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By employing a variational approach, the density matrix renormalization group (DMRG), the exact
diagonalization, and symmetry and mean-field analyses, the ground-state properties of the two-bath spin-boson
model with simultaneous diagonal and off-diagonal coupling are systematically studied in the sub-Ohmic
regime. A quantum phase transition from a doubly degenerate “localized phase” to the other doubly degenerate
“delocalized phase” is uncovered. Via the multi-D1 Ansatz as the variational wave function, transition points are
determined accurately, consistent with the results from DMRG and exact diagonalization. An effective spatial
dimension deff = 2.37(6) is then estimated, which is found to be compatible with the mean-field prediction.
Furthermore, the quantum phase transition is inferred to be of first order for the baths described by a continuous
spectral density function. In the single-mode case, however, the transition is softened.
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I. INTRODUCTION

As an archetype of open quantum systems, the
spin-boson model [1,2] finds a wide range of applications
in condensed-phase physics and physical chemistry in topics
such as quantum computation [3–5], spin dynamics [1,6,7],
biological molecules [8,9], and quantum phase transition
[10–13]. The spin-boson model consists of a two-level system
coupled linearly to an environment bath represented by a set of
harmonic oscillators. The coupling between the system and the
environment can be characterized by a spectral function J (ω),
which usually adopts a power-law form in the low-frequency
regime as J (ω) ∝ ωs . Depending on the value of s, there exist
three distinct cases known as sub-Ohmic (s < 1), Ohmic (s =
1), and super-Ohmic (s > 1) regimes. An interesting aspect of
the spin-boson model concerns the quantum phase transition
in the ground state. Recent theoretical studies [10–13] show
that there exists a second-order phase transition separating a
nondegenerate delocalized phase from a doubly degenerate
localized phase due to the competition between tunneling and
environment induced dissipation in the sub-Ohmic regime. It
is also well known that there exists a Kosterlitz-Thouless type
phase transition in the Ohmic regime [1].

The spin-boson model is similar to a one-exciton, two-site
version of the Holstein model [14] that is widely used to
study optical and transport properties of organic and biological
molecules. In the Holstein model, the diagonal and off-
diagonal exciton-phonon coupling are defined as nontrivial
dependence of the exciton site energies and transfer integrals
on the phonon coordinates, respectively [15]. Similarly, the
diagonal and off-diagonal coupling in the spin-boson model
denote bath-induced modulation of the spin bias and the
tunneling, respectively. Most studies on the quantum phase
transition of the spin-boson model consider the coupling only
in the diagonal form, predominantly because identifying the
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quantum phase transition with simultaneous diagonal and
off-diagonal coupling is a challenging problem from the
theoretical point of view. Recent studies [16] utilized the
Davydov D1 variational Ansatz to investigate the quantum
phase transition of the spin-boson model in the sub-Ohmic
regime with the spin coupled diagonally and off-diagonally to
a common bath. It is revealed that the off-diagonal coupling
lifts the degeneracy in the localized phase, thereby removing
the second-order phase transition. The interplay between the
diagonal and the off-diagonal coupling is thus known to give
rise to a much richer phase diagram.

To obtain a deeper insight into the competition between the
diagonal and the off-diagonal coupling, an additional phonon
bath coupled to the spin off-diagonally can be taken into
account, resulting in a two-bath spin-boson model (see Fig. 1).
This two-bath model is an appropriate low-energy description
of a variety of physical systems and phenomena, such as
the excitonic energy transfer process in natural and artificial
light-harvesting systems [17], electromagnetic fluctuations
of two linear circuits attached to a superconducting qubit
[18–20], two cavity fields coupled to a SQUID-based charge
qubit [21], and the process of thermal transport between
two reservoirs coupled with a molecular junction [22]. In
the case of zero bias and tunneling, the model exhibits
a high level of symmetry, which can be described by a
nontrivial central extension of the Abelian symmetry group.
The group-theory analysis shows that the system’s ground state
is always doubly degenerate, and rendering invalid the picture
of phase transition from degenerate to nondegenerate ground
states. In other words, the ground-state degeneracy does not
necessarily support spontaneous magnetization. Moreover, the
quantum-to-classical correspondence fails in dealing with the
two-bath model due to a sign problem [23]. Hence, it remains
very challenging to understand the quantum phase transition
of the two-bath model.

Previous numerical studies on the spin-boson model are
typically based on the numerical renormalization group
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FIG. 1. (Color online) Schematics of the two-bath spin-boson
model.

(NRG) [11,24–26], the density matrix renormalization group
(DMRG) [23], the method of sparse polynomial space repre-
sentation [12], quantum Monte Carlo [13], the extended co-
herence state approach [27–29], and the variational approach
[16]. The results point to a second-order phase transition which
is ascribed to the competition between the diagonal spin-bath
coupling and the spin tunneling. Apart from the spin tunneling,
the off-diagonal spin-bath coupling in the two-bath model can
also provide a communication channel between spin-up and
spin-down states. It is thus interesting to investigate whether
the quantum phase transition of the two-bath model retains its
second-order characteristics.

Motivated by these considerations, in this paper we aim
to investigate the quantum phase transition of the two-bath
model in the simultaneous presence of the diagonal and off-
diagonal coupling. By using the variational approach, DMRG,
exact-diagonalization as well as symmetry and mean-field
analyses, we conduct a comprehensive study on the ground-
state properties of the two-bath model, identify the picture of
quantum phase transition, and accurately determine transition
points in the sub-Ohmic regime. A first-order quantum phase
transition between the localized and delocalized states is
inferred, and an effective spatial dimensional deff = 2.37(6)
is estimated, consistent with the mean-field prediction. The
rest of the paper is organized as follows. In Sec. II, the
two-bath model is described, followed by analyses based on
symmetry and the mean field theory. In Secs. III and IV,
the numerical results are presented for the quantum phase
transition of the two-bath model involving baths described
by a single mode and a continuous spectral density function,
respectively. Finally the results obtained are discussed at length
before drawing conclusions in Sec. V.

II. MODEL AND ANALYSIS

A. Model

The standard Hamiltonian of the spin-boson model can be
written as

ĤSBM = ε

2
σz − �

2
σx +

∑
l

ωlb
†
l bl

+ σz

2

∑
l

λl(b
†
l + bl), (1)

where ε is spin bias, σx and σz are Pauli matrices, � is the
tunneling constant, ωl denotes the frequency of the lth effective
bath mode for which bl (b†l ) represents the phonon annihilation
(creation) operator, and λl signifies the coupling amplitude
with the spin. The spectral density function is

J (ω) =
∑

l

λ2
l δ(ω − ωl). (2)

Generally, it is convenient to rewrite Eq. (1) into its continuous
form

Ĥ = ε

2
σz − �

2
σx +

∫ ωc

0
g(ω)b†ωbω

+ σz

2

∫ ωc

0
h(ω)(b†ω + bω), (3)

where bω and b†ω are the continuous bl and b
†
l , g(ω) is the

dispersion relation, and h(ω) is the coupling function. As
indicated in Refs. [11], [24], and [30], g(ω) and h(ω) obey

J (ω) = π
dg−1(ω)

dω
h2(g−1(ω)), (4)

with g−1(ω) being the inverse function of g(ω). A logarithmic
discretization procedure is adopted by dividing the phonon
frequency domain [0,ωc] into M intervals [	−(l+1),	−l]ωc

(l = 0,1, . . . ,M − 1) and choosing h(g−1(ω)) as constant in
each interval [11,24,27], where M is the number of effective
bath modes, and ωc is the maximum frequency in the bath.
Then, the parameters ωl and λl in Eq. (1) can be obtained by

λ2
l =

∫ 	−lωc

	−l−1ωc

dxJ (x), ωl = λ−2
l

∫ 	−lωc

	−l−1ωc

dxJ (x)x. (5)

Note that infinite bath modes are considered via the integration
of the continuous spectral density J (ω), although the number
of effective bath modes M is finite.

