
PHYSICAL REVIEW B 90, 155121 (2014)

Localized and propagating excitations in gapped phases of spin systems with bond disorder
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Using the conventional T -matrix approach, we discuss gapped phases in one-, two-, and three-dimensional
(3D) spin systems (both with and without a long-range magnetic order) with bond disorder and with weakly
interacting bosonic elementary excitations. This work is motivated by recent experimental and theoretical activity
in spin-liquid-like systems with disorder and in the disordered interacting boson problem. In particular, we apply
our theory to both paramagnetic low-field and fully polarized high-field phases in dimerized spin- 1

2 systems
and in integer-spin magnets with large single-ion easy-plane anisotropy D with disorder in exchange coupling
constants (and/or D). The elementary excitation spectrum and the density of states are calculated in the first order
in defects concentration c � 1. In 2D and 3D systems, the scattering on defects leads to a finite damping of
all propagating excitations in the band except for states lying near its edges. We demonstrate that the analytical
approach is inapplicable for states near the band edges and our numerical calculations reveal their localized
nature. We find that the damping of propagating excitations can be much more pronounced in considered systems
than in magnetically ordered gapless magnets with impurities. In 1D systems, the disorder leads to localization
of all states in the band, while those lying far from the band edges (short-wavelength excitations) can look like
conventional wave packets.
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I. INTRODUCTION

Even a small amount of disorder can change considerably
some properties of condensed-matter systems. The most
famous examples are probably the Anderson localization [1]
and the Kondo effect [2]. Disordered boson systems (so-called
dirty-boson systems) have attracted much attention recently
because a possibility of studying some peculiar predictions in
this field has arisen in magnetically disordered spin-liquid-like
materials and in optical lattices of ultracold atoms (see Ref. [3]
for review). In particular, the existence of a disordered gapless
Bose-glass (BG) phase was predicted for dirty bosons between
gapped Mott-insulating (MI) and gapless superfluid (SF)
phases. [4] A general theorem has been proven recently which
states that a BG phase always intervenes between MI and SF
phases [5]. The transition between MI and BG phases takes
place via the Griffiths mechanism [6]. The nature of the quan-
tum phase transition from BG to SF phases has been widely
debated in recent years (see Refs. [3,7] and references therein).

It has been understood recently that spin-1 magnets with
large single-ion easy-plane anisotropyD and spin- 1

2 dimerized
systems are convenient objects for discussing the dirty boson
problem if disorder is realized in exchange coupling constants
and/or D [3]. Such systems can be prepared in practice by
creating a disorder on peripheral sites involved in superex-
change interactions. A number of both large-D and dimerized
substances with such disorder have been synthesized to
date [3]. At small magnetic field H , pure systems of this type
have singlet ground states separated from the triplet excitation
bands by gaps. For quasi-one-dimensional (-1D), quasi-2D and
3D systems, the phase diagram on the T -H plane is presented
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in Fig. 1(a) which shows a magnetically ordered gapless
(SF) phase at Hc1 < H < Hc2 and paramagnetic gapped (MI)
phases at H < Hc1 and H > Hc2 (the fully polarized phase).

To explain the problem we address in the present paper,
let us strengthen some randomly chosen intradimer exchange
coupling constants J (or D values on some sites) in these
systems. Localized impurity levels can appear inside the gap
in the fully polarized phase which start to “condense” at
some critical field Hbg2 > Hc2 transferring the system into
the BG phase [see Fig. 1(b)]. There are magnetically ordered
islands around “strong” defects in this high-field BG phase
which are well separated from each other by a nonmagnetic
background, while no coherent long-range magnetic order
exists in the whole system. Local quantized axes align in
all islands (or all islands merge) when the transition to the
magnetically ordered phase takes place at H = Hc2 [8]. In
contrast to the fully polarized phase, there are no localized
impurity levels inside the gap for strong defects at small
H . Nevertheless the general theorem [5] requires that the
field-induced transition to the ordered phase should take place
via a BG phase. On the other hand, the Zeeman term commutes
with the Hamiltonian and the magnetic field plays a role of a
chemical potential at small and large H in bosonic analogs
of spin Hamiltonians (see also below for detail). Then, one
is led to a somewhat counterintuitive conclusion that at least
low-energy states in the excitation band are localized at H = 0
in the case of strong defects and their “condensation” drives
the system into the BG phase at Hbg1 < Hc1 [see Fig. 1(b)]. [8]
Analogously, one leads to the same counterintuitive conclusion
for “weak” defects at large H . As a result a natural question
arises: which of the states in the band become localized
and which of them remain propagating acquiring only a
finite damping due to scattering on defects. This question
looks particularly important in the light of recent excitation
spectra measurements in IPA-Cu(ClxBr1−x)3 (Ref. [9]) and
(C4H12N2)Cu2(Cl1−xBrx)6 (Ref. [10]), dimerized materials
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FIG. 1. Phase diagrams of (quasi-)3D dimerized spin- 1
2 systems

and spin-1 magnets with large single-ion easy-plane anisotropy D in
magnetic field H . (a) Systems without defects with a canted magnetic
ordering inside the dome. (b) Systems with a small fraction of bonds
with strengthen and/or weaken exchange coupling constants (and/or
D value). Bose-glass phases are denoted as BG.

with no impurity levels inside the gap at H = 0. Despite
considerable interest to bond disorder in spin-liquid-like
magnets, this question has not been raised yet [3,11,12] and
the possibility of localization of some states in the band has
not been considered in the experimental papers [9,10].

We attack this problem analytically using the conventional
T -matrix approach that is widely used in discussion of defects
in condensed-matter theory [13] and was proven to be very use-
ful for magnetically ordered systems with impurities [14–21].
This approach allows us to find corrections to Green’s
functions, the excitation spectrum, and the density of states
(DOS) in the first order in defects concentration c � 1.
If the expansion in terms of c is valid, excitations remain
propagating in disordered systems although a finite damping
arises due to scattering on defects. It can happen, however,
that terms of higher order in c are also important for some
momenta k signifying analytical approach inapplicability
and the necessity of an additional analysis. This can be a
sign of propagating modes resonance scattering on defects
(which, however, can remain propagating as a result of this
scattering) [14,15] or a localization of some states (see, e.g.,
Ref. [18]).

In dimerized spin- 1
2 systems and in integer-spin large-D

magnets, the T -matrix approach allows us to perform a unified
consideration of all gapped phases, because Green’s functions
and spectra of propagating excitations have the same form.
The only formal requirement to be fulfilled is that excitations
in pure systems are weakly interacting. This condition holds
at small H if the intradimer exchange constant J and D are
much larger than other exchange coupling constants Jij . In
the fully polarized phase, the magnon interaction does not
lead to renormalization of observables at T = 0 and it can be
omitted. [22] We consider below the disorder in J or D as
well as in Jij . It is found that the analytical approach is invalid
in 1D, 2D, and 3D systems for states near the bottom and the
top of excitation bands for all kinds of bond disorder (i.e.,
for strong and weak defects and for systems containing both
strong and weak impurities). The linear size of regions in the
k space inside which the analytical approach does not work
scale as some powers of c. To clarify the nature of states near
band edges, we perform numerical calculations for 1D and 2D
systems which show that these states are localized and they
have nothing to do with conventional wave packets. In 2D
systems, the numerical analysis shows that states inside the
band far from its edges are well-defined wave packets which

energies and lifetimes are given by analytical expressions
obtained in the first order in c (one expects the same conclusion
in 3D systems). In 1D systems, all states in the band are found
to be localized (similar to 1D electronic systems). At the same
time, some of the states inside the band reflect properties of
propagating short-wavelength excitations which energies and
lifetimes are given by analytical expressions obtained in the
first order in c. Besides, it is found that some states inside the
band in 1D systems are not conventional wave packets due to
a resonant scattering on strong enough defects.

