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Bound exciton model for an acceptor in a semiconductor
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We attempt to clarify an ambiguity in the understanding of the electronic structure of an acceptor in a
semiconductor. Instead of using only a single quantity acceptor binding energy EA as in the literature, there
is in fact an impurity level EI that plays perhaps a more important role when dealing with the electronic
transitions involving the acceptor. Together they determine an excitonic transition energy EA ,ex = EI−EA. We
discuss the underlying physics and approximations of using three different approaches, all in the framework of a
density-functional theory, for calculating the acceptor electronic structure, and point out the different meanings
of the results yielded from these approaches and how they should be compared with experimental data to
extract EI and EA. Furthermore, the discussions provide a unified view of “deep” and “shallow” impurities: The
characteristics of deep and shallow reflect two different aspects of a complete description of a typical impurity,
either known as isoelectronic or acceptor (donor), rather than the spatial extension of the impurity potential.
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I. THE CONCEPT OF AN ACCEPTOR IN A
SEMICONDUCTOR

When an impurity with one or more valence electron(s)
less than that of the replaced host atom is introduced into
an otherwise perfect semiconductor, it typically introduces a
partially occupied state near the top of the valence band. Such
an impurity is often referred to as an acceptor, because it
can accept one or more electron(s) from the valence band
by thermal excitation, assuming these states are relatively
close to the valence band maximum (VBM). Here we do not
consider the trivial case where the impurity level turns out to be
below the VBM, thus the acceptor is self-ionized, effectively
resulting in a metallic material. At least conceptually, one
would think that the electronic structure of an acceptor
impurity in a semiconductor is well understood. In a typical
textbook description, an acceptor would introduce an empty
level at energy EA above the VBM. EA is known as acceptor
binding energy, and understood as the energy needed to
promote an electron from the VBM and thus leave a free hole
in the valence band. Consequently, the transition energy for an
electron in the conduction band to the acceptor level, known as
a free-to-bound transition, would be EF-B =Eg−EA, where Eg

is the band gap. With this understanding, the energy diagram
of an acceptor center and the related transition energies are
illustrated in Fig. 1, as appeared virtually in all textbooks. In
an idealistic situation, EA would be given by the solution of
a Schrödinger equation resembling that of a hydrogen atom,
with an effective mass mh of the valence band and a screened
Coulomb interaction between the acceptor and hole [1]:(

�
2

2m∗
h

∇2 + e2

εr

)
F (r) = Eeff

A F (r), (1)

where Eeff
A is the acceptor binding energy in an effective mass

approximation.
The above standard textbook description is conceptually

incorrect [2]. Note that the acceptor impurity is in fact charge
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neutral if the sample temperature is sufficiently low. The
attractive Coulomb potential in Eq. (1) only arises after one
electron has “jumped” into the acceptor site. This process
involves an electronic transition for an electron to be excited
into a higher energy level that is provided by the acceptor
impurity. Quite surprisingly, there is rarely any mention in
the literature about this level when one discusses about the
acceptor electronic structure. We assume that this impurity
state is at EI above the VBM, and EI is referred to as
impurity energy level thereafter. The value of EI is largely
determined by the difference in the atomic orbitals between
the host and impurity atom, and thus should depend sensitively
on the impurity species, whereas EA is originated from the
Coulomb attraction between the ionized impurity core and
the hole left in the valence band, and ideally independent of
the impurity species. An extra energy EA is required to set this
hole free. A tight-binding model can make this picture easier
to understand. Let us consider an acceptor impurity, with one
less valence electron, having a higher p orbital than the host.
If one electron is moved from the host to the impurity site
by applying an excitation energy of the difference between
the p orbitals, a hole is then generated in the valence band,
but remaining attracted to the ionized impurity through the
Coulomb interaction. Additional energy is needed to allow
this bound hole to break away from the acceptor becoming a
free hole.

