface for any projectile position r.

The ab initio He-surface interaction potential VDFT(xn,yn,z)
was computed through DFT within the generalized gradient
approximation in the PW91 version [53] as implemented in
the VASP code [54]. In the calculations we used the provided
projector augmented-wave pseudopotentials [55] for Ga, As,
and He, with a cutoff as high as 400 eV for the expansion
of the Kohn-Sham orbitals. A (1 × 2 × 1) Monkhorst-Pack
grid centered at (1/4,1/4,0) was used to sample the supercell,
which yields four special points in the irreducible wedge of
the 2D Brillouin zone corresponding to the β2(2 × 4) recon-
structed GaAs(001) surface. The GaAs slab was accurately
constructed in order to fulfill the electron counting rule and
avoid any problem that could stem from the polar character
of the alternating stacking of Ga and As planes along the
surface normal. The slab comprises the (1 × 1) surface unit
cell and it is 13-layers thick, with a fixed central As layer;
its upper surface showed the β2(2 × 4) reconstruction while
the bottom surface showed a rotated α(2 × 4) reconstruction,
both of which are As-rich. The void region in the supercell was
20-Å thick. The laterally averaged electrostatic potential was
checked to be symmetric around the slab center and no dipole
corrections were necessary. After optimization, the surface
geometry turned out to be essentially equivalent to previous
studies [56]. The He atom was then placed on the previously re-
laxed β2(2 × 4) surface at varying (xn,yn) positions and several
heights z in the range 0.5–5 Å, and the He-surface interaction
potential VDFT(xn,yn,z) was accordingly computed.

The quality of the model fit to the ab initio data can be
assessed from Fig. 6 where we show the results obtained
along several r = (xn,yn,z) projectile trajectories with impact
points (xn,yn) indicated in Fig. 7. The parameters of the
binary interaction potentials are given in the Table I. Note
that in the potential construction procedure, we have used the
repulsive part of the ab initio data as calculated with DFT,
while the attractive part has been scaled: VDFT → 0.4VDFT,
for VDFT < 0. This is because from the detailed comparison
between the experimental and theoretical diffraction charts

FIG. 6. (Color online) The ab initio results VDFT(xn,yn,z) (dots)
and the parametric fit given by Eqs. (12) and (13) (lines) for
the interaction potential between He projectile and the β2(2 × 4)
reconstructed GaAs(001) surface. Results are shown as a function of
the projectile surface distance z measured from the central As layer of
the 13-layer-thick GaAs slab as used in the DFT calculations. Prior to
the fit, the attractive part of the DFT data has been scaled as explained
in the main text so that the theoretical diffraction charts match the
experimental ones at low E⊥ [see Sec. II B 2]. Different panels of the
figure correspond to the different impact points (xn,yn) at the surface
as indicated in Fig. 7.

(see Results and Discussion section), it appeared that the
present DFT calculations overestimate the attractive part of
the projectile-surface interaction. The above scaling of the
DFT result yields a V (r) potential that allows an excellent
agreement between the calculated and measured diffraction
charts to be reached. It is noteworthy that the resulting depth
of the attractive potential well of −8.7 meV is in line with
earlier reports [16,57]. We would like to stress here that the
scaling of the attractive part of the ab initio potential has a
significant effect only on the calculated diffraction patterns
obtained with the perpendicular energies of the incident
projectiles E⊥ < 30 meV. At higher perpendicular energies,
the results are mainly determined by the repulsive part of the
projectile-surface interaction. Using the scaled or raw DFT
data as inputs to the quantum calculation leads then to very
similar diffraction charts.

