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Machine learning methods are applied to finding the Green’s function of the Anderson impurity model, a basic
model system of quantum many-body condensed-matter physics. Different methods of parametrizing the Green’s
function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its
limited number of coefficients and its applicability to state of the art methods of solution. The dependence of
the errors on the size of the training set is determined. The results indicate that a machine learning approach to
dynamical mean-field theory may be feasible.
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I. INTRODUCTION

The fermionic quantum many-body problem is believed to
be in the class of problems whose full solution is exponentially
hard [1]. Approximate methods have been developed, but
many of these are also extremely computationally demanding.
There is, therefore, an ongoing search for efficient approximate
methods, useful, for example, in computational surveys of
wide classes of materials, or to provide a first look at a
complicated situation.

The predominant approach has been to use simplifying
approximations, for example, truncated perturbation-theory
series expansions, variants of mean-field theory, quasiclassical
approximations, or analytical interpolation functions. The de-
velopment of machine learning (ML) techniques in computer
science motivates us to explore a complementary approach.
ML provides an estimate of the result of a calculation based
on interpolation from a statistical analysis of datasets of solved
problems [2]. ML is widely used in many big-data applications
and has recently been proposed as a method for obtaining
approximate solutions of the equations of density functional
theory (DFT) [3], of the molecular electronic Schrödinger
equation [4,5], and of transmission coefficients for electron
quantum transport [6]. ML is also used to construct forcefields
from molecular dynamics [7–11].

In this paper we investigate ML techniques to infer solutions
to the quantum many-body problem arising in applications of
the dynamical mean-field theory (DMFT) method [12–14].
DMFT has become widely used in condensed-matter physics
and materials science for obtaining nonperturbative informa-
tion about materials with strong local correlations. While
DMFT is an approximation to the full many-body problem,
it does require the solution of a fully interacting quantum
impurity model (a quantum field theory defined in zero
space but one time dimension), and accurate solutions require
substantial numerical effort which is time consuming even
with modern algorithms and hardware [15–17]. A sufficiently
accurate ML model of DMFT could provide an inexpensive
solver, useful for rapid preliminary screening of wide ranges
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of materials and as a method for identifying promising
starting points for further refinement using more expensive
and sophisticated methods or experiments.

In its conventional formulation, DMFT maps one function
of frequency into another. The input is the bare hybridization
function, which encapsulates relevant information about the
crystal structure and quantum chemistry of a material via a
representation of what the local density of electronic excita-
tions would be if many-body correlations were neglected. A
small number of additional parameters, such as the on-site
interaction strength, must also be specified. The output is
the electron Green’s function (or equivalently self-energy),
which provides an approximation to the exact density of
states (DOS) obtained by including local effects of many-body
correlations.

Implementing a ML approach to DMFT thus entails con-
structing a training set of physically reasonable hybridization
functions, determining the spectral functions corresponding to
the training examples, and constructing a model that provides
the needed interpolation formula. Such a ML procedure goes
beyond previous applications of ML to electronic structure
because we are mapping a function to a function whereas
the ML approaches to DFT or the Schrödinger equation
provide only a small number of scalar outputs, such as the
total energy of atomization, ionization potential, or excitation
energy [5,18]. A key issue is thus to devise an efficient
representation of the functions of interest in terms of a
reasonably sized set of parameters. The first application we
foresee for real systems is a material science computation tool
to optimize a desired property.

In this paper we address this key issue for the Anderson
impurity model (AIM), the archetypical quantum impurity
model. For this model the input hybridization function is
known a priori and can be specified by few parameters. The
focus therefore lies on the prediction of the output, namely,
the electron Green’s function. In future work we will discuss
ML applications to the full DMFT problem of determining
the self-consistent relation between the Green’s function and
hybridization function, starting from an arbitrary hybridization
function.

This paper is organized as follows: in Sec. II, we summarize
the supervised learning approach. In Sec. II A we discuss how
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to represent a function for ML and in Sec. II B we discuss
the kernel ridge regression that we use in this paper, while in
Sec. II C we show how the ML procedure is tested. In Sec. III
the one site AIM and its solution by exact diagonalization are
presented. In Sec. IV we present the machine learning solution.
Section IV A discusses the methodology of the calculation.
Section IV B presents in detail the four types of representation
for the Green’s functions we study: in Sec. IV B 1 the continued
fraction, in Sec. IV B 2 the Matsubara frequency, in Sec. IV B 3
imaginary time, and in Sec. IV B 4 Legendre polynomials.
The results for these different representations are shown in
Secs. V A–V D. In Secs. V E and V F we show how the size
of the learning set affects the predictions of the DOS and the
mass enhancement. Finally, in Sec. V G we look at how we
can define an absolute minimal learning set for our problem.
Section VI is the summary and conclusion. Appendix A gives
details on the kernel ridge regression, Appendix B gives details
of the exact diagonalization method, Appendix C gives details
of the representation of the Green’s function using Legendre
polynomials, and Appendix D presents the derivation of the
effective α matrix for the Legendre polynomials approach.

II. SUPERVISED LEARNING FOR A FUNCTION

A. Representation of the function

We wish to learn a function of one complex variable, f (z),
with f representing the Green’s function or self-energy. The
model whose solution gives f (z) is specified by a descriptor,
D, the set of input parameters needed to describe the model.
Where appropriate we denote the dependence of f on the input
parameters as f (D; z). The ML approach is to infer f (D; z)
from a given set of NL results f (Dl=1...NL

; z).
The functions of physical interest have a spectral represen-

tation:

f (z) =
∫

dx

π

f ′′(x)

z − x
, (1)

with x a real number. The spectral function f ′′(x) is non-
negative, integrable, and typically nonzero only over a finite
range of x.

While f is fully specified by f ′′, for technical reasons one
often has data only for, or is only interested in, f on the
Matsubara frequencies z = iωn = i(2n + 1)πT where T is
the temperature, i = √−1, and n is an integer. f is sometimes
also studied on the imaginary time (τ ) axis in the interval
0 < τ < β = 1/T . The τ -dependent function is related to the
Matsubara frequency values by

f (τ ) = T
∑
ωn

f (iωn)e−iωnτ = −
∫

dx

π
f ′′(x)

e−xτ

1 + e−βx
. (2)

It is worth noting that the definition of the Matsubara
frequencies along with Eq. (2) implies three important results
that will be used later:

f (τ − β) = −f (τ ),

f (β−) + 1 = −f (0+), (3)

df (τ )

dτ

∣∣
τ=β− =

∫
dx

π
xf ′′(x) − df (τ )

dτ

∣∣
τ=0+ ,

where
∫

dx
π

xf ′′(x) is the first moment of the spectral function
which depends upon the particular Hamiltonian.