It has long been known that the experimentally determined
acceptor binding energy E

expt
A is usually substantially larger

than that given by the hydrogen model, and also varies
significantly with the dopant species. For instance, in Si,
E

expt
A varies from 45.8 meV for B to 247.7 meV for Tl

among the group III elements [3], whereas Eeff
A = 31.6 meV

from an improved version of Eq. (1) taking into account the
degeneracy and nonparabolicity of the valence band [4]. The
primary contribution to the discrepancy between E

expt
A and

Eeff
A has generally been believed to be the so-called “chemical

shift” or “central cell correction” that could be mitigated by
introducing a semiempirical short-range potential in Eq. (1)
[5,6]. However, this practice is conceptually rather ambiguous,
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FIG. 1. (Color online) Textbook band diagram and related transi-
tions for an acceptor in a semiconductor: EA is the electron transition
energy from the valence band to the acceptor level, Eg−EA is the
transition energy for an electron in the conduction band to the acceptor
level (i.e., free-to-bound).

and may lead to misinterpretation of experimental data. The
intent of this work is to clarify the ambiguity in the literature
about the electronic structure of the acceptor, and discuss how
to correctly interpret the theoretical, in particular from an
ab initio calculation, and experimental results, and compare
them. In short, EI has nothing to do with EA, and E

expt
A actually

corresponds to EI .
We first describe the electronic structure of an exciton

bound to an isoelectronic impurity of an electron trap, such as
GaP:N, where the bound exciton is known as an “acceptorlike
bound exciton” based on the model proposed by Hopfield,
Thomas, and Lynch (HTL model) [7,8]. This bound exciton
problem is viewed as a classic example of the “deep” impurity
that is thought to be profoundly different from the “shallow”
impurity, either an acceptor or a donor, in terms of the extension
of the impurity potential [9]. We point out that the electronic
structures of an isoelectronic impurity and an acceptor actually
bare much more similarity than one might think. As illustrated
in Fig. 2, for an isoelectronic impurity N in GaP, the nitrogen
atom generates an electron bound state within the band gap.
The energy level of the electron bound state is denoted as
EN measured from the VBM, and the separation from the
conduction band minimum (CBM) Ee = Eg − EN is known
as electron binding energy. Being an empty state far away from
the VBM, EN can be considered as a deep acceptor level. In
the one-electron picture, the formation of a bound exciton on
the N impurity could be viewed as a two-step process (HTL
model): (1) One electron is excited into the electron bound state
at EN (or captured from the conduction band if the electron
was already in the conduction band), forming a so-called bare
electron bound state or a negatively charged center N−; and (2)
through the Coulomb interaction, a hole is attracted to the N−
center, forming a bound exciton with a hole binding energy
Eh (with respect to a hole at the VBM), as shown in Fig. 2(a),
where the transition energy EN,ex = EN − Eh = Eg−(Ee +
Eh) corresponds to the zero-phonon absorption or emission
energy of the bound exciton. The bound exciton formation
is ultimately a many-electron problem that should be treated

Many-electron picture
(b)

ℎ

ℎ

, = − ℎ

One-electron picture
(a)

FIG. 2. (Color online) Band diagrams for an exciton bound to an
isoelectronic impurity, known as an acceptorlike bound exciton, such
as in GaP:N, where EN is the energy level of the bare electron bound
state measured from the VBM, Eh the hole binding energy to the
N− center, and EN,ex = EN−Eh the lowest bound exciton transition
energy. (a) In one-electron picture, and (b) in many-electron picture.

as the transition between two states of the whole system.
Figure 2(b) shows the energy diagram in the many-electron
picture where EN can be viewed as the upper limit of the
bound exciton states corresponding to the hole in different
hydrogenlike bound states 1s, 2s, etc. The many-electron
picture makes it easier to understand why the formation of a
bare electron state is not a necessary precursor to the formation
of a bound exciton. Rather a bound exciton can be formed
with a resonant excitation of energy EN,ex. The relationship
between EN and EN,ex is analogous to that between Eg and
the free exciton band gap Eg ,ex in a semiconductor, and Eh

corresponds to the free exciton binding energy Eex,b (e.g.,
Eex,b = 20.6 meV for Si). Although the electron bound state is
typically found to be more close to the CBM than VBM for an
isoelectronic impurity with stronger electron negativity than
the host atom, it could in principle be very close to the VBM
and therefore may be excited thermally. If we do have a system
like this, the acceptorlike bound exciton will be essentially the
same as a conventional acceptor state, except that the acceptor
level for the former is usually s-like and empty, and for the
latter p-like and partially occupied.