In Fig. 7(a), we show the final projectile surface interaction
potential V2D(x,z) used in the coupled channel calculation
within the axial channeling approximation. Figure 7(b) shows
the surface corrugation as seen by the 120-meV projectile, i.e.,
the equipotential surface map Z(x,y), where Z is taken such
that the full 3D potential V (x,y,Z) = 120 meV. For the [11̄0]
incidence direction, the most prominent structure is a deep
axial channel located at the middle of the unit cell and formed
by two atomic layer high steps. This strong corrugation of
the β2(2 × 4) reconstructed GaAs(001) surface together with
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FIG. 7. (Color online) (a) The contour plot of the averaged
projectile-surface interaction potential V2D(x,z). The label of the
contour lines give the potential in meV. Vertical dashed lines separated
by Lx delimit a unit cell. Atoms used in the ab initio studies are
sketched with blue (As) and red (Ga) dots. (b) Surface corrugation
function Z(x,y) as function of the x and y coordinates parallel to the
β2(2 × 4) reconstructed GaAs(001) surface. Z(x,y) is defined such
that the full 3D potential V (x,y,Z) = 120 meV. The surface unit
cell is shown with dashed lines. Crosses indicate the impact points
(xn,yn) used for the DFT calculation of the potential VDFT(xn,yn,z).
The numbered impact points correspond to the panels of Fig. 6.

a large period along the x direction perpendicular to the beam
(Lx ≈ 16 Å) is at the origin of the very rich diffraction pattern
with a large number of populated diffraction orders as observed
experimentally.

Indeed, within the axial channeling approximation, the
semiclassical approach with sinusoidal hard wall model of
the surface [21,22,58–60] leads to a simple expression for the
intensity of different diffraction orders Rj :

Rj = J 2
|j |

(
kz + kzj

2
�z

)
, (14)

where �z is the amplitude of the surface corrugation Z(x,y)
averaged along the low-index y-direction, and J|j | is the
Bessel function of rank |j |, with ±j orders being degenerate.
The wave vector kjz is given by Eq. (10). Obviously, with

TABLE I. Parameters of the binary interaction potentials, given
in Eq. (13), which have been used to fit the DFT data. JAs = 2 and
JGa = 1. The amplitude a is given in atomic units of energy times a0

and decay constant b is given in units of a−1
0 . a0 stands for the Bohr

radius.

aAs
1 = 37.545 bAs

1 = 1.124 aAs
2 = −19.326 bAs

2 = 1.023
aGa

1 = 30.42 bGa
1 = 1.542

increasing lattice period Lx and with increasing surface
corrugation �z, the number of efficiently populated diffraction
orders increases, reaching up to 80 (j = ±40) under the
present experimental conditions.

Along with the pronounced main channel at the middle of
the unit cell, visible in Fig. 7(a), there is also a second shallow
channel located at the unit cell boundary and running along the
[11̄0] direction between the two topmost As dimers. As we will
discuss in the next section, the diffraction patterns result from
the interference between the beams reflected from different
substructures within the Lx unit cell. This is very similar to
the physics reported in a recent FAD study of the oxygen
covered Mo(112) surface [34]. In this respect, the presence of
a second channel, even though comparatively shallow, leads
to well defined features which allow a precise characterization
of the surface geometry.

III. RESULTS AND DISCUSSION

Because of the strong surface corrugation and many open
diffraction orders, the diffraction diagram appears extremely
sensitive to both the incidence polar and misalignment angles.
Figure 8 shows a drastic modification of the diffraction
spectrum with many peaks switching from very intense to very
weak and vice versa for only 0.03◦ difference in the incidence
polar angle φ. The associated energy of the slow motion
E2D is only changed by few percent. Thus any significant
variation of the effective surface corrugation as “seen” by
the projectile is excluded. This extreme sensitivity can be
easily understood as due to a simple wavelength variation
on a comparatively long path difference between the beams
reflected from the top and bottom of the potential valley: �z,
where kz�z  1. The change in incidence angle corresponds
to a change in momentum kz of 0.47 Å−1, i.e., of only 4 %.
However, a corrugation of �z = 3.6 Å [see Fig. 7(b)] is enough
to induce a relative phase shift close to π/2. Similarly, at a
fixed E⊥ ∼ 60 meV a tiny variation of �z of 0.13 Å leads to
a phase shift close to π/2. For the GaAs β2(2 × 4) surface,
it follows from the calculated potentials that most of the
evolution of the diffracted intensities with changing incidence