In this paper, we primarily aim to study the two-bath model,
for which the Hamiltonian is written as

ĤTBSBM = ε

2
σz − �

2
σx +

∑
l,i

ωlb
†
l,ibl,i

+ σz

2

∑
l

λl(b
†
l,1 + bl,1)

+ σx

2

∑
l

φl(b
†
l,2 + bl,2), (6)

where the subscript i = 1,2 is introduced to distinguish the two
baths, and λl and φl are the diagonal and off-diagonal coupling
amplitude, respectively, which determine spectral densities,

Jz(ω) = 2αω1−s
c ωs, Jx(ω) = 2βω1−s̄

c ωs̄ . (7)

In the equation above, α and β are dimensionless coupling
strengths, and the two boson baths are characterized by spectral
exponents s and s̄, accounting for the diagonal and the off-
diagonal coupling, respectively. The frequency cutoff ωc is set
to be unity throughout this paper.

B. Symmetry arguments

For nonzero values of α,β,ε, and �, the system Hamiltonian
does not possess any symmetry. Therefore, in this work we
assume that ε = 0, and focus on the case of ε = � = 0 as it
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corresponds to scenarios with much stronger symmetry (the
case of � = 0 can be reduced similarly by an obvious rotation).
We introduce the notation

P1 = eiπ
∑

n b
†
n,1bn,1 , P2 = eiπ

∑
n b

†
n,2bn,2 , (8)

and consider the operators

P±
x = ±σxP1, P±

z = ±σzP2 (9)

that act in the system space of states, and obviously commute
with the system Hamiltonian when ε = � = 0. Taking the
product of the above operators, we obtain

Pγ ζ = Pγ
z Pζ

x = iγ ζσyP1P2, (10)

where γ,ζ,γ ζ = ± clearly obey a product rule. A straightfor-
ward verification shows that eight operators I±,P±

x ,P±
z ,P±,

where I± = ±id , form a non-Abelian group G, whose center
(i.e., the set of elements that commute with any element
of the group) is represented by {I±}. We thus have the
factor group G/{I±} ∼= Z2 ⊕ Z2 that is an Abelian group.
Stated differently, the non-Abelian symmetry group G of the
two-bath model with zero bias and tunneling is given by a
nontrivial central extension of the Abelian group Z2 ⊕ Z2.
The set of its unitary irreducible representations is given by
four one-dimensional representations, characterized by the
trivial action of the group center, and therefore labeled by
four irreducible representations of the Abelian groupZ2 ⊕ Z2,
characterized by a nontrivial action of the center, or more
specifically the elements I± are represented by the operators
±id . Since by definition the operators I± act in the space
of states as ±id , only the two-dimensional representation
participates in the decomposition of the space of states in
irreducible representations. Furthermore, by the Schur lemma,
all energy levels, in particular the ground state, are necessarily
doubly degenerate.

In the � �= 0 case, the symmetry is reduced to the
Abelian subgroup Gx ⊂ G that consists of two elements Gx =
{I+,P+

x }, so that Gx
∼= Z2, and the quantum phase transition

occurs between the phase with spontaneous magnetization
in the z direction, characterized by a doubly degenerate
ground state, and a symmetric phase with no spontaneous
magnetization 〈σz〉 and nondegenerate ground state. The
above picture is quite similar to the phase transition in the
standard spin-boson model with one diagonally-coupled bath.
The implications of � = 0, on the other hand, are markedly
different. First, due to the symmetry considerations presented
above, the system ground state is always doubly degenerate,
and the phase transition from degenerate to nondegenerate
ground state disappears. Second, one can, and should, consider
spontaneous magnetization 〈σz〉 and 〈σx〉 in the z and x

directions, respectively. In what follows we will first describe
the symmetry-based picture of the phase transition in the
� = 0 case, and then give further support to the presented
scenario with numerical simulations, based on the variational
and DMRG approaches.

We start with noting that, while the nondegenerate ground
state does not support spontaneous magnetization by mere
symmetry arguments, neither does the ground-state degener-
acy necessarily. Rather, the latter merely creates an opportunity
for spontaneous magnetization to occur. Indeed, to consider the
dependence of spontaneous magnetization 〈σz〉 on bias ε, we

switch on a very weak “magnetic field,” which in our case
introduces a weak yet nonzero bias ε. For a nondegenerate
ground state one has 〈σz〉 ∼ ε, which corresponds to finite
susceptibility. In the case of degenerate ground state the
additional term (ε/2)σz can eliminate the degeneracy, and
we will obtain a finite value of 〈σz〉 for ε → 0, given by the
expectation value of the σz operator evaluated with respect
to the nondegenerate ground state. Therefore, to ascertain
whether the symmetry is actually broken one needs to evaluate
the projection of the σz or σx operator onto the two-dimensional
subspace of the ground states. This can be done by invoking
a convenient basis set of the eigenstates of Pz = P+

z or Px =
P+

x operator. Since P2
z = I, the eigenvalues would be ±1.

Let Pz|ψ〉 = |ψ〉; then PzPx |ψ〉 = −PxPz|ψ〉 = −Px |ψ〉,
so that our basis is given by (|ψ〉,Px |ψ〉). A straightfor-
ward computation yields 〈ψ |PxσzPx |ψ〉 = −〈ψ |σz|ψ〉 and
〈ψ |Pxσz|ψ〉 = 〈ψ |σzPx |ψ〉 = 0, as well as 〈ψ |PxσxPx |ψ〉 =
〈ψ |σx |ψ〉 = 0. 〈ψ |σzPz|ψ〉 = 〈ψ |P2|ψ〉 and 〈ψ |σxPx |ψ〉 =
〈ψ |P1|ψ〉 are also derived. Denoting by sx and sz the operators,
acting in the two-dimensional subspace of ground states,
represented by the corresponding Pauli matrices in the basis
set as introduced above, we arrive at

Qσz = 〈ψ |P2|ψ〉sz, Qσx = 〈ψ |P1|ψ〉sx, (11)

whereQ denotes the projection onto the subspace of the ground
states. It follows directly from Eq. (11) that the spontaneous
magnetization

|〈σz〉| = 〈ψ |P2|ψ〉, |〈σx〉| = 〈ψ |P1|ψ〉 (12)

can be expressed in terms of overlaps of properly chosen
system states. This means that although due to the symmetry
the system ground state is always doubly degenerate, the
symmetry can be broken or independent of whether the
corresponding overlap in Eq. (12) vanishes or not.

We are now in a position to lay out a picture of the phase
transition, which will be verified by numerical simulations to
come. For ε = � = 0 there is a phase transition that for a
given α occurs at β = βc(α), so that for β < βc the system is
in a phase with 〈σz〉 �= 0 and 〈σx〉 = 0, whereas for β > βc, the
opposite trend ensues. This implies that one of the spontaneous
magnetizations is always nonzero while the other necessarily
vanishes.