Equation (1) implies that the values of f (z) at different
z values are correlated. This presents a challenge since the
machine learning algorithms we will use treat the different
components of f (or the coefficients of its expansion) as
independent. Therefore, by independently adding numerical
errors on each point the machine may not fully respect the
needed correlations and constraints. Put differently, the f

predicted by our machine learning algorithm could arise from a
spectral function with negative regions. This issue is not unique
to ML and is related to the well-known analytical continuation
problem of inverting Eq. (1) to determine f ′′(x) from the full
set of values of f (iωn). While general theorems from complex
variable theory imply that the inversion is possible in principle,
the kernel 1/(z − x) of Eq. (1) has many very small eigenvalues
so the inversion problem is ill conditioned. However, in all the
cases we have considered, these issues seem not to pose any
difficulties in practice, so we proceed straightforwardly, with
the assumptions justified a posteriori.

In any numerical approach to problems involving continu-
ous functions, a choice of discretization must be made. Any
discretization expresses the continuous function f (z) in terms
of a set of N numbers fm=1...N which we assemble into an
N -dimensional vector f :

f (D; z) → f (D) = {f1(D),f2(D), . . . ,fN (D)}. (4)

One must note that the fm’s need not be direct points of the
function but can also be coefficients that define the function.

We have considered four discretizations of f (z): (1) a
continued fraction representation; (2) values on the Matsubara
axis f (iωn) up to some cutoff frequency |ωn| < �c; (3)
discrete values on the imaginary time axis, fj = f (j�τ/T );
and (4) an expansion of f (τ ) in terms of orthogonal (Legen-
dre) polynomials. Both the continued fraction and Legendre
polynomials representation lead to a correctly normalized
and non-negative spectral function, but as will be seen the
continued fraction representation is for other reasons not
optimal. The other representations do not necessarily lead to a
f (z) which has a spectral representation with a non-negative
spectral function for small and random sets of NL results, but,
as will be seen, they seem to work well in practice.

B. Machine learning: kernel approach

In this paper we apply the kernel approach [19], which
involves two ingredients: a distance kernel Km(Dl ,D), a
symmetric and positive definite function fixed a priori, and
a coefficient matrix αlm which is to be determined. In terms of
these, one generates an approximation g to the desired f given
by the so-called kernel ridge regression (KRR), an expansion
in an abstract kernel space. In terms of the expansion defined
in Eq. (4) we approximate the components fm of f in terms
of approximate components gm given by

fm(D) ≈ gm(D) =
∑

l

αlmKm(Dl ,D). (5)

Here we use the subscript m to label the entries in f (i.e.,
the different components in the discrete representation of the
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function: direct points or appropriate coefficients) and l to label
the training examples.

The coefficients αlm are calculated by minimizing a cost
function defined in terms of the difference between the
approximations gm(Dl) and the exactly known fm(Dl), with
the addition of a set of Lagrange multipliers introduced to
regularize the problem. In our approach we assume that each
component m of f is learned separately and independently, so
we define a cost function separately for each m as

Cm =
∑

l

[gm(Dl) − fm(Dl)]
2

+ λm

∑
l,p

αlmKm(Dl ,Dp)αpm. (6)

Minimization then gives at fixed m (see Appendix A for
details)

αm = (Km + λm I)−1 f m. (7)

In Eq. (7), αm is a column vector of length NL containing the
different α for m fixed and f m is also a column vector of length
NL but containing the different values of fm (m fixed) on the
training set (Dl=1...NL

). It is important to note that this vector
f m is not the same as the vector f in Eq. (4) which is a vector
of length N containing the values of fm=1...N for one specific

D. Finally, Km and I are the Kernel and identity matrices of
size NL × NL.

In our actual calculations we assume that the kernel K and
the Lagrange multiplier λ are independent of m, i.e., the same
for all components of the function to be learned. We may then

assemble all of the examples f m into a NL × N matrix f in
which each column is for a different m and combine Eq. (7)
into a unique matrix equation:

α = (K + λI)−1 f . (8)

This makes the process of learning a function very efficient

since even if f is a very large matrix the solution needs to be
obtained only once. For K , we use the weighted exponential
kernel:

K(Di ,D) = e− |di |
σ , (9)

where |d l| = |Dl1 − D1| + |Dl2 − D2| + . . . is the Manhattan
distance between the two parameter sets and σ gives the radius
of effect that a particular point of the data set Dl will have in
the prediction process [18].

For numerical calculation, direct matrix inversion should

be avoided and Eq. (8) is solved in the form (K + λI)α = f .

Since K is a square, real, symmetric, and positive definite
matrix, a standard Cholesky solver can be used. The process
is very fast; for example, on a desktop computer with an Intel
Core I7-4770 quad core at 3.40 GHz, using a dataset of 5000
points, it takes about 4 s to learn 2400 parameters defining G

in its continued fraction representation plus the ground-state
energy.

The way we train our machine is to choose NL results
from a database of solutions. This subset of solutions is called
the training set and we keep the remaining solutions in the
database apart and consider a subset of them as the test set.

The training set is then used to construct K and Eq. (8) can be
solved. We then use the test set to check if the predictions from
the ML give accurate results and thus can be used to predict
solutions not contained in the database. More details on the
training process we use are given in Sec. IV A.

As shown in this section, we can see that ML is an
interpolation approach, never an extrapolation. The obvious
question of how small the shift in parameters of a desired
prediction D from the Di must be (i) depends on the training
set density (the NL examples that will be used to obtain the
αlm), (ii) depends on its distribution, and (iii) still has to be
investigated in more rigorous ways than is done either in this
paper or in the literature in general.

C. Quality of machine learning

In most ML studies, the quality of the machine is assessed
in terms of the mean absolute error (MAE) of the predicted
quantities [4,5]. Because we are interested in predicting a
function we introduce a different metric, the average relative
difference (ARD), defined as

ARD = 100

〈 |fpredic(z) − fexact(z)|
|fexact(z)|

〉
z

, (10)

where the factor 100 is introduced so that the ARD is given in
percentage and 〈〉z denotes the average over a suitably defined
set of function arguments {zi}. In practice we take the set
of arguments zi to be the first few Matsubara frequencies
corresponding to energies up to the typical scales of the
problem; the values at higher ωn are typically controlled
by sum rules and are small, with very small errors. The
Matsubara frequencies are an appropriate measure because (i)
they contain the relevant physical information, (ii) there is a
natural discretization, and (iii) the use of a common estimator
permits straightforward comparison of different approaches.
Note that three of the four representations (the continued
fraction, the Matsubara frequency, and Legendre polynomials)
give G(iωn) in a direct way. We only compare Im{G(iωn)}.

However, the ARD or any measure that gives an error
representation for the entire function as a single number can be
misleading, because it can mask narrow but important regions
of the function which might be badly predicted. Therefore,
as a further test of the quality of the machine, we examine
in detail for two specific cases the predictions of the ML
for (a) Im{G(iωn)}, (b) the density of states obtained by
using Padé analytical continuation, and (c) the low-frequency
renormalization factor Z = (1 − ∂Re{�}

∂ω
|ω→0)−1 estimated as

the extrapolation

Z = Im {�(iωn)}
ωn

∣∣∣
ωn→0

. (11)

This renormalization factor is a unique number characterizing
an important low-frequency property of the model.