FIG. 8. (Color online) Deconvoluted diffracted intensities
recorded for 400 eV He atoms at φ = 0.72◦, i.e., E⊥ = 63 meV (red
line), and φ = 0.69◦, i.e., E⊥ = 58 meV (black line), incidence close
to the [11̄0] direction of the β2(2 × 4) reconstruction of GaAs(001).
The azimuthal misalignment angle � = −0.06◦ corresponds to
the transverse momentum kx given by twice the primitive surface
reciprocal lattice vector kx ≈ −2Gx .
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FIG. 9. (Color online) Diffraction charts for 4He atoms incident along the [11̄0] direction of the β2(2 × 4) phase of GaAs(001). The
azimuthal misalignment angle � is such that the momentum component of the incident beam kx ≈ −2Gx , where the reciprocal lattice
parameter across the axial channel Gx = 0.39 Å−1. The intensity of the diffracted beams is displayed as function of the diffraction order
(horizontal axis) and perpendicular to the surface momentum of the incident beam kz (vertical axis). The momentum kz is measured in Å−1.
On the right vertical axis we give the corresponding perpendicular energy E⊥ = k2

z /2M . The panels of the figure correspond to (a) theoretical
S-matrix calculations and (b) experimental data obtained by changing the incident angle at a constant total energy of 400 eV. The dashed lines
delimit the region between closed and open diffraction channels. The green lines show the position of the classical rainbow due to the shallow
potential valley between the two topmost As dimers.

angle can be understood in terms of probing an almost constant
equipotential surface with a variable projectile wavelength.

A. Comparison of experimental and theoretical
diffraction charts

The sensitivity to the details of the projectile-surface
interaction and scattering geometry demonstrates the power of
FAD as a surface analysis tool. However, this very high sensi-
tivity complicates the comparison with theoretical calculations
in the present system. Indeed, perfect match between the
calculated and measured data for the fixed incidence conditions
would require an extremely fine adjustment of the interaction
potentials where the surface corrugation has to be determined
with precision close to 0.01 Å (see discussion of Figs. 8 and 9
where a 0.1 Å variation of the corrugation amplitude is enough
to switch the intensity of a diffraction peak from maximum to
minimum). One way to handle this complexity is to bypass
the fine details and to concentrate on the gross features of
the evolution of the diffracted intensities with the wavelength
λz = 2π/kz (or directly with wave vector kz) characteristic for
the slow motion perpendicular to the surface. Experimentally,
this corresponds to a so-called rocking curve scan and in
terms of interpretation to a diffraction chart [22] analysis. The
diffraction charts allow a global analysis that is extremely
helpful for qualitative and semiquantitative interpretation.
Indeed, specific patterns can be identified and linked with main
features of the surface reconstruction using a semiclassical
approach. The most simple model is certainly ray tracing
on a corrugated hard wall with corrugation Z(x) defined as
the equipotential line: V2D(x,Z(x)) = E⊥. Here, V2D is the
projectile-surface interaction within the axial surface channel-
ing approximation introduced earlier. As we show below, such
a ray tracing analysis provides a straightforward interpretation
of the observed diffraction chart in the quasispecular region.

In Fig. 9, we show the experimental and theoretical
diffraction charts for a 4He atom beam incident along the

[11̄0] direction of the β2(2 × 4) reconstructed GaAs(001)
surface. The azimuthal misalignment angle � is such that
the momentum component of the incident beam kx ≈ −2Gx .
The perpendicular energy E⊥ range covered by the data is
30–120 meV. The dashed lines jmin(kz) and jmax(kz) delimit
the region between the closed and open diffraction channels,
where for the latter the allowed diffraction orders j are within
the range jmin � j � jmax, as can be obtained for fixed kz, or
equivalently E⊥ from Eqs. (1) and (10).