C. Mean-field analysis

The two-bath model can be treated using an approach pre-
sented in Appendix A for the case of the standard spin-boson
model counterpart. In this subsection, we present an alternate,
completely equivalent approach to study the two-bath model,
in order to emphasize its connection with the theory of stochas-
tic processes and the probability theory. Consider a Gaussian
stochastic process for periodic B(τ + β) = B(τ ) trajectories
B(τ ) = (Bx(τ ),Bz(τ )) with the probability measure

dμ(B) = e−S0(B)DB,

S0(B) = 1

2β

∑
n

( |B̃x(ωn)2|
Kx(ωn)

+ |B̃z(ωn)2|
Kz(ωn)

)
, (13)

where D is defined as a differential in the path integral, and
the time-ordered Matsubara Green’s functions of the spin
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operators adopt a form

〈σj1 (τ1) . . . σjs
(τs)〉H = Z−1Tr[T (σ̂j1 (τ1) . . . σ̂js

(τs))e−βH ] = Z−1〈Tr[T (σj1 (τ1; B) . . . σjs
(τs ; B))U(β; B)]〉S0(B)

= Z−1
∫

dμ(B)Tr[T (σj1 (τ1; B) . . . σjs
(τs ; B))U(β; B)]

= Z−1
∫

DBTr[T (σj1 (τ1; B) . . . σjs
(τs ; B))U(β; B)]e−S0(B). (14)

In the equation above, we have denoted

U(t ; B) = T exp

(
−

∫ t

0
dτ {[Bx(τ ) + ε]σx + [Bz(τ ) + �]σz}

)
, σj (τ ; B) = U(τ ; B)σjU−1(τ ; B). (15)

The partition function is given as

Z = Tre−βH =
∫

dμ(B)TrU(β; B) =
∫

DBTrU(β; B)e−S0(B) =
∫

DBe−Seff (B), (16)

and the form of the effective action is

Seff(B) = S0(B) − ln TrU(β; B). (17)

Note that Eq. (14) provides formal expressions for the Matsubara spin correlation functions in terms of stochastic averaging. In
the most interesting case of ε = � = 0, Eq. (15) adopts a form

U(t ; B) = T exp

(
−

∫ t

0
dτ [Bx(τ )σx + Bz(τ )σz]

)
= T exp

(
−

∫ t

0
dτ B(τ )σ

)
. (18)

The above representation for the spin correlation func-
tions, including the partition function, is readily obtained
by introducing the collective coordinates Bx = ∑

k gkxk and
Bz = ∑

k fkzk , associated with the two uncorrelated baths,
which fully describe the spin-bath coupling. Further, we note
that the spin correlation functions in the quantum system
studied here, are fully determined by the two-point correlation
functions of the collective coordinates. These functions can
thus be reproduced by a Gaussian stochastic model with the
spin coupled to the stochastic variable B(τ ), provided the two-
point correlation functions of the stochastic variables coincide
with the quantum correlation functions of the corresponding
collective-coordinate variables. The latter condition is satisfied
if (and only if) the functions Kx(ωn) and Kz(ω̄n) satisfy
Eq. (A5).

To obtain the mean-field picture of the phase transition, we
consider the value of the effective action for B independent of
τ . In this case, we have

Seff(B) = βEeff(B),

Eeff(B) = B2
x

2Kx(0)
+ B2

z

2Kz(0)
−

√
B2

x + B2
z , (19)

where the contribution of the lower eigenvalue is neglected
in the calculation of Tr[U(β; B)]. Minimizing the effective
energy with respect to B, we obtain

Bx = ±Kx(0), Bz = 0, for Kx(0) > Kz(0),

Bx = 0, Bz = ±Kz(0), for Kx(0) < Kz(0). (20)

This will lead to a phase transition (on the mean-field level
of theory) at Kx = Kz. In each of the two phases, we have
nonzero spontaneous magnetization in one direction, but not
in the other. Moreover, at the mean-field level of theory, the

phase transition is of first order, since there is spontaneous
magnetization at the phase transition point.

Note that at the phase transition point the system has
higher U (1) symmetry, at least on the mean-field level. As
we know in systems with local interactions, strong transverse
fluctuations destroy spontaneous magnetization for the space
dimension d � 2. Although our model is one-dimensional,
the nonlocal nature of interactions gives rise to an effective
dimension that depends on the parameter s and should
be identified by considering the properties of long-range
fluctuations around the mean-field solution. In what follows
we argue that according to the aforementioned criterion, we
have deff = 3 − 2s, so that the critical value of s is s = 1/2;
i.e., for s < 1/2 and 1/2 < s < 1 the phase transition is of
first and second order, respectively.

III. SINGLE-MODE BATHS

A. Exact-diagonalization results

We first explore the ground-state properties of a spin
coupled to two single-mode baths using exact diagonalization.
The corresponding Hamiltonian can be written as

H = ε

2
σz − �

2
σx + ω(b†1b1 + b

†
2b2)

+ σz

2
λ(b†1 + b1) + σx

2
φ(b†2 + b2), (21)

where λ and φ are the diagonal and the off-diagonal coupling
constants, respectively. For convenience, we assume |ψ↑〉 and
|ψ↓〉 are the bosonic states corresponding to the spin up and
down states, which can be expanded in a series of Fock states
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|k〉 = [(b†)k/
√

k!]|0〉 as follows:

|ψ↑〉 =
Ntr∑
k1k2

ck1k2 |k1k2〉, (22)

|ψ↓〉 =
Ntr∑
k1k2

dk1k2 |k1k2〉, (23)

where ck1k2 (dk1k2 ) are the coefficients with respect to a series
of {k1,k2} for the two bosonic baths with diagonal and
off-diagonal coupling, respectively, and Ntr is the bosonic
truncated number defined as a cutoff value of the phonon
occupation number. In this work, Ntr = 40 is used in the exact
diagonalization to label a truncated Hilbert space, which is
sufficiently large for the ground-state energy to converge.

The Schrödinger equations of the Hamiltonian shown in Eq. (21) are then derived as

ε

2
|ψ↑〉 + ω(b†1b1 + b

†
2b2)|ψ↑〉 + λ

2
(b†1 + b1)|ψ↑〉 − �

2
|ψ↓〉 + φ

2
(b†2 + b2)|ψ↓〉 = E|ψ↑〉, (24)

−ε

2
|ψ↓〉 + ω(b†1b1 + b

†
2b2)|ψ↓〉 − λ

2
(b†1 + b1)|ψ↓〉 − �

2
|ψ↑〉 + φ

2
(b†2 + b2)|ψ↑〉 = E|ψ↓〉. (25)

After substituting Eqs. (22) and (23) and left-multiplying the bosonic states on both sides of Eqs. (24) and (25), one has

ε

2
ck1k2 + ω(k1 + k2)ck1k2 + λ

2

(
ck1−1,k2

√
k1 + ck1+1,k2

√
k1 + 1

) − �

2
dk1k2 + φ

2

(
dk1,k2−1

√
k2 + dk1,k2+1

√
k2 + 1

) = Eck1k2 ,

−ε

2
dk1k2 + ω(k1 + k2)dk1k2 − λ

2

(
dk1−2,k2

√
k1 + dk1+1,k2

√
k1 + 1

) − �

2
ck1k2 + φ

2

(
ck1,k2−1

√
k2 + ck1,k2+1

√
k2 + 1

) = Edk1,k2 . (26)

The expectation value of σz and σx can be derived as

〈σx〉 =
∑
k1k2

c∗
k1k2

dk1k2 + d∗
k1k2

ck1k2 , 〈σz〉 =
∑
k1k2

∣∣ck1k2

∣∣2 − ∣∣dk1k2

∣∣2
. (27)

The von Neumann entropy Sv−N, also known as the entan-
glement entropy [31,32], that characterizes the entanglement
between the spin and the surrounding bath is also introduced
[26,33],

Sv-N = −ω+ log ω+ − ω− log ω−, (28)

where ω± = [1 ± √〈σx〉2 + 〈σy〉2 + 〈σz〉2]/2. It should be
noted that 〈σy〉 ≡ 0 due to Hamiltonian invariance under the
transformation σy → −σy [26].

Figure 2 shows 〈σz〉 and 〈σx〉 as a function of the off-
diagonal coupling strength φ for the diagonal coupling strength
λ = 0.2 and ε = � = 0. In this case, the ground state is always
doubly degenerate as discussed before. With an increase
(decrease) in the off-diagonal coupling strength φ, 〈σz〉 (〈σx〉)
decays gradually until φ = λ = 0.2 where a sharp jump to zero
occurs. 〈σz〉 (〈σx〉) remains zero when φ is larger (smaller)
than λ. However, the entanglement entropy Sv−N exhibits
continuous behavior at φ = 0.2, different from that of 〈σx〉
and 〈σz〉.

B. Variational results

For comparison, the two-bath model involving single-mode
baths is also investigated by the variational approach. A
systematic coherent-state expansion of the ground-state wave
function is introduced as our variational Ansatz [34],

|�〉 = |+〉
N∑

n=1

An exp

[
M∑
l

(fn,lb
†
l − H.c.)