III. QUANTUM IMPURITY MODEL

In this paper we apply machine learning techniques to the
single impurity Anderson impurity model. The Hamiltonian
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FIG. 1. (Color online) Representation of the Anderson impurity
model (AIM): (a) An impurity with zero, one, or two localized
electrons hybridizes with a partially filled bath of noninteracting
electrons. (b) With fixed bath DOS and constant hybridization V , the
AIM can be uniquely described by three parameters [εd (Wnd ),U,V ]
and be used in a ML approach to predict correlation functions and
other physical properties.

is
H =

∑
σ

εdd
†
σ dσ + Ud

†
↑d↑d

†
↓d↓ +

∑
k,σ

εkc
†
kσ ckσ

+
∑
k,σ

Vk(d†
σ ckσ + c

†
kσ dσ ). (12)

As shown in Fig. 1(a), this represents one localized level (with
twofold spin degeneracy), embedded in a bath of noninteract-
ing electrons. The localized electronic states are represented by
the creation (annihilation) operators d†

σ (dσ ) (σ the spin) while
the continuous bath states are represented by the operators
c
†
kσ (ckσ ). The on-site energy of the impurity is εd and the

interaction term which penalizes double occupancy if positive
is U . The bath dispersion is εk and the hybridization between
the bath and the impurity is Vk , where k is a wave number.

The relevant features of the bath and hybridization are en-
coded by the hybridization function � which for this model is

�(z) =
∑

k

|Vk|2
z − εk

. (13)

We choose the bath to have a semicircular density of states
and to define the energy unit to be the half width W = 1, so

N0(ε) = 2

π
�(1 − |ε|)

√
1 − ε2. (14)

We further choose the hybridization to be a constant V and
set the chemical potential to be equal to the energy at the
center of the bath density of states μ = 0 in the notations of
Eq. (14). The parameters of the model are then U,V , and εd .
We find it more convenient to replace the on-site energy εd by
the occupation nd = 〈d†

↑d↑ + d
†
↓d↓〉, which is a single-valued

function of εd for nonzero V and which we multiply by the
half bandwidth W so it has the same dimension as the other
parameters. The descriptor will be a vector of three values:

D = [U,V,Wnd ]. (15)

The machine learning task is then to predict the Green’s
function of the model, Gσ (τ ) = −〈T rτ dσ (τ )d†

σ (0)〉, in terms
of (U,V,nd ). This ML representation of the AIM, as well as
what the prediction leads to, is shown in Fig. 1(b).

The Anderson impurity model is a full many-body problem,
and while an exact Bethe-ansatz solution exists for particular
choices of parameters [20] there is no known exact analytic

solution for the general case. While many different methods are
available for solving the problem including approximate ones
(such as the renormalized strong-coupling expansion proposed
by Krivenko et al. [21] and diagrammatic resummation meth-
ods such as the non-Crossing Approximation (NCA) and one-
crossing approximation (OCA) as in [22]) and numerically ex-
act ones (such as quantum Monte Carlo (QMC) [15,17,23,24]
and numerical renormalization group (NRG) [25]), we will
use the exact diagonalization (ED) method [26,27], in which
the hybridization function is represented as a sum of small
number (Nb) poles and weights in the form

�(z) ≈ �Nb
=

Nb∑
l=1

V 2
l

z − εl

. (16)

One is then left with a finite-size Hamiltonian (size Ns = Nb +
1) which can be diagonalized exactly, allowing computation
of the many-body ground-state wave function and energy.
The Green’s function is obtained as a continued fraction:

Gσ (z) = 〈GS|dσ d†
σ |GS〉

z + EGS − a>
0 − b>2

1

z+EGS−a>
1 − b>2

2

z+EGS−a>
2 −

...

+ 〈GS|d†
σ dσ |GS〉

z − EGS − a<
0 − b<2

1

z−EGS−a<
1 − b<2

2

z−EGS−a<
2 −

...

. (17)

We define the exact Green’s function as Eq. (17) truncated
at 600 continued fraction coefficients but note that the results
for our model are not materially different if only the first 100
coefficients are retained. We use Eq. (17) to compute G on the
real axis, on the Matsubara axis (with a fictitious temperature
β = 1/T = 200), or as a function of imaginary time by
Fourier transform. Appendix B gives more details about ED.

IV. MACHINE LEARNING FOR THE AIM

A. Methodology of the calculations

We created a database of examples as input to the machine
learning process by solving the Anderson impurity model for
5000 combinations of U ,V , and nd . The interaction U was
varied from a small value to twice the bandwidth 0.16 to 4 in
25 equal intervals. The hybridization V is varied from a small
value to the order of half the bandwidth 0.1 to 0.75 in 20 equal
intervals. Finally, the filling of the impurity nd is varied from
0.6 to 1.4 (0–40% doping in both sides) in intervals of 0.1 and
we also included nd = 0.95. For ED, we have used Nb = 7 and
as already mentioned a fictitious temperature of β = 1/T =
200. For the AIM with a bath with finite bandwidth, in the
low-temperature limit, the Kondo temperature is given by [28]

TK ≈ 0.2
√

2�Ue
πεd (εd +U )

2�U , (18)

where � ≡ �(0) = 2V 2. The validity of Eq. (18) is limited for
εd (εd + U ) < 0. This leads for our parameters to a TK in the
range from about 6 × 10−36 to a maximum of about 0.48. This
maximal TK is obtained for maximum U , V , and doping, i.e.,
U = 4, V = 0.75, and nd = 0.6 or 1.4.

155136-4



MACHINE LEARNING FOR MANY-BODY PHYSICS: THE . . . PHYSICAL REVIEW B 90, 155136 (2014)

From the database of 5000 solutions we randomly choose
NML results to serve as the learning and the test sets. These
NML results are then divided into M subsets. One is the
testing set and the remaining M − 1 form the learning set.
For example, to calculate the ARD, we always use test sets of
100 such that we will choose M = NML/100. We use a null
Lagrange multiplier (λ = 0) and σ is most of the time equal to
σ = 10W except for one case where we considered σ = 1W .

B. Representations of the Green’s function

We have investigated four different representations of the
Green’s function: (i) the continued fraction representation,
Eq. (17); (ii) the Green’s function in Matsubara frequency;
(iii) the Green’s function in imaginary time; and finally (iv)
a representation of the imaginary time Green’s function as a
sum of Legendre polynomials.