Our spectrum calculations show that in the vicinity of
Hbg1 or Hbg2, if no localized impurity levels exist in the gap,
the ratio of the long-wavelength propagating modes damping
γk to their energy εk can reach c/k2 in the range of this
result validity 1 � k � √

c. This contrasts with magnetically
ordered gapless magnets in which γk/εk does not exceed
c [17,18,23,24]. Thus, the damping of propagating excitations
can be much more pronounced in considered systems than in
magnetically ordered gapless magnets with impurities.

The results obtained can be relevant to other gapped
phases in bond disordered spin systems both with and without
a long-range magnetic order (e.g., bond disordered easy
axis ferromagnets and antiferromagnets with large easy axis
anisotropy). Our main analytical results are represented in
quite a model-independent form that allows using them in
analysis of other systems.

The rest of the present paper is organized as follows. Pure
systems are considered in Sec. II, where we derive bosonic
analogs of spin Hamiltonians in all gapped phases using
standard spin operators representations and demonstrate their
similarity in dimerized and large-D systems. Our analytical
and numerical methods are described in Sec. III. Bond
disordered systems are considered in Sec. IV. Section V
contains a summary of results and our conclusions. An
Appendix is added with details of calculations.

II. GAPPED PHASES IN PURE SYSTEMS

In this section, we derive Bose analogs of spin Hamiltonians
describing dimerized and large-D systems at H < Hc1 and
H > Hc2 and demonstrate their similarity that allows the
subsequent unified consideration. We derive elementary ex-
citation spectra neglecting interaction between quasiparticles.
This harmonic approximation is justified at H > Hc2 because
spin-wave interaction does not modify one-particle Green’s
functions in the fully polarized phase [22]. At H < Hc1, the
quasiparticle interaction can be neglected in the first order in
the small exchange coupling Jij of spins from different dimers
or from different sites (in large-D systems).

It is shown below that spectra of all modes in this
approximation have the form

εk = � + a

2

(
Jk − Jk0

)
, (1)

where a > 0 is a constant, � is the gap value, Jk is the Fourier
transform of Jij , and k0 is the momentum at which Jk reaches
its minimum. For simplicity, we assume below that Jij �= 0
for nearest neighbors only and that Jij is either positive or
negative so that all components of k0 are equal to π if Jij > 0
and k0 = 0 when Jij < 0. Then, εk depends quadratically on
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κ = k − k0 near its minimum:

εk = � + a

2
|J |κ2. (2)

One obtains similar quadratic dependence near the spectrum
maximum: εk = � + a|Jk0 | − a|J |κ2/2. Here and below κ

measures a deviation of the momentum from values at which
the bare spectrum has a minimum or a maximum. All the
results obtained in this section are not original. We omit some
details of the corresponding consideration which can be found
in cited papers.

A. Spin-1/2 dimer systems

We discuss 1D, 2D, and 3D simple Bravias lattices of spin- 1
2

dimers which Hamiltonian is written in the following form:

H =
∑

i

J Si,1 · Si,2 +
∑
m

∑
〈i,j〉

Jij (Si,1 · Sj,1 + Si,2 · Sj,2)

−h
∑

i

(
Sz

i,1 + Sz
i,2

)
, (3)

where Si,n denotes nth spin (n = 1,2) in ith dimer, h =
gμBH is the external magnetic field, and 〈i,j 〉 denote
nearest-neighbor dimers. We set below the intradimer coupling
constant J = 1. The exchange coupling between spins from
different dimers in Eq. (3) is taken in the simplest form.

1. H < Hc1

The system has a singlet ground state that corresponds
to the paramagnetic phase in Fig. 1(a). We derive the Bose
analog of spin Hamiltonian (3) in the standard way [25]
by introducing three Bose operators a, b, and c for each
dimerized bond which act on the vacuum spin state |0〉 =

1√
2
(|↑↓〉 − |↓↑〉) as follows: a|0〉 = b|0〉 = c|0〉 = 0, a+|0〉 =

|↑↑〉, b+|0〉 = |↓↓〉, and c+|0〉 = 1√
2
(|↑↓〉 + |↓↑〉). One has

for spin operators

S+
i,1 = 1√

2
[a+

i (ci − 1) + (c+
i + 1)bi],

S+
i,2 = 1√

2
[a+

i (ci + 1) + (c+
i − 1)bi],

Sz
i,1 = 1

2
[(c+

i + ci) + a
+
i ai − b

+
i bi],

Sz
i,2 = 1

2
[−(c+

i + ci) + a
+
i ai − b

+
i bi].

(4)

To fulfill the requirement that no more than one triplon a, b,
or c can sit on the same bond, one has to introduce constraint
terms into the Hamiltonian which describe an infinite repulsion
between triplons U

∑
i(a

+
i a

+
i aiai + b

+
i b

+
i bibi + c

+
i c

+
i cici +

a
+
i b

+
i aibi + a

+
i c

+
i aici + b

+
i c

+
i bici), where U → +∞.

After substituting Eqs. (4) into Eq. (3) one obtains the Bose
analog of the spin Hamiltonian which contains the constant
term and terms with products of two and four Bose-operators.
We restrict ourselves below by calculating triplon spectra in the
first order in the interdimer coupling Jij . It can be shown (see,
e.g., Ref. [26]) that triplons spectra are defined only by bilinear
part of the Hamiltonian in the first order in Jij and one has to

take into account quasiparticles interaction to find spectra in
higher orders. Then, the bilinear part of the Hamiltonian

H2 =
∑

k

[(
1 + Jk

2
− h

)
a

+
k ak +

(
1 + Jk

2
+ h

)
b

+
k bk

+
(

1 + Jk

2

)
c
+
k ck − Jk

2
(akb−k + a

+
k b

+
−k)

+ Jk

4
(ckc−k + c

+
k c

+
−k)

]
(5)

gives Eq. (1) for triplons spectra in the first order in Jij with
a = 1, �a = 1 − h + 1

2Jk0 , �b = 1 + h + 1
2Jk0 , and �c =

1 + 1
2Jk0 . As the last two terms in Eq. (5) do not contribute to

spectra in the first order in Jij , we omit them in the subsequent
consideration.

2. H > Hc2

One can use the Holstein-Primakoff spin representation in
the fully polarized phase at H > Hc2. As soon as magnon
interaction does not lead to spectrum renormalization in this
case, [22] we restrict ourselves with the linear spin-wave
approximation and use the following expressions:

Sx
i,n = 1

2
(ai,n + a

+
i,n),

S
y

i,n = − i

2
(ai,n − a

+
i,n), (6)

Sz
i,n = 1

2
− a

+
i,nai,n.

After the Hamiltonian transformation and introduction of new
Bose operators

ai,I = ai,1 + ai,2√
2

and ai,I I = ai,1 − ai,2√
2

, (7)

one obtains

H2 =
∑

k

[(
h − 1

2
J0 + 1

2
Jk

)
a

+
k,Iak,I

+
(

h − 1 − 1

2
J0 + 1

2
Jk

)
a

+
k,I Iak,I I

]
, (8)

where two branches of elementary excitations have spectra of
the form (1) with a = 1.