With above preparation, we now discuss the conventional
acceptor impurity problem. As illustrated in Fig. 3, an acceptor
generates an impurity level EI in the band gap that can accept
an electron excited from the valence band, forming a negatively
charged center A−, and if it does happen the acceptor is
considered ionized (step 1); then through Coulomb interaction,
this ionized impurity center can now attract a hole (step 2),
resulting in a bound exciton. These two steps are illustrated in
Fig. 3(a) in the one-electron picture, where the energy needed
to promote the electron from the VBM in step 1 is EI , and the
hole binding energy to the A− center is EA, similar to the case
of the acceptorlike bound exciton of the isoelectronic impurity
with EI and EA corresponding to, respectively, EN and Eh

in the former case in Fig. 2. Alternatively, if we describe the
impurity system in the many-electron picture, i.e., consider the
total energy change of the whole system, the corresponding
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FIG. 3. (Color online) Band diagrams for an acceptor, where EI

is the impurity energy level or the energy needed to create a free
hole in the valence band, EA the hole binding energy to the ionized
acceptor, Eg−EI is the free-to-bound transition energy, and EA ,ex =
EI−EA the minimum energy required to create a bound exciton. (a)
In one-electron picture, and (b) in many-electron picture.

transition energies can then be illustrated in Fig. 3(b) for
various excitonic transitions. If the EI state is highly localized
such that its charge density can be approximated by a point
charge, the solution of Eq. (1) or a more generalized effective
mass equation could be used as an approximation for EA,
although there are other complications that will be discussed
later.

How does the above description compare to the familiar
textbook description about the acceptor state? The qualitative
differences are evident by comparing Fig. 1 with Fig. 3, and
can be summarized in three aspects.

First, the minimum energy required for generating a free
hole in the valence band by thermalization or optical excitation
is not EA but EI . As a matter of fact, the experimentally derived
“acceptor binding energy” E

expt
A , by either IR absorption or

temperature-dependent electrical conductivity measurement,
should be interpreted as EI rather than EA. As pointed out
earlier, EI is primarily determined by the chemical difference,
for the specific system being considered here Si:III, largely the
p-orbital energy difference of the valence electrons, between
the dopant and the host atom, thus has nothing to do with
the solution of Eq. (1). This understanding explains the large
deviation between E

expt
A and Eeff

A and the strong species
dependence.

Second, the energy EA,ex = EI − EA will be the minimum
energy needed to generate a hole bound to the ionized acceptor
or an exciton bound to the acceptor, resembling EN,ex in the
isoelectronic impurity problem GaP:N. Therefore, roughly
speaking, taking EA as the ionization energy instead of EI

is equivalent to taking the exciton binding energy Eex,b or hole
binding energy Eh as the interband transition energy instead
of Eg or EN in each case to generate a free hole in the valence
band. These comparisons are more meaningful if one further
envisions an array of impurities with a high enough density
that just barely forms an energy band, then EI and EN could
be viewed as the new conduction band of the material. Thus,
the bound exciton problem would resemble the free exciton

problem, with EA or Eh just like the free exciton binding
energy Eex,b. In fact, the absorption spectrum of an acceptor is
qualitatively similar to that of an isoelectronic impurity bound
exciton or even a free exciton: A series of discrete absorption
peaks converged to EI for the acceptor [10], to EN for the
isoelectronic bound exciton [11], and to Eg for the free exciton,
although they follow somewhat different selection rules.

Third, the free-to-bound transition energy should be given
approximately by EF-B = Eg−EI instead of the commonly
used Eg−EA.

II. UNDERSTANDING THE AB INITIO COMPUTATIONAL
RESULTS

Next we discuss the different meanings of various calcu-
lated transition energies associated with an acceptor using
different density-functional theory (DFT) based approaches.
In virtually all DFT calculations for impurities or point
defects, the calculated transition energies were either explicitly
or implicitly treated as EA or compared to experimental
results that have been interpreted as EA. We first offer
some qualitative discussions based on a Hartree-Fock (H-F)
approximation that seems to be conceptually more transparent
than a DFT for illustrating the underlying physics. Within the
H-F approximation, the total energy difference between the
two states of the system, the excited state (one electron has been
moved to the impurity state from the VBM) and the ground
state (the valence band is fully occupied), is given as [12]