1. Continued fraction representation

Here we proceed directly from Eq. (17). We must learn some number Nc of coefficients a and b for the particle and hole
Green’s function, along with the ground-state energy, thus 4Nc + 1 coefficients. Hence f [Eq. (4)] is a vector with 2401 elements

(401 if we only learn the first 100) and f is

f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(a>
0 )1 . . . (a>

Nc
)1 (b>

0 )1 . . . (b>
Nc

)1 (a<
0 )1 . . . (a<

Nc
)1 (b<

0 )1 . . . (b<
Nc

)1 (EGS)1

(a>
0 )2 . . . (a>

Nc
)2 (b>

0 )2 . . . (b>
Nc

)2 (a<
0 )2 . . . (a<

Nc
)2 (b<

0 )2 . . . (b<
Nc

)2 (EGS)2

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

(a>
0 )NL

. . . (a>
Nc

)NL
(b>

0 )NL
. . . (b>

Nc
)NL

(a<
0 )NL

. . . (a<
Nc

)NL
(b<

0 )NL
. . . (b<

Nc
)NL

(EGS)NL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(19)

It is important to note that, although the continued fraction representation is a formal way to write any function with a spectral
representation, in practice, an accurate numerical process for obtaining the coefficients is available only in the context of ED
calculations.

2. Matsubara frequency representation

We may evaluate the calculated G on the Matsubara points ωn = (2n + 1)πT (many QMC codes also give G evaluated on
these points). Then

f =

⎛
⎜⎜⎜⎜⎝

(G(iω0))1 (G(iω1))1 . . . (G(iωNc
))1

(G(iω0))2 (G(iω1))2 . . . (G(iωNc
))2

...
...

. . .
...

(G(iω0))NL
(G(iω1))NL

. . . (G(iωNc
))NL

⎞
⎟⎟⎟⎟⎠ . (20)

3. Imaginary time representation

By evaluating Eq. (17) on the Matsubara points and then Fourier transforming we obtain the Green’s function in imaginary
time (this is also a standard output of QMC calculations). G(τ ) is real and smooth. We then approximate the continuous G(τ ) by
its values on the Nc discrete points τj = βj/Nc with j = 0, . . . ,Nc − 1. The value at τ = β− does not have to be learned since
it can be obtained from Eq. (3). It is also useful to learn a Nc + 1th point, namely, the first derivative at τ = 0+. Knowledge of
this value helps in evaluation of the reverse Fourier transform [29]. In this work we use Nc = 211 and we write

f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(G(τ = 0+))1 . . . (G(τ = β/2))1 . . . (G(τ = β(1 − 1/Nτ )))1 (G′(τ = 0+))1

(G(τ = 0+))2 . . . (G(τ = β/2))2 . . . (G(τ = β(1 − 1/Nτ )))2 (G′(τ = 0+))2

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...
...

(G(τ = 0+))NL
. . . (G(τ = β/2))NL

. . . (G(τ = β(1 − 1/Nτ )))NL
(G′(τ = 0+))NL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

4. Legendre orthogonal polynomial representation
of the Green’s function

Recently, Boehnke et al. [30] proposed to represent the
imaginary time Green’s function as a sum of Legendre poly-

nomials and measure the coefficients in a QMC calculation.
Legendre polynomials are chosen instead of other sets of
orthogonal polynomials because of the simplicity they offer
for transformation to the Matsubara axis. Such an expansion
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FIG. 2. Average relative difference (ARD) for the predicted
imaginary part of the Green’s function on the Matsubara axis as
a function of training set size. Dots denote the predictions of the
continued fraction coefficients, x’s denote the predictions of G(iωn),
squares denote the predictions of G(τ ), and diamonds denote the
Legendre polynomial expansion.

acts as a physically motivated low-pass filter that eliminates
the large statistical noise at high frequency coming from the
direct calculation of G in Matsubara frequency well known
in continuous time QMC (CTQMC). The standard Legendre
polynomials Pl(x) are defined on an interval x ε [−1,1]. In the
case of the Green’s function in positive imaginary time, the
time interval is 0 < τ < β so that we may define the variable
x = 2τ

β
− 1. Thus (see Appendix C)

G(τ ) =
∞∑
l=0

√
2l + 1

β
GlPl[x(τ )], (22)

where the coefficients are formally given by

Gl = √
2l + 1

∫ β

0
dτPl[x(τ )]G(τ ). (23)

The Fourier transform to ωn is given by [30] as

G(iωn) =
∞∑
l=0

TnlGl, (24)
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FIG. 3. (Color online) Machine learning prediction for Im{G(iωn)} and the density of states using the continued fraction coefficients: (a)
and (b) for U = 3.04, V = 0.5105, and nd = 1 and (c) and (d) for U = 4, V = 0.3053, and 0.95. In (a) and (c), dots denote the exact result,
circles denote the result for a learning set of length 500, and squares denote the result for a learning set of length 4999. In (b) and (d), dots
denote the exact result, red dashed lines denote the result for a learning set of length 500, and green lines denote the result for a learning set of
length 4999.

155136-6



MACHINE LEARNING FOR MANY-BODY PHYSICS: THE . . . PHYSICAL REVIEW B 90, 155136 (2014)

0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

Im
{G

(i
ω

n
)}

ω
n

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

D
O

S

ω

(b)(a)

−0.4 −0.2 0 0.2 0.4

ω

0 0.5 1 1.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

Im
{G

(i
ω

n
)}

ω
n

(c)

−2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

D
O

S

ω

(d)

−0.2 0 0.2

ω

FIG. 4. (Color online) Machine learning prediction for Im{G(iωn)} and the density of states using G(iωn) directly: (a) and (b) for U = 3.04,
V = 0.5105, and nd = 1 and (c) and (d) for U = 4, V = 0.3053, and 0.95. In (a) and (c), dots denote the exact result, circles denote the result
for a learning set of length 500, and squares denote the result for a learning set of length 4999. In (b) and (d), dots denote the exact result, red
dashed lines denote the result for a learning set of length 500, and green lines denote the result for a learning set of length 4999.

where

Tnl = (−1)nil+1
√

2l + 1jl

(
(2n + 1)π

2

)
, (25)

and jl(z) are the spherical Bessel functions. Gl may be
directly measured in a CTQMC calculation [30] and the
maximum order lmax is defined as the largest l where Gl is
greater than the statistical noise. In the present case we must
calculate the Gl and devise an alternative prescription for
lmax. We use a recently introduced algorithm based on a fast
Chebyshev-Legendre transform [31] that exploits the idea that
smooth functions can be represented by polynomial interpo-
lation in Chebyshev points, i.e., by expansions in Chebyshev
polynomials using fast Fourier transform. This algorithm is
implemented in a free MATLAB toolbox called CHEBFUN [32].
We still have to define lmax. The lmax is chosen by looking
at the odd Legendre coefficients. For every example we have
investigated, we find that Gl for l odd decreases rapidly as l

increases. At some l, Gl changes sign and starts oscillating
around zero. We set lmax by finding the l at which Gl changes
sign. For each example (a particular set of parameters U , V ,
and Wnd ), the value of l for which the sign change happens is
different. However, for the 5000 examples in the database, we

found that the first sign change happens for l at most around
111. For security, we use as our definition of the expansion the
first 121 (l = 0 . . . 120) terms. For each example, for l � lmax

for the odd l we use the values we have while we have to decide
what values to use for l > lmax (for l even we do not change
anything). Two easily implemented options are to replace the
odd coefficients by zero for l > lmax or to replace them by
the last value before the first sign change of Gl so that either
Gl = 0 for l odd > lmax or Gl = cst . We verified that both
solutions work very well to reconstruct G(τ ) from Eq. (22).
However, for machine learning there is a difference. Indeed, in
ML, having pure zeros in the learning set makes the learning
process much more difficult. We thus use the second solution
where Gl for l odd > lmax is a very small constant.