B. Systems with integer spin and large single-ion
easy-plane anisotropy

We consider the following Hamiltonian for such systems:

H =
∑
〈i,j〉

Jij Si · Sj + D
∑

i

(
Sz

i

)2 − h
∑

i

Sz
i , (9)

where D > 0 and D � |Jij |. Similar to spin-dimer systems,
these have singlet (paramagnetic) ground states at small h in
which all spins are predominantly in states with Sz = 0. If
S = 1, the system has the T -H diagram shown in Fig. 1(a).
For greater integer S, the phase diagram contains S separated
(if |Jij | is small enough) regions with canted magnetic
ordering. [22] In this case, notations Hc1 and Hc2 used below
denote the smallest and the largest critical fields, respectively.
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Similar to the intradimer coupling constant J , we set below
D = 1.

1. H < Hc1

For arbitrary integer spin S, the Bose analog of spin Hamil-
tonian (9) can be derived using the following representation
(see Ref. [27] for details):

S+
i = b

+
i (f1 − f2b

+
i bi) + (f1 − f2a

+
i ai)ai ,

Sz
i = b

+
i bi − a

+
i ai , (10)

where two types of Bose operators are introduced and

f1 =
√

S(S + 1),
(11)

f2 =
√

S(S + 1) −
√

(S − 1)(S + 2)/2 > 0.

To obtain quasiparticles spectra in the first order in the
exchange interaction, one needs only the bilinear part of the
Hamiltonian [27] which has the form

H2 =
∑

k

[(
1 + h + f 2

1

2
Jk

)
a

+
k ak +

(
1 − h + f 2

1

2
Jk

)
b

+
k bk

]

(12)

and which describes two branches of excitations with spec-
tra (1), where a = f 2

1 = S(S + 1).

2. H > Hc2

The high-field fully polarized phase can be considered using
the Holstein-Primakoff spin representation that gives for the
Hamiltonian in the linear spin-wave approximation

H2 =
∑

k

[h − (2S − 1) − S(J0 − Jk)] a
+
k ak. (13)

The spectrum has the form (1) in this case with a = 2S.
It should be noted that magnetic field can only change the

gap value but does not affect the strength of the quasiparticles
interaction at T = 0 and plays the role of a chemical potential.
This is related to commutation of the Zeeman term with
spin Hamiltonians (3), (9) and to particular forms of spin
representations (4), (6), and (10). Magnetic field reduces the
gap in the spectrum of one of the branches, bringing the system
to a quantum critical point.

III. DISORDER MODELING AND TECHNIQUE

We now turn to the systems considered above with finite
concentration c of defects. Here we discuss impurities which

change only exchange coupling constants in corresponding
Hamiltonians and which do not change the nature of the
paramagnetic phase at H = 0 (i.e., the ground state remains
singlet). For instance, we do not consider defects below
which weaken intradimer coupling constants so much that
local magnetic moments arise on imperfect bonds. On the
other hand, we do not assume below that deviation of the
coupling constants on imperfect bonds from their values
in pure systems is small. Two types of disorder can be
distinguished: (i) disorder in the intradimer exchange coupling
constant J or in the value of the single-ion anisotropy D and
(ii) disorder in small exchange coupling constants Jij between
spins from different dimers or spins on neighboring sites (in
large-D systems).

Hamiltonians of systems with defects are written as

H = H2 + V, (14)

where H2 is given by Eqs. (5), (8), (12), and (13) and V has
the following form for disorder in J or D only:

V =
∑
{n}

uSn,1 · Sn,2, or V =
∑
{n}

u
(
Sz

n

)2
, (15)

where the summation is taken over all imperfect bonds or sites
and u measures the deviation of J or D on imperfect bonds
or sites from their values in pure systems. It is seen from
Eqs. (4), (6), and (10) that such a disorder affects only the
chemical potential value on imperfect bonds or sites which is
parametrized by the single parameter u. Thus, one obtains at
H < Hc1 from Eqs. (15) for one sort of particles (a particles,
for definiteness)

V = u
∑
{n}

a+
n an. (16)

Expressions for V are cumbersome for disorder in Jij and
we present them for 1D systems only which are shown in
Fig. 2:

V = u1

∑
{n}

(Sn,1 · Sn+1,1 + Sn,2 · Sn+1,2 + Sn−1,1

· Sn,1 + Sn−1,2 · Sn,2)

or V = u1

∑
{n}

(Sn · Sn+1 + Sn−1 · Sn) ,

(17)

where the first equation is for the spin- 1
2 ladder [see Fig. 2(a)],

the second one is for the integer spin chain [see Fig. 2(b)],
u1 measures the deviation of Jij on imperfect bonds from its

2 310-1

(a)

2 310-1

(b)

FIG. 2. 1D systems with imperfect bonds shown by dashed lines. (a) Spin- 1
2 ladder with dimers on rungs (shown in bold) with modified

intradimer exchange constant J at rung 1 and modified values of exchange coupling constants between spins from dimer 1 and neighboring
dimers 0 and 2. (b) Integer spin chain with modified value of the single-ion easy-plain anisotropy D at site 1 and modified value of exchange
coupling constant at bonds 0-1 and 1-2.
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value in pure systems. The part of the perturbation operators
corresponding to a particles has the form

V = au1

2

∑
{n}

(a+
n an+1 + a

+
n+1an + a

+
n−1an + a+

n an−1), (18)

where a = 1 for spin ladder and a = S(S + 1) for integer-
spin chains if H = 0. We omit in Eq. (18) terms of the form
b

+
i a

+
j , biaj , c

+
i c

+
j , and cicj , which arises at small H , and give

corrections of the next order in Jij .
We start our discussion below with the disorder in J or D

only. Then, we also add the disorder in Jij and discuss corre-
sponding results for systems with two types of disorder. As is
usually done [3,11], we assume that these two types of disorder
are “coupled.” For example, spins from an imperfect dimer are
coupled to spins from neighboring dimers by imperfect bonds
(see, e.g., Fig. 2 for 1D systems). This assumption is quite
natural because in real materials substitution of a nonmagnetic
atom usually changes all exchange coupling constants in its
vicinity.

A. T -matrix approach

We use the conventional T -matrix approach (see, e.g.,
Refs. [13–15,17]) to find analytically corrections to quasipar-
ticles spectra and density of states (DOS). Processes involving
simultaneous scattering on more than a single impurity are
omitted in this technique and all results are valid in the first
order in c. One obtains for Green’s functions of each mode in
disordered systems

G(k,E) = 1

E − εk − cT (k,E)
, (19)

where T (k,E) is a quantity related to the T matrix and εk is
the pure system quasiparticle spectrum. Then, the translation
invariance of systems is effectively restored in the first order
in c that allows using Green’s functions of the form (19) to
analyze the spectra of these modes [14,15,17]. The quantity
T (k,E) can be expressed via coordinate Green’s functions of
pure systems

Gnm(E) = 1

N

∑
p

eip(Rn−Rm)

E − εp − i0
, (20)

where N is the number of unit cells.

For disorder in J or D only, T (k,E) does not depend on
momentum having the form

T (k,E) = u

1 − uG00(E)
, (21)

where u measures the deviation of J or D on imperfect bonds
or sites from their values in pure systems [see Eq. (15)].
Spectrum of quasiparticles Ek and their damping γk are defined
by poles of Green’s function (19) and they have the form in
the first order in c

Ek = εk + cRe[T (k,E = εk)],
(22)

γk = cIm[T (k,E = εk)],

where Re and Im denote real and imaginary parts, respectively.
Equations (22) are written under the assumption that the
solution of the equation E − εk − cT (k,E) = 0 at fixed k can
be expanded as series in c in which the first terms taken into
account in Eqs. (22) are much larger than higher-order terms.
It can happen, however, that this is not the case for some k. It
would signify that diagrams of higher orders in c have to be
taken into account and Eqs. (19)–(22) have to be reconsidered.
As we obtain below, it is the situation that arises in considered
systems for states in excitation band lying near its bottom
and the top, where the following inequalities should hold for
Eqs. (22) validity:

|εk − �| � c|T (k,εk)|, (23)∣∣εk − � − a
∣∣Jk0

∣∣∣∣ � c|T (k,εk)|, (24)

respectively. To analyze states near bands edges, we perform
numerical calculations discussed below in detail. It should be
noted that the invalidity of Eqs. (19)–(22) and the necessity
to go beyond the first order in c is usually seen from an
analysis similar to that just described. It happens sometimes
that processes of multiple-defects scattering are important
and their contributions (which are of higher orders in c) are
much larger than the first-order corrections. We demonstrate
below that it is the situation which arises in 1D systems under
discussion.