]
|0〉ph

+|−〉
N∑

n=1

Bn exp

[
M∑
l

(gn,lb
†
l − H.c.)

]
|0〉ph, (29)

where H.c. denotes Hermitian conjugate, |+〉 (|−〉) stands for
the spin up (down) state, and |0〉ph is the vacuum state of
the boson bath. This Ansatz describes a superposition of the
localized states |±〉 which are correlated to the effective bath

0 0.1 0.2 0.3 0.4
φ

0

0.2

0.4

0.6

0.8

1

<σ
x
>

<σ
z
>

S
v-N

ε = 0, Δ = 0

ω = 0.1, λ = 0.2

FIG. 2. (Color online) The magnetization 〈σz〉, spin coherence
〈σx〉, and entanglement entropy Sv−N are plotted as a function of
the off-diagonal coupling φ for ε = 0,� = 0,ω = 0.1, and λ = 0.2.
The dashed line marks sharp jumps of 〈σz〉 and 〈σx〉 at φ = 0.2. A
truncated number of Ntr = 40 is used in Eqs. (22) and (23) in the
exact-diagonalization procedure.
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modes with displacements fn,l and gn,l , where n stands for the
nth coherent state and l denotes the lth effective bath mode.
Since this trial wave function is identical to the Davydov D1

variational Ansatz when N = 1, it can also be termed as the
“multi-D1 Ansatz.” In the single-mode case, the number of the
effective bath modes M is set to 1.

The multi-D1 Ansatz is a generalization of the variational
wave function originally proposed by Silbey and Harris [35],
where the variational parameters are fixed to obey An =
Bn,fn,l = −gn,l , and N = 1. It is also an extension of the hier-
archy of translation-invariant Ansätze proposed by Zhao et al.
[36]. More than one coherent superposition state is considered
in the multi-D1 Ansatz to capture bath entanglement, and quan-
tum fluctuations which are important to the quantum phase
transition are well taken into account. Theoretically, the num-
ber of coherent superposition states N → ∞ is required for the
completeness of the environmental wave function. However,
large values of N pose significant challenges in carrying out
numerical simulations. We have found N = 4 to be sufficient
in obtaining reliable results for the variational approach, as
the results from simulations with N = 6 show no appreciable
difference.

Using the multi-D1 Ansatz defined in Eq. (29), the
system energy E can be calculated with the Hamilto-
nian expectation H = 〈�|Ĥ |�〉 and the norm of the wave
function D = 〈�|�〉 as E = H/D. The ground state is
then obtained by minimizing the energy with respect
to the variational parameters An,Bn,fn,l , and gn,l . The
variational procedure entails N (4M + 2) self-consistency
equations,

∂H

∂xi

− E
∂D

∂xi

= 0, (30)

where xi(i = 1,2, . . . ,4NM + 2N ) denotes the variational
parameters. For each set of the coefficients (α,β,s, and s̄) of the
continuous spectral densities defined in Eq. (7), more than 100
initial states are used in the iteration procedure with different
sets of variational parameters (An,Bn) uniformly distributed
within an interval [−1,1]. The initial values of the parameters
fn,l and gn,l are based on the classical displacements to a
minimum of the static spin-dependent potential, i.e., fn,l =
−gn,l ∼ λl/2ωl for the diagonally coupled bath, and fn,l =
−gn,l ∼ φl/2ωl for the off-diagonally coupled bath. For the
single-mode case, both fn,l and gn,l , as well as An and Bn,
are initialized randomly. After preparing the initial state,
the relaxation iteration technique [37,38] is adopted, and a
simulated annealing algorithm is also employed to improve
the energy minimization procedure. The iterative procedure is
carried out until the target precision of 1 × 10−14 is reached.
Finer details of the variational approach are provided in
Appendix B.

With the ground-state wave function |�g〉 obtained so far,
one can calculate the magnetization 〈σz〉 = 〈�g|σz|�g〉/D, the
spin coherence 〈σx〉 = 〈�g|σx |�g〉/D, and the ground-state
energy Eg = 〈�g|Ĥ |�g〉/D. The von Neumann entropy Sv−N

is also evaluated according to Eq. (28). To further investigate
the quantum phase transition, we introduce the ground-state
fidelity F [27],

F (β) = |〈�g(β)|�g(β ′)〉|/
√

D(β)D(β ′), (31)
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FIG. 3. (Color online) The magnetization 〈σz〉 (triangles) and
spin coherence 〈σx〉 (circles) of two-bath model coupled to single-
mode baths are displayed for various values of off-diagonal coupling
strength φ in the case of ε = 0,� = 0,ω = 0.1, and λ = 0.2. In the
inset, the von Neumann entropy Sv−N is plotted. The symbols with
black, red, and blue colors correspond to variational Ansätze with N =
1,2, and 4, respectively. The dashed lines mark the transition point,
and the dash-dotted lines represent exact-diagonalization results.

where β ′ = β + δβ is the neighboring Hamiltonian parameter,
and δβ = 1 × 10−5. An abrupt decrease in fidelity is expected
to give a hint to the location of the transition, and a vanishing
value of the fidelity at the critical point βc usually indicates a
first-order phase transition.

In Fig. 3, the behavior of magnetization 〈σz〉, spin coherence
〈σx〉, and von Neumann entropy Sv−N is displayed for various
values of off-diagonal coupling strength at ε = 0,� = 0,ω =
0.1, and λ = 0.2. For comparison, exact-diagonalization re-
sults for the same case are also plotted with the dash-dotted
lines. As N increases, the difference between variational and
exact-diagonalization results vanishes. It indicates that N = 4
is sufficient to reproduce the ground state of the two-bath
model coupled to single-mode baths.

As shown in Fig. 4, the ground-state energy Eg, equivalent
to the free energy of the system, is also displayed for
various numbers of coherence states N , in comparison with
exact-diagonalization results. When N = 1, i.e., the usual D1

Ansatz, a visible difference between variational and exact-
diagonalization results can be observed near the transition
point φ = 0.2. This suggests that the D1 Ansatz is too simple
to study the phase transition of the two-bath model, even
with single-mode bosonic baths. The shift of the ground-state
energy �Eg = Eg(N ) − Eed presented in the inset of Fig. 4
shows an exponential decay with N , and the slope of the
linear-log plot [1.42(6)] is significantly large. We thus establish
that a small value of N , i.e., N = 4, is sufficient to study the
two-bath model via the variational approach.

In Fig. 5, the ground-state fidelity F (φ) is plotted as a
function of the off-diagonal coupling strength φ. A sharp
decrease in F (φ) is observed at φc = 0.2, consistent with
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FIG. 4. (Color online) The ground-state energy Eg(φ) are shown
for different variational Ansätze with N = 1,2, and 4, in comparison
with the exact-diagonalization results. In the inset, the shift �Eg =
Eg(N ) − Eed at φ = 0.2 is displayed on a linear-log scale. The dashed
line represents an exponential fit.

the exact-diagonalization results. The value of the fidelity
F (φc) = 0.706 is much larger than zero, indicating that the
transition is not of first order. To confirm this contention, the
derivative of the ground-state energy ∂Eg/∂φ is also displayed.
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FIG. 5. (Color online) The ground-state fidelity F and the deriva-
tive of the ground-state energy Eg are displayed with respect to the
off-diagonal coupling strength φ in the single-mode case with ε =
0,� = 0,ω = 0.1, and λ = 0.2. The open circles and stars represent
variational results, and the solid lines denote the exact-diagonalization
results.
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FIG. 6. (Color online) The magnetization 〈σz〉, spin coherence
〈σx〉, and von Neumann entropy Sv−N are plotted as a function of β for
the case of s = 0.3, s̄ = 0.2, and α = 0.02. The dashed line indicates
abrupt jumps. In both the diagonal and off-diagonal coupling baths,
M = 20 is set.

No discontinuity in ∂Eg/∂φ supports that the transition is
softened, though the magnetization 〈σz〉 and spin coherence
〈σx〉 exhibit sharp jumps.