The great advantage of the Legendre polynomial represen-
tation is that either by obtaining Gl from CTQMC or directly
from G(τ ) the number of coefficients is very limited, making
the learning process much smaller, and, if after learning all
coefficients at once, we see that some fine tuning is needed,
the maximum number of new machines that will be necessary
is limited and manageable. Also, as we do not directly learn
the function G(τ )[G(iωn)] but reconstruct it from Eq. (22) [or
Eq. (24)] it helps smooth things out.
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FIG. 5. (Color online) Machine learning prediction for Im{G(iωn)} and the density of states using G(τ ): (a) and (b) for U = 3.04,
V = 0.5105, and nd = 1 and (c) and (d) for U = 4, V = 0.3053, and 0.95. In (a) and (c), dots denote the exact result, circles denote the result
for a learning set of length 500, and squares denote the result for a learning set of length 4999. In (b) and (d), dots denote the exact result, red
dashed lines denote the result for a learning set of length 500, and green lines denote the result for a learning set of length 4999.

Therefore what is directly learned is the vector of coeffi-
cients:

f =

⎛
⎜⎜⎜⎜⎝

(G0)1 (G1)1 . . . (G120)1

(G0)2 (G1)2 . . . (G120)2

...
...

. . .
...

(G0)NL
(G1)NL

. . . (G120)NL

⎞
⎟⎟⎟⎟⎠ . (26)

V. RESULTS

In this section we present the results both of computation
of the full G and, for two particular examples, of the
renormalization factor Z. For the two examples we will use
parameters similar to those used in [21,22]. In one case [21]
U = 3, V = 0.5, and εd = −U/2. In the second case [22]
an infinite U AIM is considered with a flat conduction-band
DOS with V = √

0.1 and εd = −0.81. In the case of infinite
U [22], this gives an occupation nd ≈ 0.94. We will use the
two examples in our database that are the closest to these
parameters. For the first case, we have U = 3.04, V = 0.5105,
and nd = 1. For the second case, as infinite U , we will use

U = 4, V = 0.3053, and nd = 0.95. We present the results
both in ωn and ω. For real frequencies, we need to choose a
small imaginary part η for the frequency. Since our ED fitting
procedure relies on choosing a fictitious temperature to fit
on the Matsubara axis defined by this temperature, we take
the minimum-energy unit to be twice the difference between
two ωn (= 2π

β
). For small dataset length, we generated many

random combinations for the learning set, predicted the results
for every combination, and averaged out.

A. Continued fraction representation

We first use ML to learn the coefficients of the continued
fraction representation of the Green’s function [Eq. (17)]. We
learned the first hundred of each type since, as we mentioned
in Sec. III, the remaining coefficients do not contribute to
G within our accuracy. Using test sets of length 100 and
generating learning and test sets multiple times, from the
reconstructed G we calculate the ARD, and we show the results
as a function of training set size in Fig. 2 as dots. We see that
the ARD decreases from about 6.5% for a random learning set
of 500 examples to about 0.016% for a learning set of 4900.
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FIG. 6. (Color online) Machine learning prediction for Im{G(iωn)} and the density of states using the Legendre polynomial representation:
(a) and (b) for U = 3.04, V = 0.5105, and nd = 1 and (c) and (d) for U = 4, V = 0.3053, and 0.95. In (a) and (c), dots denote the exact result,
circles denote the result for a learning set of length 500, and squares denote the result for a learning set of length 4999. In (b) and (d), dots
denote the exact result, red dashed lines denote the result for a learning set of length 500, and green lines denote the result for a learning set of
length 4999.

For the comparison with the two specific examples, the
results are presented in Fig. 3. Only the first 50 Matsubara
frequencies are shown for Im{G(iωn)}.

For the half-filled case, Figs. 3(a) and 3(b), we see that the
prediction for randomly chosen learning sets of 500 in ωn is
not very good. In terms of real frequency, we see that, however,
even with the size 500 random learning set, the high-frequency
regions are well predicted. However, around the Fermi level,
the prediction is wrong. For example, the prediction is not
particle-hole symmetric even though the model is. However,
at the largest learning set size (4999) the prediction is correct.
The doped case is similar. From Fig. 3(c) we see that for this
particular example the value at the lowest Matsubara frequency
is well predicted for a small random learning set but the values
at the next three frequencies are not good. Turning now to real
frequencies we see that the high-frequency regions and the
region around the Fermi level are qualitatively fairly predicted.
For a large learning set, the doped case is also well represented.

Thus, if the Green’s function is learned from its continued
fraction coefficients, a small and random learning set is able
to capture the high-frequency physics for the half-filled case,
but it is not reliable for the low ω which carry most of the
interesting physical information at T = 0.

B. Matsubara frequency representation

The ARDs are denoted by x’s in Fig. 2. The values are
systematically smaller than the equivalent from the continued
fraction coefficients but still the same order of magnitude.
The real frequency result at half filling of Fig. 4(b) shows
that this time, around the Fermi level, the ML predicted
DOS has the correct qualitative behavior of particle-hole
symmetry. If we compare the Matsubara frequency results
of Figs. 4(a) and 4(c) with those of Figs. 3(a) and 3(c) we
see that for these two examples learning directly G(iωn) is
better. However, the analytically continued results for the
learning set of length 500 are of poor quality, essentially
because analytical continuation is sensitive to small errors
in G(iωn). This is thus hard to assess if the prediction
really contains noncausality [Fig. 4(b)] (−1.5 < ω < −1),
gives such shape at high frequency [Figs. 4(b) and 4(d)],
and to give spurious states where the DOS should be zero
[Fig. 4(d) at about ω = −2.1]. Once again, for a large learning
set, the predicted results are very good. It is important to
note that since we need numerical analytical continuation to
obtain the real frequency results 100% perfect matching is
impossible.
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FIG. 7. (Color online) Machine learning prediction for the DOS around ω = 0 for the different representations of the Green’s function and
length of the learning set. (a) Continued fraction. (b) Matsubara frequency. (c) Imaginary time. (d) Legendre polynomials. The lengths of the
learning sets are as follows: red dashed lines denote the result for a learning set of length 500, blue dot-dashed lines denote the result for a
learning set of length 1000, cyan circles denote the result for a learning set of length 2000, and magenta solid lines denote the result for a
learning set of length 3000. Dots denote the exact result.