Defects modify the system DOS [14,15] g(E). The general
expression for g(E) has the following form in the first order
in c in the case of disorder in J or D only:

g(E) = g0(E) − c
u2g0(E)Re(dG00/dE) + u[1 − uRe(G00(E))]dg0/dE

{[1 − uRe(G00(E))]2 + [πug0(E)]2} , (25)

where g0(E) = Im(G00(E))/π is the pure system DOS and
G00(E) is given by Eq. (20) with m = n = 0. It is seen from
Eq. (25) that the correction to DOS can have extrema when
the following condition is satisfied:

1 − uRe(G00(E)) = 0. (26)

It is well known that in magnetically ordered phases solutions
of equations similar to Eq. (26) give positions of isolated levels
(localized states) outside the excitation band [where g0(E) =
0] or virtual levels (resonances) inside the band [14,15].
However, we find below that Eq. (26) gives only positions

of isolated impurity levels in the paramagnetic phases and
all anomalies inside the band stem from derivatives in the
numerator of the second term in Eq. (25).

Imperfection in Jij can be taken into account in the same
way although the corresponding analytical consideration is
more technically involved. Some details on this point can be
found in Appendix devoted to 1D systems. Green’s functions
of propagating modes have the form (19), where T (k,E) does
depend on momentum k and Green’s functions (20) with m �=
n also contribute to it. As a result expressions for T (k,E) and
DOS are more cumbersome than Eqs. (21) and (25) and we do
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FIG. 3. (Color online) Correction to quasiparticles energy and their damping in 1D systems given by Eqs. (32) and found numerically for
disorder in J or D only (the extrapolation is carried out of numerical data for finite systems containing L unit cells to thermodynamical limit as
explained in Sec. III B). Shaded regions mark areas in which the imaginary parts of one-particle Green’s functions χ ′′(k,ω) found numerically
using Eq. (28) do not have a Lorentzian shape and in which our analytical results are invalid [i.e., inequalities (34) do not hold]. Insets in planes
(b) and (d) show χ ′′(k,ω) for some fixed momenta, where solid lines represent results of data fitting by Lorentzians. Most pronounced anomalies
in numerical data for “stronger” impurities [planes (c) and (d)] are interpreted as a result of coherent scattering by defects of quasiparticles
with momenta denoted by vertical lines (see the text).

not present them here although the spectrum renormalization
is given in the first order in c by Eqs. (22) as before.

B. Numerical calculations

To confirm our analytical results and to reveal the nature
of states near excitation bands edges, we perform numerical
diagonalization of the one-particle sector of the bosonic
Hamiltonians (14), (16), and (18) for finite 1D and 2D systems
with disorder. Thus, we find eigenvalues, eigenfunctions,
and DOS ρ(ε) of finite systems. Energy and damping of a
propagating mode with momentum k are found using the
Green’s-function definition

G(k,t) = −i〈vac|T ak(t)a†k(0)|vac〉
= −i〈k|e−iHt |k〉θ (t)

= −i
∑

ε

|〈k|ε〉|2 e−iεt θ (t), (27)

where |vac〉 is the ground state of the Hamiltonian H given by
Eqs. (14), (16), and (18), |k〉 is the state with a particle having
momentum k (plane wave), θ (t) is the Heaviside step function,
and |ε〉 is the eigenfunction of H corresponding to eigenvalue
ε. One can replace the summation on ε by integration inside
the band and we have from Eq. (27)

G(k,ω) =
∫

dε
f (k,ε)

ω − ε + i0

=
∫
−dε

f (k,ε)

ω − ε
− iπf (k,ω), (28)

where f (k,ε) = ρ(ε)|〈k|ε〉|2 can be found from the exact
diagonalization results and

∫
- denotes the principal value of the

integral. It follows from Eq. (28) that f (k,ω) is related to the
imaginary part of the Green’s function G(k,ω) which should
have the Lorentzian shape for a well-defined propagating
quasiparticle with momentum k. Thus, one can obtain the
energy and the damping of propagating excitations by fitting
f (k,ω) with the Lorentzian.
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To characterize quantitatively the spatial localiza-
tion/delocalization of a state ψ found by diagonalization, we
calculate also the inverse participation ration (IPR):

IPR(ψ) =
∑

n

|ψ(n)|4, (29)

where n labels the lattice sites. IPR is of the order of the inverse
number of sites occupied at state ψ . Then, IPR scales as 1/Ld

for spatially extended states and it is equal to a constant for
localized states, where d is the system dimension. Exponential
localization is characterized by IPR ∝ 1/ξd , where ξ is of the
order of localization length (see, e.g., Ref. [11]).

The number of sites in considered clusters vary from 400
to 15 000. For each cluster, we perform an averaging over a
large number of disorder realizations to find f (k,ε), DOS,
and IPR. The number of disorder realizations vary from 105

for the smallest clusters to 600 for the largest ones. We try
both periodic and open boundary conditions which lead to
the same results. Corrections to the quasiparticles energy and
their damping are found by an extrapolation of numerical
data for a number of finite-size systems containing Ld unit
cells to thermodynamic limit using quadratic polynomials in
1/L. In particular, Fig. 3 presented in the next section for 1D
systems is built using 250 momentum values. Extrapolations
in planes 3(a) and 3(b) are carried out using L = 1024, 2048,
4096, and 8192. f (k,ε), shown in insets, are calculated for
L = 6144. In planes 3(c) and 3(d), clusters with L = 500,

1000, 2000, and 3000 are used for extrapolations and insets
show results for L = 3000.

IV. DISORDERED SYSTEMS

A. 1D systems

1. T-matrix approach

Calculations are particularly simple in 1D systems with
defects which are depicted in Fig. 2. Taking into account the
exchange coupling between nearest neighbors only, one has
for the bare spectrum [cf. Eq. (1)]

εk = � + a|J | + aJ cos k, (30)

where � = 1 − a|J | at H = 0 and the spectrum minimum is
located at k = k0, where k0 = π and 0 for J > 0 and J < 0,
respectively. We obtain after simple integration in Eq. (20)

G00(E) =

⎧⎪⎪⎨
⎪⎪⎩

1√
(E−�−a|J |)2−a2J 2

, E > � + 2a|J |,
i√

a2J 2−(E−�−a|J |)2
, � < E � � + 2a|J |,

− 1√
(E−�−a|J |)2−a2J 2

, E < �.