δEtot = EI − EVBM −
[〈

ϕIϕVBM

∣∣∣∣ e
2

εr

∣∣∣∣ϕIϕVBM

〉

−
〈
ϕIϕVBM

∣∣∣∣e
2

r

∣∣∣∣ϕVBMϕI

〉]
, (2)

where EI and EVBM are the absolute values of H-F one electron
eigenenergies for the impurity and VBM state, and φI and
φVBM are the corresponding wave functions, respectively. We
should assume EVBM = 0 so that the meaning of EI in Eq. (2)
is consistent with the same quantity introduced above. The
first term in the square brackets is the Coulomb interaction
between the impurity state and VBM, and the second term is
the exchange interaction. The dielectric function ε is added
empirically to the Coulomb interaction term to include the
screening effect, but not to the exchange term because of its
short-range nature. From now on, we will refer both Coulomb
and exchange interaction together as Coulomb contribution for
simplicity. Conceptually, this Coulomb contribution is really
what the EA in Eq. (1) is about, because it occurs only after
the transition of one electron from VBM to EI . If we take
this term as an approximation for EA in Eq. (1), the total
energy difference will then be δEtot � EA,ex = EI−EA. A
DFT version of Eq. (2) is given by Eq. (15) of Ref. [13].
Evidently, δEtot given by Eq. (2) or its DFT equivalent merely
evaluates the static Coulomb interaction between the electron
and hole, and neglects the kinetic energy of the hole, thus
yielding only an approximate EA. If the kinetic energy of the
hole or the k � 0 component of the Coulomb potential is taken
into account, as in Eq. (1), the Coulomb contribution will not
be as simple as that only between φI and φVBM, which will be
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discussed later. The most important message of Eq. (2) is that
δEtot and EI are two different physical quantities.

Similarly we can write the free-to-bound transition energy
as the total energy difference between two states of the system:

EF−B = ECBM − EI −
[〈

ϕIϕCBM

∣∣∣∣ e
2

εr

∣∣∣∣ϕIϕCBM

〉

−
〈
ϕIϕCBM

∣∣∣∣e
2

r

∣∣∣∣ ϕCBMϕI

〉]
(3)

Therefore, EF-B = Eg−EI−EA
′, where EA

′ is given by the
terms in the square brackets for the Coulomb contribution
involving the CBM instead of the VBM in EA. EA

′ is expected
to be in the order of free exciton binding energy, and will not be
so significant if Eg−EI is relatively large. Therefore, Eg−EI

could be taken as an approximation for EF-B in the situations
where Eg � EI � EA is valid.

We will discuss below the three representative approaches
for computing the transition energies associated with the
acceptor within the framework of DFT. Rather than trying
to judge which method is more accurate, our intent here is to
highlight the different meanings of the results obtained from
these different approaches. The comparison is made for the
results all obtained within the local density approximation
(LDA), which is sufficient to serve the purpose—revealing the
differences in the underlying physics. Si:In will be used as an
example for quantitative comparison.

A. Total energy difference between the excited and ground state

In the literature, the total energy difference δEtot is
commonly used or implied as the quantity to be compared with
the experimentally derived “acceptor binding energy” E

expt
A or

as a more accurate version of the acceptor binding energy EA

in Eq. (1). However, as pointed out above, δEtot is actually an
approximate value for the transition or formation energy of the
acceptor bound exciton EA ,ex, and thus should not be compared
with E

expt
A that actually measures the single particle energy EI ,

neither should it be viewed as EA that describes the Coulomb
interaction. Here we calculate δEtot in order to compare it with
the results to be obtained using the other two approaches.

The conceptually most straightforward way to evaluate the
transition energy between the excited and ground state would
be, with the total number of the valence electrons (N ) fixed,
calculating the total energy difference between them with one
electron being forced to occupy the EI level (the so-called
constrained DFT). However, more often in the literature, the
excited state of the system is simulated by a system with
one extra valence electron added to the original one or (N
+ 1) valence electrons, and simultaneously a uniform positive
background introduced to compensate the charge of the extra
electron [14,15]. There are some subtle differences between
the two methods, but the discussion is beyond the scope of this
work. Nevertheless, either way, this total energy difference
approach yields an approximation for EI−EA. Because the
kinetic energy of the hole is neglected, EA is overestimated. To
correctly describe the Coulomb contribution and explain those
abundant discrete transitions in absorption [10], one would
need to convert Eq. (2) into an excitonic equation (also known
as a Bethe-Salpeter equation) by taking into account the kinetic

energy of the hole [12,16]. If this last step is carried out,
we should have the most rigorous treatment for the acceptor
problem. A simplified treatment of the excitonic problem will
be given later along with the second DFT based approach.