C. Imaginary time representation

The ARDs for imaginary time representation are denoted
by squares in Fig. 2. The values are systematically smaller
than the corresponding ARDs from the continued fraction
coefficients but still of the same order of magnitude and similar
to those from the representation in Matsubara frequency. Most
comments made regarding Fig. 4 can also be made for Fig. 5.

Based on the ARD and the results in ωn we can conclude
that directly learning G(τ ) is a good procedure and of general
applicability.

D. Legendre orthogonal polynomial representation
of the Green’s function

The ARDs of the Legendre orthogonal polynomials repre-
sentation are denoted by diamonds in Fig. 2. The values are
very similar to those from G(τ ) and G(iωn). The results for
the two examples in Matsubara and real frequency presented
in Fig. 6 are comparable to what is obtained from learning
directly G(τ ), but this time the Padé continuation is less
problematic because the coefficients are learned and then the
Green’s function is reconstructed, giving a G(iωn) with less
independent error on each ωn. Moreover, in Sec. IV B 3, we

had to learn 2048 slices of G(τ ) plus G′(τ = 0+) while here
we only needed to learn 121 coefficients.

We may therefore conclude that the representation by an
expansion in terms of Legendre polynomials is the most
efficient way to learn many-body Green’s functions using
machine learning.

E. Prediction as a function of learning set length

It is important to show how our prediction of the DOS
evolves with increasing learning set length. Figure 2 displays
the learning set length dependence of the ARD. Now we look
at the DOS around the Fermi level for the half-filled case.
The conclusions we show for the DOS around the Fermi level
are generally applicable to the high-frequency results also.
One exception is the continued fraction representation where
much smaller learning sets can predict the high-frequency
behavior (see Fig. 3). In Fig. 7, we show the DOS around
ω = 0 for different random learning set lengths and for the
four representations: in Fig. 7(a) the continued fraction, in
Fig. 7(b) the Matsubara frequency, in Fig. 7(c) imaginary
time, and in Fig. 7(d) Legendre polynomials. The dots denote
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FIG. 8. Quasiparticle weight Z as a function of training set size
(a) U = 3.04, nd = 1, and V = 0.5105 and (b) U = 4, nd = 0.95,
and V = 0.3053. Lines denote the exact results, dots denote the
predictions of the continued fraction coefficients, x’s denote the
predictions of G(iωn), squares denote the predictions of G(τ ), and
diamonds denote the Legendre polynomial expansion.

the exact result, the red dashed lines denote the result for a
learning set of length 500, the blue dot-dashed lines denote
the result for a learning set of length 1000, the cyan circles
denote the result for a learning set of length 2000, and the
magenta solid lines denote the result for a learning set of
length 3000. We can see that convergence to the correct
prediction is attained before the learning set is maximum
(4999).

F. Prediction of the mass enhancement

We now consider how well machine learning predicts the
renormalization factor Z, equivalent in this model to the
mass enhancement. In addition to being an important physical
property for Fermi liquids, Z also acts here as a unique number
that can be used to estimate the quality of the ML prediction
of low-frequency properties. The results are shown in Fig. 8.
Overall, the Z predicted from ML learned continued fraction
coefficients never completely converges (the black line is the
exact result) and is quite inaccurate for learning sets of 500 and
1000 when nd = 1. Even if it never perfectly converges, the
relative difference at the larger learning set is small, consistent
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FIG. 9. (Color online) Machine learning prediction for the den-
sity of states using the Legendre polynomial representation: (a)
U = 3.5, V = 0.25, and nd = 0.85 and (b) U = 2.9, V = 0.5, and
nd = 1. Dots denote the exact result, and green lines denote the result
for a learning set of length (a) 8 and (b) 4.

with the reasonable visual appearance of the DOS (Fig. 3). For
nd = 0.95 there is a peculiar concordance where the prediction
is better for 500 than 1000 and 2000. This is clearly accidental
and the overall shape of the DOS around ω = 0 is better for
1000 and 2000. It is also important to note that for Fig. 8(b)
the exact Z is small and thus we predict very small numbers.
For the other three representations, they all systematically
converged to the correct answer, around a learning set of 2000
for Fig. 8(a), which also can be seen from Fig. (7), and around
a learning set of 3000 for Fig. 8(b). Again, these minimal
converging lengths are for totally random sets of examples as
learning sets.

G. Prediction from a minimal learning set

In this section we study how to introduce a selection bias
into the learning set such that a new system is predicted as
accurately as possible with the smallest learning set possible.
Because our database is very homogenous (dense coverage of
U , V , and nd ) we can ask how good the learning would be if
we find the members of the dataset that are closest to the Unew,
Vnew, and nd,new and form the learning set as combinations
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thereof. Since the descriptor has three components and, at
most, the new parameters can be between two values of the
database, this would give us a maximally localized learning
set of minimal size 8 or less. Let us once again choose two
examples for which we will do the predictions. The first
example is U = 3.5, V = 0.25, and nd = 0.85. The second
example is U = 2.9, V = 0.5, and nd = 1.

For the first case, none of the results in the 5000 database
share any of these parameters so that none of the components
of the difference between the descriptor of the example and
any descriptors of the database is ever zero. This means that the
learning set will be of length 8. In the second example, since we
look at half filling and the database contains half-filled results,
the learning set size is 4. This means that we are really looking
at how our ML scheme can predict new results. We show the
results in Fig. 9 using the Legendre polynomial representation
and we see that with a very small learning set we can predict
quite precisely new results.

This possibility of prediction with very small learning
enables us to look closely at how the machine itself behaves.
Indeed, what we call the machine is given by the α parameters
of Eq. (5). Only in the cases of the representations in terms of
Matsubara frequencies and imaginary time does the α really
represent the Green’s function we are trying to predict itself.
However, within the Legendre polynomial representation,
using our approximation that the Kernel functions have fixed
parameters, we can define an effective α-like parameter for the
reconstructed Green’s function in Matsubara frequency from
the predicted Legendre polynomials coefficients. We show the
derivation in Appendix D, and we obtain

G(iωn,D) =
∑

i

�inK(Di ,D), (27)

where the effective α, called �, is given by

�in =
{

lmax∑
l=0

Tnlαil

}
. (28)