IV. CONTINUOUS SPECTRAL DENSITIES

A. Variational results

The ground-state properties of two-bath model with the
baths described by a continuous spectral density function
J (ω) are also studied via the variational approach. By
adopting the logarithmic discretization procedure, more than
one effective bath mode is introduced in the variational
calculations. Figure 6 shows the magnetization 〈σz〉, spin
coherence 〈σx〉, and entanglement entropy Sv−N plotted against
the off-diagonal coupling strength (β = 0 to 0.02) when the
number of effective bath modes M = 20. In these calculations,
the other parameters are set to s = 0.3,s̄ = 0.2, and α = 0.02.
For simplicity, only one branch of the twofold degenerate
ground states is presented, and the other can be obtained
easily by projecting the operator Px or Pz onto the ground
state. Abrupt jumps are observed at β ≈ 0.011 for all the
three quantities, and such discontinuous behavior points to
a first-order phase transition. Since the Ansatz employed in
this work is much more sophisticated and contains more
flexible variational parameters than the Silbey-Harris Ansatz,
it is important to distinguish the discontinuous behavior shown
in Fig. 6 from that obtained by Silbey-Harris variation in the
biased single-bath model. The latter is regarded as an artifact
arising from the excessive simplicity of the Silbey-Harris
Ansatz, which is considered poorly equipped to deal with the
asymmetry induced by the bias [39].

To locate the critical point more accurately, the magnetiza-
tion 〈σz〉 is displayed in Fig. 7 in a smaller range of β from
0.0105 to 0.012. The transition point βc = 0.01109 is then
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FIG. 7. (Color online) The magnetization 〈σz〉 and ground-state
energy Eg are displayed in a narrow range of β for the case of s = 0.3,
s̄ = 0.2, and α = 0.02. The critical point β = 0.01109 is located
according to the discontinuity in the functions 〈σz〉 and ∂E/∂β. The
dotted lines represent the results of the metastable states.

determined according to the discontinuous behavior of 〈σz〉
within the interval [0.01105,0.01115]. Figure 7 also shows
the calculated ground-state energy Eg as a function of β.
Two different slopes resulting from linear fitting, 1.01 and
1.79, indicate that the derivative of the free energy ∂Eg/∂β is
discontinuous at the transition point, different from that in the
single-mode case shown in Fig. 5. For comparison, the results
for the metastable states are obtained from the relaxation
iterations with gradually increasing (decreasing) off-diagonal
coupling strength β, starting from the ground state at β < βc

(β > βc). After β crosses the transition point, the system will
be trapped in metastable states with higher system energy. This
further supports the first-order nature of the phase transition.

We next probe the wave function of the ground state
in the vicinity of the transition point. Shown in Fig. 8(a)
are the displacement coefficients fn,l and gn,l of the bath
diagonally coupled to the spin for β = 0.01108 and 0.01109.
For convenience, the notations �A and �B are used to
denote wave functions of these two ground states. At low
frequencies, all the displacement coefficients converge to a
value independent of n, i.e., fn,l = gn,l → −λl/2ωl (0) in �A

(�B). A huge jump appears in the low-frequency asymptotic
value of the displacement coefficients as the coupling strength
β is changed by only a paltry amount of 10−5. A similar
phenomenon can also be found in Fig. 8(b) for the displace-
ments of the off-diagonal coupling bath, i.e., fn,l = gn,l ≈ 0
in �A and fn,l = gn,l ≈ φl/2ωl in �B. At high frequencies,
however, fn,l and gn,l exhibit quite different behavior not
only at β = 0.01108, but also at β = 0.01109 in both
Figs. 8(a) and 8(b).

Figure 9 shows the ground-state fidelity F (β) in the case of
s = 0.3, s̄ = 0.2, and α = 0.02. A sharp drop in F (β) at the
critical point βc = 0.01109 separates the “localized phase” at
small β and the “delocalized phase” at large β. The vanishing
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FIG. 8. (Color online) The displacement coefficients fn,l and gn,l

determined at β = 0.01108 and 0.01109 are plotted in (a) and
(b) for the diagonal coupling and off-diagonal coupling baths,
respectively. The dashed lines represent the classical displacements
to the minimum of the static spin-dependent potential.

value of the fidelity at β = βc, i.e., F (βc) = 0, lends further
support to the first-order transition. Since the fidelity maintains
a value of unity on both sides of the transition point, �A and �B

shown in Figs. 8(a) and 8(b) can be approximately considered
as the ground states for β < βc and β > βc, respectively. We
further calculate the energies of the ground state and the first
excited state EA = 〈�A|Ĥ |�A〉 and EB = 〈�B |Ĥ |�B〉. The
fact that EA and EB exhibit a crossover at the critical point is
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FIG. 9. (Color online) The ground-state fidelity F and two en-
ergy functions EA = 〈�A|Ĥ |�A〉 and EB = 〈�B |Ĥ |�B〉 are plotted
as a function of β for the case of s = 0.3, s̄ = 0.2, and α = 0.02. At
the critical point βc, a sharp drop of F (β) and an intersection of the
two energy curves are found.
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FIG. 10. (Color online) The ground-state energy Eg and fidelity
F are displayed as a function of β in the case of s = s̄ = 0.25 and α =
0.02. The discontinuity of the derivative of the energy curve ∂Eg/∂β

and an abrupt drop of the fidelity F (β) are found at βc = 0.0201.

consistent with the picture of the first-order phase transition,
e.g., the ice-water phase transition [40].

Finally, the case with two identical spectral exponents s = s̄

is studied by the variational approach to further explore the
competitive effects of the two phonon baths. The ground-state
energy Eg(β) and fidelity F (β) are displayed in Fig. 10, for s =
s̄ = 0.25 and α = 0.02. According to the discontinuity in the
derivative of the ground-state energy ∂Eg/∂β and the abrupt
drop in the fidelity F (β), one can locate the transition point
βc accurately. The resulting value of βc = 0.0201 is in good
agreement with βc = α = 0.02 obtained from the symmetry
analysis. The relative error (δβ/βc) in the transition point is
only 0.5%. It thus indicates that the variational approach is
an effective and feasible approach to study the quantum phase
transition of the two-bath model.

B. DMRG results

To provide a platform for comparison of the results obtained
by the variational approach, we have carried out DMRG
calculations to investigate the quantum phase transition of the
two-bath model. Starting from Eq. (3) for the usual spin-boson
model, one can map the phonon bath onto a Wilson chain by
using the canonical transformation [30,41]. The Hamiltonian
can be simultaneously mapped onto

Ĥ = ε

2
σz − �

2
σx +

∑
n=0

[ωnb
†
nbn + tn(b†nbn+1 + b

†
n+1bn)]

+ σz

2

√
η

π
(b†0 + b0), (32)

where b
†
n (bn) are phonon creation (annihilation) operator, ωn is

the on-site energy of site n, and tn is the hopping amplitude. The
coupling constant η is proportional to α, which is often chosen
as the control parameter in the studies of the quantum phase

FIG. 11. (Color online) 〈σx〉 and 〈σz〉 are plotted as a function
of β for the case of s = 0.3,s̄ = 0.2, and α = 0.02. The transition
point is marked by the dashed line. The corresponding von Neumann
entropy Sv−N is shown as well with a sharp peak at the transition point
βc = 0.0110.

transition of the spin-boson model. Following the same routine
of the single-bath spin-boson model, the two phonon baths in
the two-bath model can be mapped onto two Wilson chains.
The matrix product state (MPS) approach is then adopted with
an optimized phonon basis in the framework of DMRG to
study the quantum phase transition in the ground state of the
two-bath model. The reader is referred to Appendix C for
detailed derivation of Hamiltonian mapping and introduction
of the MPS method.