Taking Si:In as an example, the previous DFT-LDA calcu-
lation yielded δEtot = 39 meV by evaluating the total energy
difference between the N + 1 and N electron system [13]. Our
constrained DFT-LDA calculation has yielded δEtot = 36 meV,
by extrapolating a fitting curve with results of supercell sizes
varying from 64 to 1000 atoms to the infinite supercell size
using a polynomial a + b/n + c/n2, where n is the supercell
size. Apparently δEtot is much smaller than E

expt
A = 153 meV.

The reason for this large discrepancy is not simply due to
the deficiency of the computational method, for instance, the
LDA. As mentioned above, they simply represent two physical
quantities that should not be directly compared with each other.
The distinction will be clearer after the discussions to be given
for the other two DFT based approaches.

B. Total energy calculation of the ground state

From the ground state calculation, one can obtain the
partially occupied impurity state EI and its wave function φI .
One can go one step further to solve the whole bound exciton
problem. If the Coulomb interaction is relatively weak, the
Coulomb contribution can be described by an effective mass
equation with the point charge in Eq. (1) replaced by a charge
density d(r) and an exchange term, as given below for an
isotropic and parabolic single valence band [17]:(

�
2

2m∗
h

∇2 + d(r)e2

εr
− Jρ(r)

)
F (r) = Eeff

A F (r), (4)

with d(r)/r = �kexp(ik�r)f (k)s(k) being the Coulomb
potential with its Fourier component f (k) weighted by s(k) =∑

k′ a∗(k′)a(k′ − k), where a(k) is the k component of the
impurity wave function ϕI expanded in the basis of the bulk
states; J is approximately the exchange term in Eq. (2), and
ρ(r) = ∑

bf k exp(ik · r)s(k) ≈ |ϕI |2. Apparently, if |ϕI |2 is a
δ function, we have d(r) = 1, and Eq. (4) is essentially the
same as Eq. (1). Because of the finite extent of the impurity
state, the binding energy will be smaller than Eeff

A from the
idealistic effective mass equation, which is exactly what has
been observed experimentally for the hole bound states of
the excitons bound to various nitrogen impurity centers: Eh

depends on the electron binding energy but always Eh < Eeff
A ,

for all NNi and N centers [11,17]. The reduction was initially
interpreted as due to the central cell correction [11], but is
more correctly explained as due to the finite extension of the
electron bound state [17]. As an approximation, one could
neglect the finite extension of the EI state or skip Eq. (4) by
simply taking the multiband effective mass solution as the
upper bound of EA [4]. Therefore, the burden of solving
the acceptor problem lies mostly on the ability of getting
the accurate one electron impurity state EI . For Si:In, our
DFT-LDA calculation has yielded EI,g = 49 meV, where “g”
stands for “ground state.” This result was obtained with a
4096-atom supercell by applying a charge patching method
[18] based on a direct DFT-LDA calculation with a 512-atom
supercell (using the same DFT code, PEtot, and parameters
as in Ref. [13]). The charge patching method takes advantage
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of the fact that the impurity induced perturbation in the total
electron charge is much more localized than the potential,
thus will converge sufficiently well in a moderate supercell
size (e.g., 64–512 atoms), as applied for a number of impurity
systems with great success, for instance GaAs:N and GaAs:Bi
[19,20]. If taking EA � Eeff

A = 27 meV (calculated with the
LDA band structure [13]), we have an estimate for the excitonic
transition energy for In in Si as EA,ex � EI,g−EA � 23 meV.
EA,ex and δEtot (=36 meV) can be viewed as two different
approximations for the excitonic transition energy, and are
physically different from EI .

This two-step approach is expected to be a reasonably
good approximation for solving the acceptor bound exciton
problem for many real systems. One potential shortcoming of
this approach lies in that it does not account for the difference
in the lattice configurations between the excited and the ground
state. This effect will be examined below.