(31)

Using the second line in Eq. (31), one has G00(E = εk) =
i/|aJ sin k| and we obtain for the spectrum and the damping
from Eqs. (21) and (22) in the case of disorder in J or D only

Ek = � + a|J | + aJ cos k + c
ua2J 2 sin2 k

a2J 2 sin2 k + u2
, γk = c

u2a|J sin k|
a2J 2 sin2 k + u2

. (32)

Let us discuss the neighborhood of the spectrum minimum, where it has the form (2). It is seen from Eqs. (32) that there are two
regimes at κ = |k − k0| � 1:

Ek = � +
(

a|J |
2

+ c
a2J 2

u

)
κ2, γk = ca|J |κ, if κ � min{1,|u/aJ |},

Ek = � + cu + a|J |
2

κ2, γk = c
u2

a|J |κ , if 1 � κ � |u/aJ |.
(33)

The range of Eqs. (33) validity given by Eq. (23) reads

κ � c, if |u| � ca|J |,
κ �

√
c

∣∣∣ u

aJ

∣∣∣, if |u| � ca|J |. (34)

One is led from Eq. (24) to the same range of the analytical
approach validity near the spectrum maximum (in this case κ

measures a deviation of momentum from the value at which the
spectrum has the maximum). Correction to the quasiparticle
energy and its damping given by Eqs. (32) are plotted in
Fig. 3 for particular parameters values. The corresponding
numerical results are also shown in Fig. 3 which are discussed
below.

The DOS of pure systems g0(E) is equal to G00(E)/iπ =
1
π

[a2J 2 − (E − � − a|J |)2]−1/2 inside the band. One con-
cludes from Eq. (25) that defects do not lead to noticeable
corrections to DOS in the range of the analytical approach
validity determined by Eqs. (34). Outside the band, where

G00(E) is real, an isolated impurity level appears above or
below the band depending on the sign of u. One has from
Eqs. (25), (26), and (31) for E lying outside the band [see
Fig. 4(a)]

g(E) = cδ(E − Ed ),
(35)

Ed = � + a|J | + sgn(u)
√

a2J 2 + u2.

Multiple-impurities scattering processes, which are not taken
into account in the first order in c, turn this isolated level into a
narrow impurity band. Equations (35) are in accordance with
the corresponding result of Ref. [12] devoted mainly to DOS
in disordered spin- 1

2 ladders.
Imperfection in the small exchange coupling Jij is con-

sidered in detail in the Appendix. Equation (A14) is derived
there for T (k,E) that gives for the spectrum using Eqs. (22)
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[cf. Eqs. (32)]

Ek = � + a|J | + aJ cos k + c

(
1 + u1

J

)2(
u + 2au1 cos k + au2

1 cos k/J
)
a2J 2 sin2 k(

1 + u1
J

)4
a2J 2 sin2 k + (

u + 2au1 cos k + au2
1 cos k/J

)2 ,

(36)

γk = ca|J sin k|
(
u + 2au1 cos k + au2

1 cos k/J
)2

(
1 + u1

J

)4
a2J 2 sin2 k + (

u + 2au1 cos k + au2
1 cos k/J

)2 .

If |u|J | − 2au1J − au2
1| � a(J + u1)2| sin k|, the spectrum

has the form near its minimum [cf. Eqs. (33)]

Ek = � +
(

a|J |
2

+ c
a2J 2(1 + u1/J )2

u − 2au1J/|J | − au2
1/|J |

)
κ2,

(37)
γk = ca|J |κ.

We point out also the reduction of the spectrum renormaliza-
tion by two sorts of disorder when u|J | − 2au1J − au2

1 ≈ 0
and |1 + u1/J | ∼ 1. One obtains in this case from Eqs. (36)
|Ek − εk| ∼ c|J |κ2 � εk − � and γk ∼ c|J |κ3 � εk − �.

DOS in 1D systems with two sorts of disorder is also
considered in the Appendix. It is shown there, in particular,
that there are no isolated impurity levels at a|u1| � |u| if
−2 < u1/J < 0, whereas one level above and one level below
the band arise if u1/J lies outside this interval (in accordance
with Ref. [12]).

FIG. 4. (Color online) DOS of 1D systems with disorder in J or
D only, where δE = E − � − a|J |. DOS in the T -matrix approach
is given by Eq. (25) (it is almost indistinguishable on the plots from
the pure system DOS). Most pronounced anomalies in numerical data
found for L = 3000 are interpreted as a result of coherent scattering
by defects of quasiparticles with energies denoted by vertical lines
(see the text).

It should be noted that Eqs. (31), (32), and (36) are derived
using the particular form of the spectrum (30). One would lead
to different results for gapped phases with another spectrum.
In contrast, Eqs. (33), (34), and (37) are more universal
because they can be obtained using the general form of the
spectrum (2) near its minimum (or maximum) and the form of
the impurity interaction (16) and (18) [the combination a|J | in
these expressions stems from the factor in expression (2) for the
spectrum and au1 originates from V given by Eq. (18)]. This is
due to the fact that small κp give the main contribution to Gnm

in Eq. (20), where κp is the deviation of p from the momentum
at which the spectrum has minimum (or maximum).

2. Numerical results

Our numerical results for the quasiparticle energy, damping,
and DOS are also presented in Figs. 3 and 4 (for the disorder
in J or D only). As it is seen, they are in good agreement
with analytical findings in the range of the analytical approach
validity (34) except for some points near which upward and
downward spikes appear. Amplitudes of these spikes rise as
|u| and/or c increase. As the T -matrix approach does not show
such anomalies, we attribute them to resonances in multiple
scattering on defects which are not taken into account in
our analytical consideration and which are effects of higher
order in c. The origin of these resonances can be understood
qualitatively by noting that elementary excitations of a pure
chain with momenta k = mπ/n and k = π − mπ/n, where
m < n are integers, scatter coherently by defects which are
rn sites apart, where r is an integer. If the renormalized
spectrum Ek differs noticeably from the bare spectrum εk

given by Eq. (30), positions of anomalies shift a little due to
the fact that an excitation with energy Ek produces excitations
with the same energy εp = Ek as a result of scattering on
defects which interfere coherently if p = mπ/n. Positions of
resonances found in this way are denoted in Figs. 3(c), 3(d),
and 4 by vertical lines which mark accurately the location of
anomalies in numerical data [momenta p are also depicted in
Fig. 4(b) near the corresponding vertical lines].

The imaginary part of the one-particle Green’s function
χ ′′(k,ω) is shown for some momenta in insets of Figs. 3(b)
and 3(d) which have been found numerically as described
above. These insets illustrate our finding that χ ′′(k,ω) has
the Lorentzian shape for not too strong impurities in the
range of the analytical approach validity. Upon u and/or c

increasing, amplitudes of anomalies rise and the form of peaks
in χ ′′(k,ω) in the vicinity of corresponding k bears little
resemblance to a Lorentzian for large enough u. The resonant
scattering becomes strong enough and our analytical results
are completely invalid when c|u/aJ | � 1 [see Fig. 4(b)].
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FIG. 5. (Color online) The inverse participation ration (IPR) given by Eq. (29) averaged over disorder realizations as it is described in
Sec. III B. σ (IPR) is the mean-square deviation of IPR from its mean value. (a), (b) and (c), (d) slides are for particular states inside the
band far from its edges in 1D and 2D systems, respectively. The states’ energies δE are measured from the band center [see Figs. 4(a) and 8,
correspondingly]. Insets show histograms of IPR distributions in disorder realizations.

Peaks in χ ′′(k,ω) have non-Lorentzian shapes near the band
edges for all u and c � 1 [see Fig. 3(b) for illustration]. Areas
in k space with non-Lorentzian peaks are shaded in Fig. 3 that
illustrates our results for |u/aJ | ∼ 1 when anomalies inside
the band are not too large. These areas widths are in accordance
with our estimations (34) of region sizes in which analytical
results are valid.