For the convenience of comparison, the parameters s =
0.3,s̄ = 0.2, and α = 0.02 are used in the DMRG calcula-
tions with L = 60,dp = 60,	 = 2, and Dc = 50 defined in
Appendix C. Figure 11 shows 〈σx〉,〈σz〉, and Sv−N in a range
of β from 0 to 0.02. The transition point βc = 0.0110 is
determined by the peak of the entanglement entropy Sv−N,
in perfect agreement with the value of 0.01109 found via
variational calculations. However, continuous behavior of
〈σz〉,〈σz〉, and Sv−N is observed near the transition point,
different from that observed in variational results shown in
Figs. 6, 7, and 9.

The convergence of the finite-size effect is investigated
carefully in the DMRG calculations for various lengths of
the Wilson chains L = 30,40,50, and 60. Figure 12 shows
the magnetization 〈σz〉 with respect to β for the case of
s = s̄ = 0.25 and α = 0.02. The parameters employed here
are identical to those used in Fig. 10. With an increase in
L, the jump in the magnetization 〈σz〉 becomes increasingly
sharper. For L = 60, the transition point βc = 0.0202 is
determined, consistent with βc = 0.0201 obtained by the
variational approach.

V. DISCUSSION AND CONCLUSIONS

At first glance, numerical results from the DMRG approach
seem to suggest that the phase transition is continuous,
different from the first-order nature of the transition suggested
by the variational results, in which discontinuities are observed
not only in 〈σz〉,〈σx〉, and Sv−N, but also in F (β) and ∂Eg/∂β.
The difference poses a question on whether the discontinuities
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FIG. 12. (Color online) The magnetization 〈σz〉 is plotted as a
function of β for the case of s = s̄ = 0.25 and α = 0.02 for different
lengths of Wilson chains L = 30,40,50, and 60.

uncovered are caused by artifacts arising from the variational
approach. According to the arguments on the results obtained
for the single-mode case shown in Figs. 3, 4, and 5, the multi-
D1 variational Ansatz with N = 4 is sufficiently sophisticated
to reproduce exact-diagonalization results. Furthermore, the
convergence of N is also investigated for the two-bath model
coupled to the baths described by a continuous spectral
function J (ω) in the case of s = 0.3,s̄ = 0.2,α = 0.02, and
β = 0.011. Correspondingly, the ground-state energies Eg =
0.042255 and 0.042283 are obtained for N = 5 and 6, very
close to the value of 0.042224 at N = 4. To further verify that
N = 4 is sufficient to obtain reliable results for the quantum
phase transition of the two-bath model, the transition point
at N = 6 is calculated to be βc = 0.01111 in the case of
s = 0.3,s̄ = 0.2,α = 0.02, and M = 20. It is thus in good
agreement with βc = 0.01109 found with N = 4 in Fig. 7.

The continuous behaviors of 〈σz〉,〈σx〉, and Sv−N in Figs. 11
and 12 may be misleading, since the numerical results of
DMRG are sensitive to the boson number dp, Wilson chain
length L, and cutoff dimension of the matrices Dc. As shown
in Fig. 12, the width of the transition regime decays rapidly
with an increase in the length L. Hence, it is reasonable to
conjecture that the transition may be of first order in the
limit of L,dp,Dc → ∞. Moreover, similar linear behavior of
the magnetization 〈σz〉 is observed apart from the transition
point in both of the DMRG and variational results shown in
Figs. 6 and 11, consistent with the prediction of the first-order
transition theory [42]. Additional simulations with s = s̄ =
0.4,α = 0.1 and s = s̄ = 0.6,α = 0.1 are performed using the
DMRG algorithm, and the discontinuity in the magnetization
is found in both the cases, lending further support to the claim
that the transition is of first order.

In addition, we have carefully examined the convergence of
the numerical results with respect to the effective bath-mode
number M for the variational approach. In Fig. 13, the ground-
state energy Eg is displayed as a function of M in the case
of s = 0.3,s̄ = 0.2,α = 0.02, and β = 0.011. A power-law
decay curve of the form Eg(M) = aM−b + Eg(∞) is found to
provide a good fitting to the numerical data, which yields the
asymptotic value Eg(∞) = −0.04345. Since the length of the
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FIG. 13. (Color online) The ground-state energy Eg(M) is dis-
played with circles and triangles (as a function of L) in the
case of s = 0.3,s̄ = 0.2,α = 0.02, and β = 0.011. The solid lines
represent power-law fits Eg(M) = aM−b + Eg(∞). In the localized
approximation, the energy of effective bath modes

∑
l(−λ2

l /4ωl) is
plotted with the dash-dotted line shifted up for the convenience of
comparison.

Wilson chain L is equivalent to M , the numerical results Eg(L)
of DMRG for different values of L are also shown in Fig. 13
for comparison. The ground-state energy from the variational
approach is found to be lower than that from DMRG when M

and L are sufficiently large, pointing to the superiority of the
variational results.

To further understand the decay of Eg(M), we focus on a
localized bath state in which the energy of the lth effective
bath mode can be approximated by −λ2

l /4ωl (derived from
fn,l,gn,l = ±λl/2ωl). According to the results presented in
Fig. 8, one bath of the two-bath model is in the localized
state, and the other is in the delocalized state. The contribution
of the effective bath modes in the delocalized state to the
ground state is negligible since fn,l,gn,l ≈ 0. Therefore, the
energy of the effective bath modes can be calculated as Ebath =∑M

l (−λ2
l /4ωl). As shown in Fig. 13, Ebath(M) deceases with

M and tends to a constant value, in a trend similar to that of
the ground-state energy Eg(M). It indicates a change in the
ground state of two-bath model by new effective bath modes,
even though their frequencies are very low.

To investigate the influence of M on the quantum phase
transition of the two-bath model, we have carried out further
simulations with M = 5,10,30, and 40 for the case of s =
0.3,s̄ = 0.2, and α = 0.02 as an example. When M � 10,
a first-order phase transition is observed, and the transition
point βc(M) is determined accurately. For simplicity, only the
results of M = 30 and 40 are displayed. Figure 14 shows the
corresponding magnetization 〈σz〉, spin coherence 〈σx〉, and
entanglement entropy Sv−N. Sharp jumps in 〈σz〉, 〈σx〉, and
Sv−N are observed, similar to the behavior shown in Fig. 6 at
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FIG. 14. (Color online) The magnetization 〈σz〉, spin coherence
〈σx〉, and entanglement entropy Sv−N are plotted as a function of β

for M = 30 (open symbols) and 40 (solid symbols), respectively, in
the case of s = 0.3,s̄ = 0.2, and α = 0.02. The transition point is
marked by the dashed line.

M = 20. However, the transition point βc ≈ 0.0108 is much
smaller than βc = 0.0111 of M = 20, thereby emphasizing the
dependence of the critical point on M .

In order to reveal the relation βc(M), the transition points
calculated from the variational approach for different numbers
of effective bath modes M are depicted in Fig. 15. With an
increase in M , βc is found to decrease monotonically tending
to an asymptotic value βc(∞), similar to the trend in Eg(M)
shown in Fig. 13. This suggests that the shift of the transition
point βc may possibly be related to the change in the ground
state induced by the new effective bath modes. General scaling

10 20 30 40
M

0.015

0.02

0.025

β
c
(M)

8 16 32
M

0.0001

0.001

0.01

Δβ
c
(M) 

α = 0.02
ε = 0,  Δ = 0
s = 0.3, s-  = 0.2

d
eff

 = 2.37

Variational results

β
c
(∞) = 0.0106

FIG. 15. The transition point βc determined by the variational
results is displayed with open triangles as a function of the effective
bath-mode number M . Inset: The shift �βc(M) = βc(M) − βc(∞) is
plotted with solid circles on a log-log scale. The dashed line represents
a power-law fit.

TABLE I. The influences of the symmetry operations projecting
onto the ground state |�A〉 characterized by the magnetization 〈σz〉,
spin coherence 〈σx〉, von Neumann entropy Sv−N, and ground-state
energy Eg.