A rich diffraction pattern is obtained with many populated
diffraction orders j showing a fast variation of the diffraction
intensity with kz. Note that because of the small misalignment
�, the diffraction charts are slightly asymmetric with respect to
j = 0. As a main observation, the experimental and theoretical
diffraction charts plotted at the same absolute scale are in
excellent overall agreement as far as the main features are
concerned. In particular, this is the case for the two link
chain pattern forming the brightest motif of the data at small
diffraction orders, and highlighted in white at the bottom left
of the panels of the figure. This pattern appears every eight
diffraction orders in kx and every 4.5 Å−1 in kz with two sets
in quadrature, i.e., shifted by four diffraction orders in kx and
4.5/2 Å−1 in kz. We stress here that we used the geometry
obtained in DFT calculations and no a posteriori adjustment
of the atomic positions [31–33] has been attempted.

B. Semiclassical analysis of the quasispecular scattering

Despite the complexity of the diffraction charts, many
of the observed features can be easily rationalized as due
to specific structures in the projectile-surface interaction
potential. We start with the semiclassical analysis of the
quasi-specular region defined by a moderate exchange of
transverse momentum kx , and corresponding to the central part
of the Laue circle. As stressed above, for the FAD diffraction
conditions, the axial channeling approximation applies. The
problem reduces to the diffraction of slow projectiles with
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FIG. 10. (Color online) Sketch of the semiclassical analysis
based on quasispecular reflection from the flat sections of the
corrugation function Z(x) calculated for E⊥ = 100 meV. (a), (b),
and (c) show the diffraction charts associated with the color points
depicted in the respective insets where vertical bars are separated
by Lx/4. In (a), the low-frequency modulation originating from
the isolated secondary valleys is outlined. Taking �13 = �24, the
same diffraction chart is obtained either from the top valley [points
(1), (2), and (1′)] or from the bottom one [points (2), (4), and
(2′)]. The diffraction chart in (b) outlines the high frequency
components resulting from the topmost and bottommost sections.
In (c), all six flat sections are included reproducing the two-link chain
pattern.

energy E2D by the V2D(x,z) potential obtained by averaging
V(r) along the axial channel. In the following, we will neglect
the small experimental misalignment of the incident beam
with respect to the axial channel direction, and consider a hard
wall potential model shown in Fig. 10. The incident projectiles
with momentum kz are diffracted by the hard wall located at
z = Z(x), where V2D (x,Z(x)) = k2

z /2M .
In terms of trajectories, the diffraction with small momen-

tum exchange jGx = j2π/Lx (j small) along the x axis is

dominated by the contribution of the “flat sections” at the
maxima and minima of the corrugation function Z(x) such
that dZ(x)/dx = 0. These are marked with dots in Fig. 10.
The phase difference between two rays reflected at locations
xm and xn is

αm − αn = jGx(xm − xn) + 2kz(Z(xm) − Z(xn)), (15)

where for small j , we have neglected the change in the
momentum kz after reflection. Equation (15) takes into account
that for a periodic structure only trajectories with a kx

momentum exchange given by the reciprocal lattice vector
will contribute to the final result. Finally, the hard wall profile
dependence on E⊥ is neglected here. This is a reasonable
approximation, supported by the calculated equipotential lines
of the V2D potential shown in Fig. 7(a), and fully sufficient
for the present qualitative discussion. Considering a local
scattering cross section A = ∣∣d2Z(x)/dx2

∣∣−1
(i.e., the local

curvature), the scattering intensities can be calculated as

Rj =
∣∣∣∣∣∣
∑
f

√
Af exp(iαf )

∣∣∣∣∣∣
2

, (16)

where the sum runs over the “flat sections” of the surface. In
what follows, to keep the discussion as simple as possible, we
will assume Af = 1.