The results are shown in Fig. 10. The case of U = 3.5, V =
0.25, and nd = 0.85 is presented in Figs. 10(a) and 10(b),
while the case U = 2.9, V = 0.5, and nd = 1 is presented
in Fig. 10(c). For the half-filled example, only the imaginary
part of � is shown, as the real part of G(iωn) is zero for
the particle-hole symmetric case. Despite the discrete nature
of functions of Matsubara frequency, we present the curves
as continuous here. It is also interesting to note (not shown)
that the curves for α obtained from the Matsubara frequency
representation correspond exactly to the curves of � in Fig. 10
as expected. One very important result is that � is, from quite
a low frequency, a smooth function of ωn. This opens up the
possibility of using interpolation from � curves as another
way to perform very efficient ML. For completeness, the other
representation that directly learns G is the imaginary time
one and thus α(τ ) is really a representation of G(τ ) in the
ML space. We thus show the α(τ ) curve for both examples
in Fig. 11. Once again the curves are smooth and in this case
fundamentally continuous.
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FIG. 10. (Color online) Effective ML coefficient parameters �

for the Legendre polynomial representation as a function of ωn for
the (a) real and (b) imaginary parts U = 3.5, V = 0.25, and nd = 0.85
and for the (c) imaginary part U = 2.9, V = 0.5, and nd = 1. The
curves correspond to the different examples in the learning set. For
(a) and (b), red solid lines denote U = 3.36, V = 0.24, and nd =
0.80; blue solid lines denote U = 3.36, V = 0.24, and nd = 0.90;
black solid lines denote U = 3.36, V = 0.27, and nd = 0.80; cyan
solid lines denote U = 3.36, V = 0.27, and nd = 0.9; magenta solid
lines denote U = 3.52, V = 0.24, and nd = 0.80; green solid lines
denote U = 3.52, V = 0.24, and nd = 0.90; red dashed lines denote
U = 3.52, V = 0.27, and nd = 0.80; and blue dashed lines denote
U = 3.52, V = 0.27, and nd = 0.90. For (c), red solid lines denote
U = 2.88, V = 0.48, and nd = 1; blue solid lines denote U = 2.88,
V = 0.51, and nd = 1; black solid lines denote U = 3.04, V = 0.48,
and nd = 1; and cyan solid lines denote U = 3.04, V = 0.51, and
nd = 1.
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FIG. 11. (Color online) Effective ML coefficients parameters � for the Legendre polynomial representation as a function of τ for (a)
U = 3.5, V = 0.25, and nd = 0.85 and (b) U = 2.9, V = 0.5, and nd = 1. The curves correspond to the different examples in the learning set.
For (a), red solid lines denote U = 3.36, V = 0.24, and nd = 0.80; blue solid lines denote U = 3.36, V = 0.24, and nd = 0.90; black solid lines
denote U = 3.36, V = 0.27, and nd = 0.80; cyan solid lines denote U = 3.36, V = 0.27, and nd = 0.9; magenta solid lines denote U = 3.52,
V = 0.24, and nd = 0.80; green solid lines denote U = 3.52, V = 0.24, and nd = 0.90; red dashed lines denote U = 3.52, V = 0.27, and
nd = 0.80; and blue dashed lines denote U = 3.52, V = 0.27, and nd = 0.90. For (c), red solid lines denote U = 2.88, V = 0.48, and nd = 1;
blue solid lines denote U = 2.88, V = 0.51, and nd = 1; black solid lines denote U = 3.04, V = 0.48, and nd = 1; and cyan solid lines denote
U = 3.04, V = 0.51, and nd = 1.

VI. SUMMARY AND CONCLUSION

We have proposed a machine learning scheme to learn the
electron Green’s function. Our method should apply to any
other correlation function of interest. We have reduced the
problem of learning a function of a single variable into one of
learning a relatively small set of independent numbers, either
direct slices of the function or coefficients used to define it.
For the Green’s function of the single-site Anderson impurity
model, we have tested four different representations of G:
the continued fraction, the Matsubara frequency, imaginary
time, and Legendre polynomial expansion. Directly learning
the function in imaginary time is a well-defined operation as
long as the learning set is not too small and random. However,
replacing the direct function in imaginary time τ by its Legen-
dre polynomial expansion is clearly superior because the need
to learn only a small number of coefficients improves the accu-
racy. This way is even more promising for the context of learn-
ing correlation functions for real materials as new powerful
CTQMC algorithms directly measure these coefficients [30].
We also observe that the Matsubara frequency representation
may be problematic for more general DMFT calculations. In
the AIM studied here, the system is always a metal and thus the
dataset of solved problems in ωn is very homogeneous. In the
general case of the DMFT, where the AIM serves as an interme-
diate problem, there is an interaction driven metal to insulator
transition. In Matsubara frequency, the Green’s function at
lower frequencies changes qualitatively from the metallic to
the insulating phase. This creates a dataset much less homoge-
neous at low ωn. This is why, even if this representation yields
accurate predictions in the present study, we do not think that it
can be efficiently used in general for ML+DMFT. Contrary to
G(iωn), G(τ ) changes much less drastically from a metal to an
insulator. Therefore, this representation should perform much

better for ML. Finally, as we already discussed, the continued
fraction representation can only be really used when the AIM
is solved via ED and thus is a very limited representation.

Before handling real materials, learning DMFT for model
Hamiltonians is the next logical step. Concomitant to this,
the next logical step for ML of a function itself is to look
for a scheme where learned numbers are not considered to
be totally independent. This is highly nontrivial and perhaps
could be achieved by adding appropriating new constraints to
the minimization problem inherent in Kernel ridge regression
of Eq. (6). For example, constraints concerning moments could
perhaps be integrated in the ML scheme for learning functions
that have a spectral representation.
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APPENDIX A: KERNEL RIDGE REGRESSION

In kernel ridge regression, the coefficients of the expansion
in the kernel space of Eq. (5) are found by minimization with
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respect to α of the cost function [Eq. (6)]:

Cm =
∑

l

[gm(Dl) − fm(Dl)]
2

+ λm

∑
l,p

αlmKm(Dl ,Dp)αpm. (A1)

The αlm are determined as the solution of the set of equations
δCm

δαqm
= 0. By using the definition of gm(D) given by Eq. (5)

and also the fact that the kernel is a symmetric function, we
obtain∑

l

[(∑
p

αpmKm(Dp,Dl)

)
− fm(Dl) + λmαlm

]

×Km(Dl ,Dq) = 0. (A2)

A sufficient condition for Eq. (A2) to hold is that the quantity
in the square brackets vanishes, i.e.,(∑

p

αpmKm(Dp,Dl)

)
− fm(Dl) + λmαlm = 0. (A3)

In Eq. (A3), m is a dummy index. For fixed m, we can represent
α and f as vectors αm and f m of length given by the number

of examples NL and the kernel as a NL × NL matrix Km so
that

αm = (Km + λm I)−1 f m, (A4)

with I the identity matrix.