C. Total energy calculation of the excited state

One may also perform the total energy calculation for an
excited state, in particular with the single-electron impurity
level being occupied at EI,e, where “e” stands for “excited
state.” This can be accomplished with either the N + 1
or N electron system. Recently, with the N + 1 system,
such calculation was done for all the group III acceptors in
Si without and with GW correction to the LDA error and
with supercell sizes up to 64 000 atoms [13,21]. Very good
agreement between EI,e and E

expt
A has been achieved for all

the elements after making the GW and other corrections to
the impurity potential [21]. For Si:In, the DFT results were
EI,e = 88 meV in LDA (but with other corrections) [13], and
139 meV after further correcting the LDA error [21]. The latter
value agrees quite well with E

expt
A = 157 meV [3]. In order to

make fair comparison with δEtot of the first approach, we
have re-done the calculation without applying the corrections
of Ref. [13], and obtained EI,e = 58 meV in LDA. Using this
value, the excitonic transition energy is expected to be EA,ex =
EI,e − Eeff

A = 58 − 27 = 31 meV, which is close to the total
energy difference δEtot = 39 meV.

There is clearly a qualitative correlation between the EI

energy calculated by DFT and the p-orbital energy of the
valence electron with respect to the Si 3p orbital for Si:III
[13,21,22], as expected based on our understanding about the
nature of the impurity state. As a matter of fact, the spatial
extension of the impurity state wave function, plotted by
spherically averaged radial distribution of |ϕI |2, is found to
be highly localized, and does not resemble at all a hydrogenic
state, for all the group III elements, including the shallowest
acceptor B [13]. One might be tempted to interpret this wave
function localization in terms of the “central cell correction”
to Eq. (1). However, we should realize that EI fundamentally
is an eigenvalue of the single particle Kohn-Sham equation
that will never produce the abundant discrete absorption lines
in the IR absorption spectrum of an acceptor, because it does
not address the excitonic nature of the acceptor problem.

Using the constrained DFT with the N electron system and
applying the same charge patching method as for the ground
state, we obtain EI,e = 48 meV for the excited state with
the 4096-atom supercell, compared to EI,g = 49 meV. The

TABLE I. DFT-LDA results for Si:In (in meV). e is excited state;
g is ground state. The first lines are the results of our calculation, the
second lines of Ref. [13].

Total energy calc.

Approach (1) (2) (3)

Constrained DFT EA ,ex � δEtot = 36 EI,g = 49 EI,e = 48

Etot,e(N ), Etot,g(N ) Eeff
A = 27 Eeff

A = 27

EA ,ex = 22 EA ,ex = 21

Etot(N + 1), Etot(N ) EA ,ex � δEtot = 39 EI,e = 58

Eeff
A = 27

EA ,ex = 31

difference between EI,e and EI,g is mostly due to the difference
in lattice relaxation, which is apparently rather small for Si,
but could be larger for other systems. Note that using either the
N + 1or N electron system, after obtaining the impurity state
EI,e, in order to account for those discrete absorption features
observed experimentally [10], one has to go one step further to
treat the excitonic problem as in Eq. (4) or in a more rigorous
manner beyond the effective mass approximation.

Table I summarizes the results of the three different
approaches. The numerical results are qualitatively and more
or less quantitatively consistent, considering the variations in
computational details and approximations involved.

III. EXTENSION TO A DONOR IN A SEMICONDUCTOR

Analogous to the acceptor problem, we may also develop
a revised understanding to the donor problem. Figure 4 shows
the band diagram for the donor in the same fashion as Fig. 3
for the acceptor. The corresponding total energy difference
between the excited state (with one electron in the conduction
band and the donor state empty) and the ground state (the
donor state being occupied) will be

δEtot = ECBM − EI −
[〈

ϕIϕCBM

∣∣∣∣ e
2

εr

∣∣∣∣ ϕIϕCBM

〉

−
〈
ϕIϕCBM

∣∣∣∣e
2

r

∣∣∣∣ϕCBMϕI

〉]
, (5)