Using Eqs. (15) and (16), we are now in a position to assign
structures on the diffraction chart to trajectories bouncing on
different parts of the corrugated surface. We start with analysis
of the trajectories reflected at positions (1) and (1′), which are
located at the same Z , and delimit the shallow potential valley
between the two topmost As dimers. Since Z(x1) = Z(x1′ ),
the corresponding trajectories are always in phase for specular
reflection (j = 0). The separation in x is x1′ − x1 = Lx/4 so
that the phase differences evolve with reciprocal lattice vector
exchange as �α = α1′ − α1 = jπ/2. The diffraction orders
j = 4n + 2, (n = integer), correspond to a phase difference of
π and will thus be extinguished due to destructive interference
at all kz. The orders with j = 4n will be the brightest.

Introducing now the trajectories emerging from (3), the
bottom of the shallow potential valley between (1) and (1′),
an oscillating structure appears along kz in the diffraction
chart. It is associated with the phase difference 2kz�13, where
�13 = Z(x1) − Z(x3) [see Fig. 10(a)]. All together the patch
motif of the diffraction chart is obtained with clear similarities
with experimental data. Since x3 − x1 = x1′ − x3 = Lx/8, the
patch structure is repeated every eight diffraction orders.
Note, however, that patches are also observed every four
diffraction orders but in quadrature with respect to kz because
at these kz values the π phase shift associated with four
primitive reciprocal lattice vectors exchange in x direction
is exactly compensated by a π phase shift due to the change
in kz.

When considering the scattering from the three points
[(2), (2′), and (4)], one obtains exactly the same diffraction
chart as for the [(1), (1′), and (3)] sequence. This is because
the underlying atomic arrangements are similar, i.e., a Ga
atomic row sandwiched between two protruding As atomic
rows in the direction of the beam (see Fig. 7). Since,
from the calculated DFT potential we see that �13 = �24,
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and since the separations in x between the points are also
given by Lx/8: x4 − x2 = x2′ − x4 = Lx/8, both the vertical
and horizontal modulations are identical. We have explicitly
checked that setting �13 �= �24 rapidly blurs the diffraction
chart and degrades its comparison with experiment. Note that
while the analysis is strictly speaking applicable only for the
quasispecular region, we show the full diffraction chart for the
sake of completeness.

As expected, the highest-frequency component �kz ≈
0.9 Å−1 observed for all diffraction orders in experimental
and full-quantum theoretical diffraction charts emerges from
the maximum separation in z between the scatterers. This is
illustrated in Fig. 10(b) by considering only the trajectories
bouncing on the topmost and bottommost points, i.e., (1), (1′)
and (2), (2′). The phase difference associated with motion
perpendicular to the surface is given by 2kz�12, where �12 =
Z(x1) − Z(x2) = 3.6 Å. This explains the fast oscillating
structure. As to the chain pattern where adjacent diffraction
orders are in quadrature, this emerges naturally from the
Lx/2 separation in x between the pairs of points [(1), (1′)]
and [(2), (2′)], and from the Lx/4 separation in x between
between (1) and (1′), as well as (2) and (2′) points within
each pair. For the fixed kz, the phase difference between
the pairs of scatterers is α2 − α1 = α2′ − α1′ = jπ so that
each j = 2n (n = integer) diffraction order corresponds to
constructive interference and should be intense. However, as
discussed above, each j = 4m + 2 (m = integer) order will
be extinct because of the destructive interference between the
rays reflected from the points within each pair. Two conditions
lead to the conclusion that j = 4n orders will be bright. Now,
assuming j = 4n, changing j → j ± 1 leads to the π phase
shift between [(1), (1′)] and [(2), (2′)] pairs, which can be
compensated by kz change by �kz/2. Note that the (1) and
(1′), as well as (2) and (2′) points are dephased by π/2 so that
the resulting spots are less bright than these at j = 4n.

The complete model where trajectories bouncing on the
six points discussed above are considered is displayed in
Fig. 10(c). It shows the two link chain pattern inside the patch
structure, as actually observed experimentally and calculated
using full quantum scattering matrix approach.