Our analysis of IPR defined by Eq. (29) demonstrates
that all the states in the band are localized for any u and
c. This is illustrated by Fig. 5(a) drawn for one state inside
the band far from its edges. Data are averaged over disorder
realizations and the mean-square deviation of IPR from its
mean value is shown in Fig. 5(b). Interestingly, states inside
the band far from its edges can combine the localization
and properties of a short-wavelength wave packet (if the
resonant scattering is not too strong). This situation holds
even in the limit u → +∞ and u1 → −J , when defects break
a system to pieces of mean length 1/c. As is seen from
Eqs. (32)–(34) and (36), c corrections vanish in expressions for
short-wavelength quasiparticles energies but a finite damping
remains that reflects a finite lifetime of wave packets excited
in such a broken system.

B. 2D systems

We turn to 2D systems with the exchange coupling between
nearest neighbors (see Fig. 6 for 2D dimer system) which
spectrum has the form

εk = � + 2a|J | + aJ (cos kx + cos ky), (38)

where � = 1 − 2a|J | at H = 0. One obtains taking the
integral in Eq. (20) for energies E > � + 4a|J | lying outside

the band,

G00(E) = 2

π (E − � − 2a|J |)K
(

4a2J 2

(E − � − 2a|J |)2

)
,

(39)

where K(k) = ∫ π/2
0

dθ√
1−k2 sin2 θ

is the complete elliptic integral
of the first kind.

For energies inside the band, E > � + 2a|J |, the result can
be represented in the form

G00(E) = 1

πa|J |
[

1

cos ψ
F

(
π

2
− ψ,

1

cos ψ

)

+ i

sin ψ
F

(
ψ,

1

sin ψ

)]
, (40)

where ψ = arccos(E−�−2a|J |
2a|J | ), F (φ,k) = ∫ φ

0
dθ√

1−k2 sin2 θ
is the

incomplete elliptic integral of the first kind, and both of
the elliptic functions are real. For other E values, G00(E)
can be easily found from Eqs. (39) and (40) by using the

FIG. 6. Spin-1/2 dimerized bilayer with imperfect bonds. Nota-
tions are the same as in Fig. 2(a).
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FIG. 7. (Color online) (a) Spatial distribution of defects with c = 0.1, u = 3a|J |, and u1 = 0 in 2D system with the size 120 × 120 unit
cells. (b)–(j) Numerically found color plots of wave functions amplitudes for the Hamiltonian of this disordered system which correspond to
indicated eigenvalues E. Panels (b)–(e) give a picture of energy levels near the band bottom, panels (f)–(h) illustrate the band top, and panels
(i) and (j) describe the impurity band corresponding to the localized level in the first order in c (see also Fig. 8 for DOS found for the same
parameters). All states in the impurity band are localized. � is the gap value for the particular disorder realization.

fact that its real and imaginary parts are antisymmetric and
symmetric functions with respect to the point E = � + 2a|J |,
correspondingly. Equation (40) can be simplified considerably
at E = εk near the spectrum minimum (κ = |k − k0| � 1):

G00(εk) ≈ 1

πa|J | ln
κ

b21
+ i

2a|J | , (41)

where b21 = exp (C20) = 25/2, C20 is a model dependent
coefficient,

C20 = πa|J | lim
k1→k0

(
1

(2π )2

∫
�

d2k

εk − εk1

+ ln k1

)
. (42)

Using Eqs. (21), (22), and (41) we have in the vicinity of the
spectrum minimum for the disorder in J or D only

Ek = � + a|J |
2

κ2 + c
πa|J |[πa|J | − u ln(κ/b21)]u

[πa|J | − u ln(κ/b21)]2 + (πu/2)2
,

γk = c
π2

2

a|J |u2

[πa|J | − u ln(κ/b21)]2 + (πu/2)2
. (43)

One obtains in the same way for the spectrum near the top of
the band (i.e., near the spectrum maximum)

Ek = � + 4a|J | − a|J |
2

κ2

+ c
uπa|J |[πa|J | + u ln(κ/b21)]

[πa|J | + u ln(κ/b21)]2 + (πu/2)2
, (44)

γk = c
π2

2

u2a|J |
[πa|J | + u ln(κ/b21)]2 + (πu/2)2

.

The range of Eqs. (43) and (44) validity is written as

κ � √
c, if |u| � a|J |,

κ �
√

c

∣∣∣ u

aJ

∣∣∣, if |u| � a|J |,
(45)

where κ measures a deviation of momentum from the values
at which the spectrum has maximum or minimum. Notice that
all corrections to the spectrum depend weakly on momenta in
the range of the results validity: |Ek − εk| ∼ c and γk ∼ c.

The analytical approach is not valid for states near the top
and the bottom of the band due to localization of excitations
that is illustrated by Fig. 7 found numerically for a single
disorder realization. We have also observed that IPR ∝ 1/Lαd

for states inside the band far from its edges, where α < 1 [see
Figs. 5(c) and 5(d)]. Although this behavior differs from that
of ordinary propagating excitations (1/Ld ), the localization
length ξ ∝ Lα is infinite in the thermodynamic limit in the
considered 2D systems.

The defects’ impact on DOS is described by Eqs. (25)
and (26) which are difficult to treat analytically in 2D systems.
As in 1D systems, Eq. (26) has a solution at any finite u outside
the band, so that an isolated impurity level arises above and
below the band for positive and negative u, respectively. The
largest corrections to DOS inside the band appear near the
bottom, the center, and the top of the band which stem from
singular derivatives in the numerator of the second term in
Eq. (25). Due to these large corrections, the T -matrix approach
does not work in these regions. These results are illustrated by
Fig. 8 which demonstrates, in particular, our finding that in
contrast to 1D systems there are no anomalies in spectrum
corrections and DOS related to multiple-defects scattering
processes [cf. Fig. 4(b)]. The numerical analysis of wave
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functions shows that states around the anomaly at the band
center remain propagating.

Taking into account disorder in Jij and performing cal-
culations similar to those presented in the Appendix for 1D

systems, we obtain corrections to quasiparticles energy and
their damping which are cumbersome for arbitrary k. However,
these results turn out to be a simple modification of Eqs. (43)
in the vicinity of the spectrum minimum (κ = |k − k0| � 1):

Ek = � + a|J |
2

κ2 + c
πa|J |u′[πa|J | − u′ ln(κ/b21) + (

b23a
J
|J |u1 + b24u

′′)]
[
πa|J | − u′ ln(κ/b21) + (

b23a
J
|J |u1 + b24u′′)]2 + π2

4 u′2
,

(46)

γk = c
π2

2

a|J |u′2
[
πa|J | − u′ ln(κ/b21) + (

b23a
J
|J |u1 + b24u′′)]2 + π2

4 u′2
,

where u′ = u − 4au1J/|J | − b22au2
1/|J |, u′′ = au2

1/|J |,
b22 = (5C20 − 2C211 − C22 − 8C21)/π = 1.44,

b23 = C20 − C21 = 1.57, (47)

b24 = C20b22 − (
C2

20 − 2C211C20 − C22C20 − 4C2
21

)/
π = 4.79,

where C21,C22,C211 are model dependent coefficients as (42),

C21 = πa|J | lim
k1→k0

(
− 1

(2π )2

∫
�

d2k cos kx

εk − εk1

+ ln k1

)
,

C22 = −πa|J | lim
k1→k0

(
1

(2π )2

∫
�

d2k cos 2kx

εk − εk1

+ ln k1

)
, (48)

C211 = −πa|J | lim
k1→k0

(
1

(2π )2

∫
�

d2k cos kx cos ky

εk − εk1

+ ln k1

)
.