−

FIG. 4. (Color online) Band diagrams for a donor, where EI is
the energy level of the impurity state, the energy needed to create a
free electron in the conduction band is Eg − EI , ED is the electron
binding energy to the ionized donor, and EI is the bound-to-free
transition energy. In donor, the one-electron picture and the many-
electron picture are essentially the same, because only the electron
levels are considered instead of both electron and hole for acceptor.
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where the terms in the square brackets can be viewed as an
approximation for the Coulomb contribution or donor binding
energy ED , and the transition energy can be written as δEtot �
ECBM−EI−ED . Again, the thermalization energy relevant to
the electron conductivity should be ECBM−EI not ED , which
are, respectively, the impurity binding energy and the Coulomb
energy. The donor problem is very much the same as the
“donorlike bound exciton” for another isoelectronic impurity
problem GaP:Bi where Bi can be viewed as a deep donor [7].

The corresponding bound-to-free transition energy for the
transition from the occupied donor state to VBM is given as

EB−F = EI−
[〈

ϕIϕVBM

∣∣∣∣ e
2

εr

∣∣∣∣ϕIϕVBM

〉

−
〈
ϕIϕVBM

∣∣∣∣e
2

r

∣∣∣∣ ϕVBMϕI

〉]

= EI − E′
D, (6)

where ED
′ is the Coulomb contribution given by the terms

in the square brackets, which is expected to be in the order
of EA.

IV. SUMMARY

We have attempted to clarify the ambiguity in the con-
ventional understanding on the electronic structure of an
acceptor or a donor in a semiconductor, and underlying
physics for the different results calculated with different DFT
based approaches. We point out that the commonly called
acceptor (donor) binding energy EA (ED) due to the Coulomb
interaction between the ionized acceptor (donor) and the hole
left behind (electron released) is only (usually small) part of
the excitation energy for generating a free hole (electron) in
the valence (conduction) band. If the impurity level is at EI

measured from the top of valence band, the activation energy to
generate a free hole (electron) should be EI (Eg−EI ) instead
of EA (ED). However, EA,ex = EI−EA (ED ,ex = Eg−EI −
ED) is the minimum energy required to create a hole (electron)
bound to the charged impurity center or a bound exciton to the
neutral impurity, for instance, corresponding to the absorption
threshold in light excitation. An additional energy of EA (ED),
for instance, provided by thermal activation, can release the
bound hole (electron) into the valence (conduction) band.
The corresponding free-to-bound transition energy between
the conduction band and the acceptor level will be approxi-
mately Eg−EI instead of the commonly used Eg−EA, and the

bound-to-free transition between the donor level and the
valence band will be approximately EI instead of Eg−ED .

We have offered a unified understanding to the impurity
problem for isovalent and nonisovalent impurities. The distinc-
tion between a “deep” impurity (which is said to have a short-
range impurity potential [9]) and “shallow” impurity (to have
a long-range Coulomb potential) does not lie in the difference
of the impurity type (e.g., isovalent vs acceptor) but in which
states of the impurity: In the ground state the impurity potential
tends to be highly localized, whereas in the excited state,
there is always a long-range Coulomb interaction between
the ionized impurity core and the corresponding carrier. For
the isovalent impurities, the deep aspect is often emphasized,
because it tends to play the dominant role in the most important
properties of the impurity, such as, perturbation to the host
electronic structure [19], and electron-phonon coupling [23].
However, the shallow aspect is also important in describing the
overall properties of the bound exciton, for instance, thermal
quenching of the radiative recombination of the bound exciton
[8]. For the acceptor and donor impurities, the deep aspect has
largely been neglected or overlooked, and the focus has been
nearly all on the shallow aspect, even though a vast amount
of studies, both experimental and theoretical, were actually
dealt with the consequences of the deep aspect. The primary
aim of this work is to offer a comprehensive description of the
so-called shallow impurities, and stimulate reexaminations of
many closely related properties that have been interpreted in
the framework of the conventional understanding.

We have discussed the differences in underlying physics and
approximations for three different DFT based approaches used
for evaluating the transition energies involving an acceptor
or a donor, in particular, pointed out the need to develop an
excitonic theory to fully account for the optical transitions
associated with the acceptor and donor impurity.

Furthermore, we note that the discussions for the impurities
are equally applicable to most point defects that typically
behave like either an acceptor or a donor in a semiconductor.
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