The simple model discussed above outlines physical param-
eters both for the surface morphology and for the diffraction
structure. It means, for instance, that at 135 meV perpendicular
energy, the wavelength λ = 0.36 Å is ten times smaller than
the corrugation so that the surface can be seen as a grating
with very deep groove. The model also indicates that both �13

and �24 corrugation parameters should be close to each other
and close to �12/5 as can be derived from the ratio of the
slow to fast vertical modulation in Fig. 9 (respectively, 0.9 and
4.5 Å−1). This is fully supported by the ab initio potentials
calculated in this work.

Let us summarize. For small reciprocal lattice vector
exchange, the brightest pattern in the calculated and measured
diffraction chart shown in Fig. 9 is the “two link chain pattern.”
For a fixed reciprocal lattice vector exchange (i.e., for a
given diffraction order) the kz dependence is characterized
by the rapid oscillation with a period of ≈0.9 Å−1. Globally,
the j = 4n + 2 diffraction orders are extinct and the j = 4n

orders are most intense (n = integer). This rapidly varying
pattern is modulated by the slowly varying pattern with

periodicity ≈4.5 Å−1 in kz and 8Gx (j = 8n) in the transverse
momentum exchange direction. The above result can be
explained by a simple model where six scattering structures
are located at coordinates (xf ,zf ) corresponding to the flat
regions of the corrugation function and which are given by
(1,1),(2,4/5),(3,1),(5,0),(6,1/5),(7,0) where xf is in Lx/8
units with Lx ≈ 16 Å the lattice parameter and zf is scaled by
�12 = 3.6 Å.

C. Large reciprocal lattice vector exchange

The pronounced surface corrugation of the GaAs β2(2×4)
reconstruction with a deep channel in the [11̄0] direction
shown as (1)-(2)-(2′)-(1′) in Fig. 10(a) leads to a non-negligible
intensity of the diffracted beams almost parallel to the surface.
Indeed, from energy conservation, the highest (+) and lowest
(−) possible diffraction order j is given by

[(j ± 1)Gx + kx]2 /2M > E⊥ + k2
x/2M, (17)

[cf. Eq. (10)] when the perpendicular energy of the outgoing
beam E

j

⊥ is close to zero. Careful inspection of the calculated
and measured data shows that these diffracted beams marked
with dashed white lines in Fig. 9 represent about 1 % of the total
intensity. Most of the FAD experiments reported so far have
been performed on surfaces with small corrugation, where the
classical rainbow angle is well below π/2 and the diffracted
beams moving parallel to the surface are extinct [22,61,62].
In the present case, considering the slope dZ(x)/dx of the
corrugation function between (1) and (2) in Fig. 10(a) one
obtains a rainbow angle exceeding π/2. Thus some of the
projectiles experience guiding with multiple collisions with
walls of the main channel. We leave the detailed assessment
of the multiple collision regime and its signature in diffraction
charts for a future publication.

D. Attractive part of the projectile-surface interaction

At collision energies E⊥ of 100-meV FAD “probes” the
geometric arrangement of the surface atoms allowing a rela-
tively straightforward interpretation of the gross features of the
diffraction charts. When E⊥ is reduced into the meV range, the
interpretation of the data requires more careful consideration.
In this regime, the diffraction becomes sensitive to fine details
of the projectile-surface interaction potential, including the
attractive part due to polarization vdW forces [11,12,15–18].
The latter is the origin of the attractive physisorption potential
well, usually in the 10-meV range for He atoms incident on
various surfaces [16,17,63]. The correct description of the vdW
interaction has always been a challenge for ab initio theoretical
approaches [63–68] so that the availability of experimental
references is highly important.