We lead to the following expressions near the top of the band which resemble Eqs. (44):

Ek = � + 4a|J | − a|J |
2

κ2 + c
πa|J |u′[πa|J | + u′ ln(κ/b21) + (

b23a
J
|J |u1 + b24u

′′)]
[
πa|J | + u′ ln(κ/b21) + (

b23a
J
|J |u1 + b24u′′)]2 + π2

4 u′2
,

(49)

γk = c
π2

2

a|J |u′2
[
πa|J | + u′ ln(κ/b21) + (

b23a
J
|J |u1 + b24u′′)]2 + π2

4 u′2
,

where now u′ = u + 4au1J/|J | + b22au2
1/|J | and u′′ =

au2
1/|J |. The weak dependence of corrections to the spectrum

on momentum remains in the case of two types of disorder. It
is seen from Eqs. (46) and (49) that similar to 1D systems a

FIG. 8. (Color online) DOS of 2D systems with disorder in J
or D only, where δE = E − � − 2a|J |, c = 0.1, u = 3a|J |, and
u1 = 0 (cf. Fig. 4). Numerical results are obtained for the system size
100 × 100 unit cells.

mutual reduction of contributions from two sorts of disorder
arises at u|J | ≈ 4au1J + b22au2

1 near the band bottom and at
u|J | ≈ −4au1J − b22au2

1 near its top.
Analysis of DOS shows that similar to 1D systems the

disorder in Jij only leads to one impurity level above the band
and one impurity level below it if u1 lies outside the interval
−2 < u1/J < 0 and there are no isolated impurity levels for
u1 lying inside this interval.

Similar to 1D systems, one leads to the same results (43)–
(45) and (46), (49) using the general form of the spectrum (2)
near its minimum (or maximum) because mainly small κp

contribute to Green’s functions Gmn at small κ . Model-
dependent quantities in these expressions which depend on
the form of the spectrum at κp ∼ 1 are constants b. They are
of the order of unity.

C. 3D systems

3D spin- 1
2 dimer system under discussion is shown in Fig. 9.

For the cubic lattice with interaction between nearest spins, the
spectrum has the form

εk = � + 3a|J | + aJ (cos kx + cos ky + cos kz), (50)
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FIG. 9. 3D spin- 1
2 dimer system with imperfect bonds. Notations

are the same as in Figs. 2(a) and 6.

where � = 1 − 3a|J | at H = 0. Green’s function (20) can be
represented as follows:

G00(E) = 1

π

∫ π

0
dzG

(2D)
00 (E − a|J | − aJ cos z), (51)

where G
(2D)
00 is the Green’s function (39) for 2D systems.

Equation (51) has the following form at E = εk near the
spectrum minimum (κ = |k − k0| � 1):

G00(εk) ≈ − 1

b31a|J | + i
κ

2πa|J | , (52)

where b31 = 1/C30 = 2, C30 is a model dependent coefficient,

C30 = a|J |
(2π )3

∫
d3k

εk − εk0

. (53)

Using Eqs. (21), (22), and (52), we obtain for the spectrum
near its minimum in the case of disorder in J or D only

Ek = � + a|J |
2

κ2 + c
b31a|J |u

u + b31a|J | ,
(54)

γk = cκ
1

π

b2
31a|J |u2

(u + b31a|J |)2 .

It is seen from Eqs. (54) that the quasiparticle energy
acquires a small correction and γk ∼ cκ if |u + b31a|J || �
|u|κ . However, the damping enhances greatly, γk ∼ c/κ , if
|u + b31a|J || � |u| that signifies an appearance of a resonant
scattering by defects in the first order in c.

In the vicinity of the spectrum maximum, one obtains the
following results [cf. Eqs. (54)]:

Ek = � + 6a|J | − a
|J |
2

κ2 − c
b31a|J |u

u − b31a|J | ,
(55)

γk = cκ
1

π

b2
31a|J |u2

(u − b31a|J |)2 .

The resonant scattering takes place in this case if |u −
b31a|J || � |u|. If conditions |u ± b31a|J || � |u| are not

FIG. 10. DOS of 3D systems, where δE = E − � − 3a|J |, c =
0.1, u = 3a|J |, and u1 = 0. Solid and dashed lines are for pure and
discorded systems, respectively.

satisfied, the range of Eqs. (54) and (55) validity is given
by inequality κ � c.

Similar to 2D systems, Eqs. (52)–(55) are valid in other
gapped models in which the spectrum differs from (50) but
depends quadratically on the momentum near its minimum
and maximum. The model dependent constant b31 is of the
order of unity in this case.

The effect of defects on DOS is illustrated by Fig. 10.
At |u| < 2a|J |, there are no solutions of Eq. (26) and there
are no isolated impurity levels outside the band. If |u| is
large enough, |u| > 2a|J |, the system has a localized level
above or below the band for u > 0 and u < 0, respectively.
Large corrections to DOS inside the band appear near its
top and the bottom as well as at E = � + 3a|J | ± a|J | (see
Fig. 10) which stem from derivatives in the numerator of the
second term in Eq. (25). The results obtained in the first order
in c are not valid near these anomalies.

Taking into account the disorder in Jij , one obtains for the
spectrum near the band bottom [cf. Eqs. (54)]

Ek = � + a|J |
2

κ2 + cu′a|J |, γk = cκ
u′2

2π
a|J |,

where u′ = b31
u − 6au1J/|J | − b32au2

1/|J |
u + b31a|J | − b33au1J/|J | − b34au2

1/|J | ,

(56)

b32 = (21C30 + 3C32 + 12C311 − 36C31)/2 = 3,

b33 = 6C31/C30 = 2, (57)

b34 = 3
(
C2

30 + 4C311C30 + C30C32 − 6C2
31

) = 1,

where C31,C32,C311 are model dependent constants as (53),

C31 = a|J |
(2π )3

∫
d3k cos kx

εk0 − εk
,

C32 = a|J |
(2π )3

∫
d3k cos 2kx

εk − εk0

, (58)

C311 = a|J |
(2π )3

∫
d3k cos kx cos ky

εk − εk0

.
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We have near the spectrum maximum [cf. Eqs. (55)]

Ek = � + 6a|J | − a|J |
2

κ2 − cu′a|J |,

γk = cκ
u′2

2π
a|J |, (59)

where u′ = b31
u + 6au1J/|J | + b32au2

1/|J |
u− b31a|J | + b33au1J/|J | + b34au2

1/|J | .

Similar to lower dimensions considered above, the phe-
nomenon of corrections compensation from two types of
disorder arises in 3D systems as well: all corrections vanish at
u|J | = 6au1J + 3au2

1 and u|J | = −6au1J − 3au2
1 near the

spectrum minimum and maximum, respectively.
For disorder in Jij only, analysis of DOS shows that similar

to 1D and 2D systems one impurity level above the band
and one impurity level below it appear if u1 lies outside
the interval −2.75 < u1/J < 0.75 and there are no isolated
impurity levels for u1 lying inside this interval that is wider in
3D systems compared to 1D and 2D ones.

V. SUMMARY AND CONCLUSION

To summarize, we develop a theory based on the T -matrix
approach which describes gapped phases in 1D, 2D, and 3D
spin systems with bond disorder and with weakly interacting
bosonic elementary excitations. Low-field paramagnetic and
high-field fully saturated phases in dimerized spin- 1

2 magnets
and integer-spin systems with large single-ion easy-plane
anisotropy are considered in detail as examples. We discuss
two sorts of disorder: (i) that in intradimer coupling constants
J or in the value of one-ion anisotropy D and (ii) disorder in
small exchange coupling constants Jij between spins from
different dimers or spins on neighboring sites (in large-D
systems).