APPENDIX B: EXACT DIAGONALIZATION

In this Appendix we describe what is meant by exact
diagonalization (ED) in the case of the Anderson impurity
Hamiltonian. Here, Eq. (12) is the target Hamiltonian Htarget.
To solve the problem by ED, we map Htarget to a new
Hamiltonian where the effect of the continuous bath is
approximated by a few poles and weights. This gives a
Hamiltonian with a finite number of site Ns = 1 + Nb given
by

H =
∑

σ

εdd
†
σ dσ + Ud

†
↑d↑d

†
↓d↓ +

Nb∑
l=1,σ

εlc
†
lσ clσ

+
Nb∑

l=1,σ

Vl(d
†
σ clσ + c

†
lσ dσ ), (B1)

where the Vl and εl are chosen to reproduce as much as
possible the effect of Eq. (13). We have now a finite size
Hamiltonian with a Hilbert space of size 4Ns that can be
solved using matrices diagonalization techniques. We use the
usual Lanczos approach [27]. Of course, by using a finite bath,
it is impossible to reproduce the continuous case to perfect
match. Only in the case where the number of bath sites Nb was
equal to infinity could one recover the continuous case exactly.
Therefore, the idea proposed by Caffarel and Krauth [33]
is to define a distance function d from the Matsubara axis
representation. Note that the Matsubara axis representation of
a T = 0 problem requires the use of a fictitious temperature,

which we choose as β = 1/T = 200. Here, we use the inverse
of the noninteracting Green’s function to define the distance
function:

d = 1

Nmax + 1

Nmax∑
n=0

∣∣G−1
0 (iωn) − G

−1,Ns
0 (iωn)

∣∣2

ωn

. (B2)

Nmax is the maximum number of frequencies used to define
d. It is important that ωNmax � max(εl). We typically use
Nmax = 400. Since the bath is fixed with a half bandwidth
of 1, max(|εl|) � 1. At β = 200 such an energy corresponds
to approximately n = 31 and thus Nmax = 400 is large enough.
Finally, G

−1,Ns
0 (iωn) is the inverse of the noninteracting

Green’s function of the Hamiltonian of Eq. (B1) and is written
as

G
−1,Ns
0 (z) = z − εd −

Nb∑
l=1

V 2
l

z − εl︸ ︷︷ ︸
=�Nb

. (B3)

We specify the set of parameters {Vl,εl} as those that minimize
d. This is a problem of unconstrained optimization in several
variables.

Representation of the Green’s function

For our Htarget [Eq. (B1)] with hybridization fixed, the
ground state is nondegenerate and always in the sector where
N = Ns and Sz = 0. Once the energy EGS and many-body
wave function |GS〉 are obtained, the Green’s function can be
calculated from the electron and hole part:

Gσ (z) = 〈GS|dσ

1

z + EGS − H
d†

σ |GS〉

+ 〈GS|d†
σ

1

z − EGS − H
dσ |GS〉. (B4)

It is most convenient to represent G as a continued fraction:

Gσ (z) = 〈GS|dσ d†
σ |GS〉

z + EGS − a>
0 − b>2

1

z+EGS−a>
1 − b>2

2

z+EGS−a>
2 −

...

+ 〈GS|d†
σ dσ |GS〉

z − EGS − a<
0 − b<2

1

z−EGS−a<
1 − b<2

2

z−EGS−a<
2 −

...

. (B5)

A second Lanczos procedure can be used to obtain the
coefficients. The algorithm to calculate these coefficients from
the ground state is as follows [27].

(1) We construct a starting vector |f0〉 = d†
σ |GS〉.

(2) We construct the so-called Lanczos space with the
recursion relation of orthogonal vectors:

|fn+1〉 = H |fn〉 − a>
n |fn〉 − b>2

n |fn−1〉. (B6)

(3) It is easy to obtain the coefficients as

a>
n = 〈fn|H |fn〉

〈fn|fn〉 (B7)
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and

b>2
n = 〈fn|fn〉

〈fn−1|fn−1〉 , (B8)

with b>2
0 = 0.

The equivalent can be done for the a<
n and b<2

n . The |fn〉 are
orthogonal by construction if evaluated exactly. With double
precision floating point arithmetic and a recursion relation
[Eq. (B6)] that only forces three vectors to be orthogonal, at
some point (typically after 50) the orthogonality will be lost.
For the Green’s function, it does not matter much. If necessary,
there are slightly more complicated algorithms that do partial
orthogonalization to keep a good orthogonality of our set
of vectors [34]. Note that for proper numerical calculation
Eqs. (B6)–(B8) must be modified so that the states in Eq. (B6)
are normalized.

APPENDIX C: LEGENDRE POLYNOMIAL EXPANSION

The Legendre polynomials Pk(x) are defined on an interval
x ε [−1,1] and thus an arbitrary function f (x) in −1 � x � 1
can be written as

f (x) =
∞∑

k=0

akPk(x). (C1)

The coefficients ak are found by multiplying both sides
of Eq. (C1) by Pl(x) and then integrating over x. The
orthogonality relation for the Legendre polynomials is used,∫ 1
−1 dxPl(x)Pk(x) = 2

2l+1δlk:∫ 1

−1
dxPl(x)f (x) =

∞∑
k=0

ak

∫ 1

−1
dxPl(x)Pk(x) = al

2

2l + 1
.

(C2)

Hence,

an = 2l + 1

2

∫ 1

−1
dxPl(x)f (x). (C3)

We define al ≡
√

2l+1
β

Gl to be consistent with [30]. Finally, we
can also change the integration variable and therefore get the
result of Eq. (23) and the expansion of Eq. (22).

APPENDIX D: EFFECTIVE α IN THE MACHINE
LEARNING OF THE LEGENDRE POLYNOMIAL

EXPANSION

In the Legendre polynomial expansion, the Green’s function
on the Matsubara axis is given by Eq. (24):

G(iωn) =
∞∑
l=0

TnlGl. (D1)

In this approach, the ML procedure is for the coefficients Gl

and not G(iωn) itself. Therefore, using Eq. (5) we may write

Gl =
∑

i

αilKl(Di ,D). (D2)

Therefore, putting Eq. (D2) in Eq. (D1) we obtain

G(iωn,D) =
lmax∑
l=0

Tnl

∑
i

αilKl(Di ,D)

=
∑

i

lmax∑
l=0

TnlαilKl(Di ,D). (D3)

In the most general case, this is as far as we can go. However, in
our approach, we have chosen to consider that the parameters
of K are such that K is independent of l, i.e., Kl(Di ,D) →
K(Di ,D). This enables us to factor out K in Eq. (D3) and thus
obtain

G(iωn,D) =
∑

i

{
lmax∑
l=0

Tnlαil

}
K(Di ,D)

≡
∑

i

�inK(Di ,D). (D4)

We therefore obtain in this approximation a renormalized
α parameter in the ML expansion. This can be compared
with the α obtained from the ML directly on G(iωn). This
is not possible for the other two representations since the
reconstruction of G(iωn) is done using highly nonlinear
relations (Fourier transform and the continued fraction).
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