Experimentally, HAS provided a high resolution window
into the attractive physisorption potential well, in particular
through the measurement of the energies of bound state
resonances (BSRs) [11,50,51,69–73]. The BSRs are observed
when the reciprocal lattice vector exchange with the surface
leads to the projectile being trapped in bound states (BSs)
at the surface. The motion perpendicular to the surface is
then confined with quantized energies below the vacuum
level E� < 0,(� = 1,2, . . . ). The bound states have a finite

155308-10



COMBINED EXPERIMENTAL AND THEORETICAL STUDY . . . PHYSICAL REVIEW B 90, 155308 (2014)

FIG. 11. (Color online) Diffraction charts at lower perpendicular energy compared to Fig. 9, for the same GaAs surface. The He
perpendicular energy is now below 30 meV and the misalignment angle is here negligible (� ∼ 0). The panels (a) and (c) of the figure display
theoretical results and panel (b) displays the experimental data. The coupled channel calculations have been performed with atom-surface
interaction potential: (a) directly obtained from the ab initio DFT study; (c) obtained by applying a 0.4 scaling factor to the attractive part of
the DFT potential. The dashed lines delimit the region between closed and open diffraction channels.

lifetime, and a subsequent reciprocal lattice vector exchange
with the surface allows the projectile to be released back into
the vacuum. Based on empirical data for E�, one can either
tune the parameters of the semiempirical density functional
within the DFT scheme, or advanced model potentials can
be developed which allow rather precise description of HAS
experiments to be achieved over a broad range of scattering
conditions [11,50,51]. Recently, we have demonstrated that
the BSRs can be observed at low E⊥ in FAD experiments
on the LiF(001) surface allowing not only measurement of
the energies of the BSs, but also discussion of decoherence
processes at surfaces [75].

In the present case, we also found that FAD diffraction
at very small incidence angles provides information on the
attractive part of the projectile-surface interaction potential.
In Fig. 11, we show the calculated and measured diffraction
charts for 4He atoms incident along the [11̄0] direction of
the β2(2 × 4) reconstruction of GaAs(001). We focus here on
low collision energies E⊥ < 30 meV where the experimental
data have been obtained by changing the incidence angle φ

at a constant total beam energy of 400 eV. The full quantum
coupled-channel calculations have been performed with the
atom surface interaction potential V2D(x,z) obtained either
directly from DFT calculations [panel (a)], or after applying a
scaling factor of 0.4 to the attractive part of the DFT results
[panel (c)]. For further details on the construction of the
interaction potential we address the reader to the Sec. II B 2.

While we have explicitly tested that at large energies
E⊥ > 50 meV, both scaled and nonscaled potentials give quite
similar results, the low-energy part of the calculated diffraction
charts displayed in Figs. 11(a) and 11(c) is qualitatively
different. Using the original DFT inputs results in an irregular
pattern with many BSRs as is particularly pronounced at low
E⊥ < 10 meV. This reflects the relatively strong attractive part
of the potential obtained in the present DFT calculations with
a physisorption potential well approaching −18 meV. The
“two link chain” structures discussed in the previous section

are basically washed out. The above theoretical result is not
supported by our experimental data shown in Fig. 11(b), where
a continuous and smooth intensity variation can be seen with a
clear “link chain” sequence visible at near specular scattering
and low diffraction orders.

We find that in order to reproduce the experiment at low
energies one has to correct the ab initio data by reducing
the attractive part of the calculated atom-surface interaction.
However, the repulsive part of the DFT projectile-surface
interaction, corresponding to the surface corrugation “seen”
by a projectile in the E⊥ � 50 meV range gives a good
description of the measured diffraction charts and so should be
preserved. The simplest way to comply with both requirements
is to apply the scaling procedure VDFT → 0.4VDFT, for VDFT <

0, where the smoothness of the final potential V2D(x,z) is
guaranteed by the interpolation procedure given by Eqs. (12)
and (13). The scaling allows the low-energy experimental
data to be reproduced as is demonstrated by the calculated
diffraction chart shown in Fig. 11(b). The role of the BSRs
is strongly reduced and the “link chain” sequence is retrieved
at low diffraction orders with the correct E⊥ energy position
of the intensity maxima. It is noteworthy that the resulting
depth of the attractive potential well −8.7 meV, as obtained
from the planar averaging of the potential is in line with
earlier reports for the same system [16,57]. We also note in
passing that the original and adjusted potential wells differ by
only ∼12 meV, which is at the limit of the precision of DFT
calculations. Our results thus suggest that the FAD experiments
offer an interesting alternative to test ab initio approaches in
atom-surface interaction studies. The advantage over HAS is
that the FAD technique covers a larger E⊥ energy range and
that it can be used at high temperatures as demonstrated here.