States 〈σx〉 〈σz〉 Sv−N Eg

|�A〉 8.4125 × 10−11 −0.87616 0.23221 −4.2305×10−2

Pz|�A〉 −8.4125 × 10−11 −0.87616 0.23221 −4.2305×10−2

Px |�A〉 8.4125 × 10−11 0.87616 0.23221 −4.2305×10−2

PxPz|�A〉 −8.4125 × 10−11 0.87616 0.23221 −4.2305×10−2

arguments on the first-order phase transition lead to a finite-
size scaling relation [40,43,44]

�Tc(L) = Tc(L) − Tc(∞) ∼ L−d , (33)

where Tc(∞) is the transition point in the limit of L → ∞,
and Ld is the system volume. Similarly, �βc(M) = βc(M) −
βc(∞) ∼ M−deff is assumed with an effective spatial dimension
deff based on the equivalence between the number of effective
bath modes M and the length of Wilson chains L. Taking
βc(∞) = 0.0106 as input, perfect power-law behavior of
�βc(M) is presented in the inset of Fig. 15. From the slope, the
effective spatial dimension is estimated as deff = 2.37(6) for
the two-bath model. Interestingly, it is in good agreement with
the prediction d = 3 − 2s = 2.4 by the mean-field analysis
with s = 0.3.

Finally, the symmetry analysis of the two-bath model
presented in Sec. II is numerically verified. Taking the
ground state |�A〉 obtained at s = 0.3,s̄ = 0.02,α =
0.02,β = 0.01108 as an example, the influences of the
symmetry operators Pz,Px , and PxPz on the ground state
are investigated, and the results are summarized in Table I.
Twofold-degenerate ground states |�A〉 (Pz|�A〉) and Px |�A〉
(PxPz|�A〉) are obtained according to different values
of the magnetization 〈σz〉 = ±0.87616. The ground-state
energy Eg, entropy Sv−N, and spin coherence 〈σx〉 of the
two states are found to be nearly the same. The overlaps
between |ψA〉, Pz|ψA〉, Px |ψA〉, PxPz|ψA〉, P1|ψA〉, and
P2|ψA〉 are also calculated. The relations 〈ψA|PxPzPx |ψA〉 =
−〈ψA|Pz|ψA〉 = 1, 〈ψA|PzP2|ψA〉 = 〈σz〉 = −0.087617,
and 〈ψA|P2|ψA〉 = |〈σz〉| = 0.087617 are obtained
along with 〈ψA|P2PxPz|ψA〉 = 〈ψA|σzPx |ψA〉 = 0 and
〈ψA|P1Px |ψA〉 = 〈ψA|σx |ψA〉 = 0. All of them are consistent
with the predictions of the symmetry analysis. By projecting
these operators onto another ground state |�B〉 at the other
side of the transition point, similar properties are revealed
except that the doubly degenerate ground states become |�B〉
and Pz|�B〉 with different values of 〈σx〉. This further supports
the contention that the phase transition does not remove the
ground-state degeneracy, but rather eliminates spontaneous
magnetization.

In summary, the ground-state properties of the extended
spin-boson model with two baths coupled to the x and z

spin components, respectively, have been studied in this paper
by the variational approach, the DMRG approach, and the
exact-diagonalization method, as well as by the symmetry
and mean-field analyses. A quantum phase transition from
a doubly degenerate “localized phase” to the other doubly
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degenerate “delocalized phase” is uncovered. Adopting the
multi-D1 Ansatz as the variational wave function, transition
points are determined accurately, in good agreement with the
results of exact diagonalization and DMRG. According to
the discontinuity in the magnetization, spin coherence, von
Neumann entropy, and derivative of the ground-state energy,
and the vanishing value of the fidelity at the transition point, the
transition is inferred to be of first order for the baths described
by a continuous spectral density function. In the case with
single mode, however, the transition is found to be softened.
Furthermore, the convergence of results is carefully evaluated
against the number of the coherence superposition states (N )
and that of effective bath modes (M). An effective spatial
dimension is then calculated, consistent with the mean-field
prediction within the error bar.
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APPENDIX A: THE GINZBURG-LANDAU THEORY
FOR THE SPIN-BOSON MODEL

Consider a spin-boson (SB) Hamiltonian

Ĥ = �σx + σz

∑
k

gkxk +
∑

k

(
p2

k

2m
+ mω2

kx
2
k

2

)
, (A1)

where coupling coefficients are characterized by the spectral
function

J (ω) =
∑

k

g2
k δ(ωk − ω) = αω−s

c ωse− ω
ωc . (A2)

We are primarily interested in the so-called sub-Ohmic regime
with 0 < s < 1. We also assume that the interaction cutoff
frequency ωc is sufficiently large, so that ωc � � and ωc �
β−1 (β = T −1 is the inverse temperature).

We are interested in studying the partition function of the
system, Z = T r(e−βH ). It is known that for a sufficiently
large value of spin-bath coupling α, the system exhibits a
continuous phase transition into a localized phase, i.e., a
phase where spin acquires spontaneous magnetization along
the z direction. (As a result, the oscillators shift from their
equilibrium positions, e.g., some “weak” analogy with the
Peierls transition). Therefore one can introduce an order
parameter as B = 〈∑k gkxk〉 by introducing a constraint in
the Hamiltonian (A1) through a Lagrange multiplier field λ.
That is, we rewrite Eq. (A1) as

H = �σx + Bσz +
∑

k

(
p2

k

2m
+ mω2

kx
2
k

2

)

+ iλ

(
B −

∑
k

gkxk

)
. (A3)

By integrating out the oscillators and then the field λ, we
obtain an (imaginary time) effective action for the spin+order
parameter system,

S =
∫ β

0
dτ [�σx + B(τ )σz] + 1

2β

∑
ωn

|B(ωn)|2
K(ωn)

, (A4)

where ωn = 2πn/β are Matsubara frequencies and

K(ω) =
∑

k

g2
k

m
(
ω2 + ω2

k

) =
∫

dω′ J (ω′)
m(ω2 + ω′2)

. (A5)

Note that for the spectral function given by Eq. (A2), K(ω) �
K(0) − cωs for ω � ωc, where c = ( α

mωs
c
)
∫ ∞

0 xs−1(1 +
x2)−1dx, and K(ω) ∼ ω−2 for ω � ωc.

In order to average over the spin, one needs to evaluate
the time-ordered exponent T e− ∫ β

0 dτ [�σx+B(τ )σz]. This can be
done perturbatively in B. Indeed, near the critical point the
value of the order parameter B is infinitesimally small, and
therefore such expansion is well justified. Furthermore, near
the phase transition point, the energy functional Eq. (A4) is
dominated by low-frequency fluctuations. Therefore for finite
�, when evaluating the time-ordered exponent, one can use
an adiabatic approximation [in B(τ )]. For sufficiently high β

(i.e., low temperature),

T rspin(T e− ∫ β

0 dτ [�σx+B(τ )σz]) � e
∫ β

0 dτ
√

�2+B2(τ ), (A6)

where we have dropped the term with +
√

�2 + B2(τ ) eigen-
value. Expanding the square root up to the quartic order in B,
we obtain an effective Ginzburg-Landau-type functional for
the partition function of the system in the vicinity of critical
point, Z = ∫

DB(τ ) e−Feff , where

Feff= 1

2β

∑
ωn

(
1

K(ωn)
− 1

�

)
|B(ωn)|2 + 1

4�3

∫
dτ |B(τ )|4.

(A7)
Note that the use of the adiabatic approximation was not
necessary. An explicit account of nonlocality in the quadratic
term gives

Feff = 1

2β

∑
ωn

(
1

K(ωn)
− �

�2 + ω2
n

)
|B(ωn)|2

+ 1

4�3

∫
dτ |B(τ )|4, (A8)

where, in the spirit of Ginzburg-Landau expansion, the
frequency dependence in the quartic term is neglected. The
energy functional exhibits an instability given at the mean-field
level by the condition � = K(0). Note that the phase transition
is believed to occur at the critical value of αc ∼ �1−s , while our
mean-field condition corresponds to αc ∼ �. So, presumably,
the renormalization effects are strong for s ∼ 1.