IV. SUMMARY AND CONCLUSIONS

A GIFAD setup has been installed on the conventional
RHEED ports of a molecular beam epitaxy chamber. This has
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allowed the technologically useful β2(2 × 4) reconstruction of
the GaAs(001) surface at 530 ◦C under an As4 overpressure
to be measured in situ via the diffraction of 4He projectiles
incident close to the [11̄0] direction. In addition, we have
recently shown that this can allow real-time in situ monitoring
of GaAs epitaxy [28]. The present study discusses high-
resolution images of a strongly corrugated surface, where up
to 80 diffraction orders have been observed. We show how
the major characteristics of the surface reconstruction can be
correlated to the gross features of the diffraction charts.

From the theoretical side, we have performed ab initio
DFT studies of the interaction potential between He projectile
and the β2(2 × 4) phase of the GaAs(001) surface. These
ab initio calculations have provided the input for a full quantum
coupled-channel study of atom beam diffraction. In the FAD
geometry, the fast motion parallel to the surface and the
slow motion perpendicular to the surface are decoupled so
that the axial channeling approximation can be used. The
effective atom surface interaction potential appears averaged
along the [11̄0] axial channel. Only diffraction with reciprocal
lattice vector exchange perpendicular to the atomic rows
forming the axial channel is possible.

Direct comparison between the theory and experiment in
this system is complicated because of “critical” behavior on
both sides: the high sensitivity of the intensities of the numer-
ous diffracted beams on the incidence geometry in experiment;
and the high sensitivity of the calculated diffraction intensities
to the details of the interaction potential. We then perform
the global diffraction chart based analysis of the system. In
the present case, it appeared extremely handy allowing to use
the semiclassical model and to elucidate the main features of
the surface relief that determine the diffraction.

We have chosen to present and discuss the measured and
calculated diffraction charts in the form of two sets for high
E⊥ > 30 meV and low E⊥ < 30 meV energies of the motion
of incident projectiles perpendicular to the surface. At high
energies where the results are very sensitive to the surface

morphology, we have shown that the calculated and measured
diffraction charts are in very good agreement taking into
account the complexity of the system. This demonstrates the
quality of the DFT-derived potentials in this energy range.
The β2(2 × 4) phase of the GaAs(001) surface appears to
be an ideal playground allowing the observation of all the
aspects of FAD reported so far: (i) rainbow, and supernumerary
rainbows [22,74], (iii) several scattering structures within the
unit cell [34], and (iv) bound state resonances [75]. Addition-
ally, owing to the exceptionally high surface corrugation FAD
reveals in this system new aspects of the projectile-surface
interaction not reported so far in this scattering regime. These
are (i) parallel to the surface exit of the diffracted beams and
(ii) multiple rebounds at the channel walls (this latter issue is
left for the future publication).

Comparison of the calculated and measured diffraction
charts obtained at small E⊥ energies below 30 meV highlights
the overestimation of the attractive van der Waals potential well
within the present DFT approach. The experimental data can be
nicely reproduced via the rescaling of the attractive part of the
DFT potential such that the resulting depth of the physisorption
well is −8.7 meV, which is in line with earlier reports for
the same system [16]. It is noteworthy that the higher E⊥
energy part of the calculated diffraction charts is unaffected
by the rescaling procedure. Our results thus suggest that FAD
provides the possibility to quantitatively test ab initio models
of atom-surface interactions in the van der Waals regime.
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