To first order, the renormalization of the phase transition
point (i.e., one loop correction) is given by the equation

1

K(0)
− 1

�
+ 1

2�3

∫
dω

2π

1
1

K(ω) − �
�2+ω2

= 0. (A9)

Here, for simplicity, we consider the T = 0 case.
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APPENDIX B: THE VARIATIONAL APPROACH

For convenience, the Hamiltonian in Eq. (6) can be recast
in a single-bath form

Ĥ = −�

2
σx + ε

2
σz +

∑
l

ω′
lb

′
l

†
b′

l + σz

2

∑
l

λ′
l(b

′
l + b′

l

†)

+ σx

2

∑
l

φ′
l(b

′
l + b′

l

†) (B1)

by the transformation

ω′
l =

{
ωl, 0 < l � M,

ωl−M, M < l � 2M,

λ′
l =

{
λl, 0 < l � M,

0, M < l � 2M,

φ′
l =

{
0, 0 < l � M,

φl−M, M < l � 2M,

b′
l =

{
bl,1, 0 < l � M,

bl−M,2, M < l � 2M,
(B2)

where M is the number of effective bath modes for both
of the diagonal and off-diagonal coupling baths. Using the
multi-D1 Ansatz defined in Eq. (29) as trial wave function, the
system energy can be calculated as E = H/D, where H is
the Hamiltonian expectation and D is the normal of the wave
function. In the case ε = � = 0, they can be written as

H =
∑
m,n

AmBn�m,n

∑
k

ηk(fm,k + gn,k)

+
∑
m,n

AmAnFm,n

∑
k

[
ωkfm,kfn,k + λk

2
(fm,k + fn,k)

]

+
∑
m,n

BmBnGm,n

∑
k

[
ωkgm,kgn,k − λk

2
(gm,k + gn,k)

]

(B3)

and

D = 〈ψ |ψ〉 =
∑
m,n

(AmAnFm,n + BmBnGm,n), (B4)

where Fm,n,Gm,n, and �m,n are Debye-Waller factors defined
as

Fm,n = exp

[
− 1

2

∑
k

(fm,k − fn,k)2

]
,

Gm,n = exp

[
− 1

2

∑
k

(gm,k − gn,k)2

]
,

�m,n = exp

[
− 1

2

∑
k

(fm,k − gn,k)2

]
. (B5)

One can get a set of self-consistency equations with the form
of Eq. (30) by minimizing the energy E = H/D with respect
to the variational parameters. They can also be deduced by the
Lagrange multiplier method when we consider the constraint

condition D ≡ 1. Finally, the iterative equations are derived:

A∗
n =

∑
m Bm�n,mddn,m + 2

∑m�=n
m AmFn,m(aan,m − E)

2(E − an,n)
,

B∗
n =

∑
m Am�m,nddm,n + 2

∑m�=n
m BmGm,n(bbm,n − E)

2(E − bn,n)
,

f ∗
m,k = 2

∑n�=m
n AnFm,n(ωkfn,k + λk/2 + aam,nfn,k − Efn,k)

2Am(E − ωk − aam,m)

+
∑

n Bn�m,n(gn,kddm,n + ηk) + Amλk

2Am(E − ωk − aam,m)
,

g∗
m,k = 2

∑n�=m
n BnGm,n(ωkgn,k − λk/2 + bbm,ngn,k − Egn,k)

2Bm(E − ωk − bbm,m)

+
∑

n An�n,m(fn,kddn,m + ηk) − Bmλk

2Bm(E − ωk − bbm,m)
, (B6)

where ddm,n,aam,n, and bbm,n denote

ddm,n =
∑

k

ηk(fm,k + gn,k),

aam,n =
∑

k

[
ωkfm,kfn,k + λk

2
(fm,k + fn,k)

]
,

bbm,n =
∑

k

[
ωkgm,kgn,k − λk

2
(gm,k + gn,k)

]
, (B7)

respectively. Using the relaxation iteration technique, one
updates the variation parameters by x ′

i = xi + t(x∗
i − xi),

where x∗
i is defined in Eq. (B6), and t is the relaxation factor.

Usually, t = 0.1 is set in the variational procedure, while
it gradually decreases to 0.001 in the simulated annealing
algorithm. With the ground state at hand, the magnetization
〈σz〉 and spin coherence 〈σx〉 can be calculated by

〈σz〉 =
∑

m,n AmAnFm,n − BmBnGm,n∑
m,n AmAnFm,n + BmBnGm,n

,

〈σx〉 =
∑

m,n 2AmBn�m,n∑
m,n AmAnFm,n + BmBnGm,n

. (B8)

And the entanglement entropy Sv−N and ground-state energy
Eg are measured according to Eq. (28) and H/D, respectively.

APPENDIX C: THE DMRG METHOD

In order to deal with the two-bath model by employing
the DMRG algorithm, followed by the standard theoretical
treatment [11,24,30,41] that leads to Eq. (32), the two
phonon baths are transformed into two Wilson chains. The
Hamiltonian Eq. (6) is mapped simultaneously to

Ĥ = ε

2
σz − �

2
σx

+
∑
n=0,i

[ωn,ib
†
n,ibn,i + tn,i(b

†
n,ibn+1,i + b

†
n+1,ibn,i)]

+ σz

2

√
ηz

π
(b†0,1 + b0,1) + σx

2

√
ηx

π
(b†0,2 + b0,2), (C1)
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where

ηx =
∫ ωc

0
Jx(ω)dω = 2πβ

1 + s̄
ω2

c , (C2)

ηz =
∫ ωc

0
Jz(ω)dω = 2πα

1 + s
ω2

c , (C3)

and i = 1,2 is the index for the baths. ωn,i and tn,i are given
as [30]

ωn,1 = ζs(An + Cn), (C4)

tn,1 = −ζs

(
Nn+1

Nn

)
An, (C5)

ζs = ωc

s + 1

s + 2

(
1 − 	−(s+2)

1 − 	−(s+1)

)
, (C6)

An = 	−n (1 − 	−(n+1+s))2

(1 − 	−(2n+1+s))(1 − 	−(2n+2+s))
, (C7)

Cn = 	−(n+s) (1 − 	−n)2

(1 − 	−(2n+s))(1 − 	−(2n+1+s))
, (C8)

N2
n = 	−n(1+s) (	−1; 	−1)2

n

(	−(s+1); 	−1)2
n(1 − 	−(2n+1+s))

, (C9)

with

(a; b)n = (1 − a)(1 − ab)(1 − ab2) · · · (1 − ab(n−1)) (C10)

and the discretization parameter 	 = 2.

In the Fock representation, the ground-state wave function
of Hamiltonian (C1) characterizing a single-chain system can
be written in the form of matrix product states (MPS) as

|ψ〉 =
∑

i0=↑,↓;j

Ai0Aj1Aj2 · · ·AjL−1 |i0, �j 〉, (C11)

where i0 is the spin index, �j = (j1,j2, . . . ,jL−1), 0 � ji � dp,
represents the quantum numbers for the phonon basis, L is the
length of the chain, and dp is the number of phonon allocated
on each site on the chain. Aj defined in Eq. (C11) are single
matrices whose dimension is restricted by a cut off Dc.

Subsequently, performing the iterative optimization proce-
dure [45], each matrix A can be optimized with the truncation
error less than 10−7. Furthermore, if we used the DMRG
algorithm combined with the optimized phonon basis [23,46],
the phonon numbers dp on each site of the Wilson chain can
be kept up to 100. Therefore, totally about 102L phonons
will be included in the DMRG calculations. Here, in order to
determine the phase transition conclusively, at least dp = 60
phonon should be kept in the calculation. After that, 〈σx〉, 〈σz〉,
and the von Neumann entropy

Sv-N = −Trρs logρs, (C12)

where ρs is the reduced density matrix of the spin, can all be
extracted by performing common quantum averaging using
the MPS wave function.
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