For disorder in J or D only, we derive in the first
order in the defects concentration c the following expressions
for corrections to propagating excitations energies and their
damping: Eqs. (32) for 1D systems, Eqs. (43) and (44) for 2D
systems, and Eqs. (54) and (55) for 3D ones. It is found that
the analytical approach does not work for states near the band
edges so that ranges of the analytical results validity are given
by Eqs. (34) in 1D systems and by Eqs. (45) in 2D and 3D
ones. We demonstrate by performing numerical calculations
that imaginary parts of the Green’s function χ ′′(k,ω) show
non-Lorentzian peaks at momenta for which the analytical
approach does not work. Analysis of the corresponding wave
functions demonstrates the localized nature of states in the
band near its edges (see Fig. 7 for the 2D system). Other
states in the band remain propagating in 2D systems (and the
same result is expected for 3D ones). In contrast, all states in
the band turn out to be localized in 1D bosonic systems that
resembles the situation in 1D electronic systems. Besides, we
find numerically that the analytical approach does not work in
1D systems if c|u/aJ | � 1 due to multiple-defects resonance
scattering that leads to anomalies in corrections to the spectrum
and DOS [see Fig. 4(b)]. Analytical consideration of DOS

shows that a localized impurity level arises above and below
the band for any positive and negative u, respectively, in 1D
and 2D systems whereas only |u| > 2a|J | leads to the isolated
level in 3D systems.

Taking into account also the disorder in Jij , we obtain
in 1D systems for the spectrum and the damping Eqs. (36).
Equations (46) and (56) give the spectrum and the damping in
2D and 3D systems, respectively, near the spectrum minimum,
whereas Eqs. (49) and (59) are corresponding expressions in
the vicinity of the spectrum maximum. In all dimensions, we
find a phenomenon of mutual reduction of corrections to the
spectrum and the damping from two types of disorder when
certain relations are fulfilled involving u and u1. For disorder
in Jij only, analytical results for DOS show that one impurity
level above the band and one impurity level below it appear
if u1 lies outside the interval −2 < u1/J < 0 in 1D and 2D
systems and outside the interval −2.75 < u1/J < 0.75 in 3D
systems. There are no isolated impurity levels for u1 lying
inside these intervals.

Notice that expressions for the spectrum of propagating
modes should also work at small temperature in the vicinity of
Hbg1 or Hbg2 (see Fig. 1). If there are no impurity levels inside
the gap, the gap value can be reduced to zero by magnetic
field. As a result the ratio of the long-wavelength quasiparticle
damping to its energy can reach the value of c/k2 (for 2D
systems) in a wide range of parameters. Although this ratio
is much smaller than unity in the range of this result validity
1 � k � √

c (as it must be for propagating excitations) it is
much greater than c, the maximum value of γk/εk obtained
before for long-wavelength magnons in magnetically ordered
magnets [17,18,23,24].

The results obtained can be relevant to other gapped phases
in bond disordered spin systems both with and without a
long-range magnetic order. For instance, the phenomenon of
localization of states near the band edges was observed theoret-
ically in ferromagnets with random easy-axis anisotropy [28].
Equations (36), (46), (49), (56), and (59) are derived using the
general form of the spectrum (2) near its minimum (maximum)
and using the general form of the impurity operators (16)
and (18). Then, they can be used for analysis of other gapped
phases in other systems.

Results of recent neutron measurements of quasiparti-
cle spectra at H < Hc1 in bond disordered dimer systems
IPA-Cu(ClxBr1−x)3 (Ref. [9]) and (C4H12N2)Cu2(Cl1−xBrx)6

(Ref. [10]) were interpreted under the assumption that all
excitations in the band are conventional wave packets. As
we see above for 1D systems, a localized state can behave
as a short-wavelength wave packet. However, such a behavior
observed experimentally for states lying near the band bottom
(corresponding to long-wavelength quasiparticles in pure
systems) is quite puzzling. Our results demonstrate a pro-
nounced non-Lorentzian shape of Green’s-function imaginary
part for states near the band bottom. Even according to the
general theorem [5] such states should be localized in these
materials because no impurity levels arise in the gap (see
the Introduction). This point needs further experimental and
theoretical analysis. Another point we leave for future studies
is the influence of the quasiparticle interaction at low-field
phases. This interaction is expected to play an important role
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in real systems in which the gap value at H = 0 is of the order
of the bandwidth.
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APPENDIX: DISORDERED 1D SYSTEMS

In this appendix we provide some details of our consid-
eration of the dimer spin ladder with imperfect intra- and
interdimer coupling [see Fig. 2(a)] and of the integer spin chain
with imperfect single-ion easy-plane anisotropy and exchange
coupling [see Fig. 2(b)].

The matrix form of the perturbation given by a sum of
Eqs. (16) and (18) reads in the one-particle basis |0〉, |1〉, and
|2〉, where |i〉 denotes the state with one particle on the ith
rung or site [see Fig. 2(a)],

Vnm =

⎡
⎢⎣

0 au1/2 0

au1/2 u au1/2

0 au1/2 0

⎤
⎥⎦ . (A1)

Further analysis is simplified by using the basis of irreducible
representations of the symmetry point group: |α,R(α)〉 =∑2

(i=0) U (i,α,R(α))|i〉, where α,R(α) denotes basis wave
functions of irreducible representation α. As reflection is
the only nontrivial symmetry element of the system, new
wave functions are either symmetric or antisymmetric and
one has for them |1〉, (|0〉 + |2〉)/√2, and (|0〉 − |2〉)/√2. The
corresponding matrices, which generate basis states for the
representation, have the form

Ts =

⎡
⎢⎣

0 1/
√

2

1 0

0 1/
√

2

⎤
⎥⎦ , Tp =

⎡
⎢⎣

1/
√

2

0

−1/
√

2

⎤
⎥⎦ . (A2)

Corrections to quasiparticle spectra are defined by T (k,E),
which reads in this case as

T (k,E) =
∑

μ=s,p

ψ+(k)Tμ(T +
μ V Tμ)(T +

μ [I − G(E)V ]−1Tμ)

× T +
μ ψ(k), (A3)

where I is the identity matrix,

ψ(k) =

⎡
⎢⎣

e−ik

1

eik

⎤
⎥⎦ , (A4)

and elements of the Green’s-function matrix Gnm (20) depend
only on |n − m|,

Gnm =

⎡
⎢⎣

G0 G1 G2

G1 G0 G1

G2 G1 G0

⎤
⎥⎦ , (A5)

where G0 is given by Eq. (31) and

G1(E) = 1

N

∑
k

eik

E − εk − i0
,

(A6)

G2(E) = 1

N

∑
k

ei2k

E − εk − i0
.

The contribution from antisymmetric representation p is equal
to zero in Eq. (A3) and the symmetric one gives

T (k,E) = 1

Ds(E)

(
u + a2u2

1[G0(E) + G2(E)]

2

+ 2au1[1 − au1G1(E)] cos k + a2u2
1G0(E) cos2 k

)
,

(A7)

where

Ds(E) = 1 − uG0(E) − 2au1G1(E) + a2u2
1G

2
1(E)

− a2u2
1G

2
0(E)

2
− a2u2

1G0(E)G2(E)

2
. (A8)

One obtains from Eqs. (A6) after simple calculations

G1(E) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
aJ

(
E−�−a|J |√

(E−�−a|J |)2−a2J 2
− 1

)
, E > � + 2a|J |,

1
aJ

(
i

E−�−a|J |√
a2J 2−(E−�−a|J |)2

− 1

)
, � < E < � + 2a|J |,

− 1
aJ

(
E−�−a|J |√

(E−�−a|J |)2−a2J 2
+ 1

)
, E < �,

(A9)

G2(E) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(E−�−a|J |)2

a2J 2
√

(E−�−a|J |)2−a2J 2
− 1√

(E−�−a|J |)2−a2J 2
− 2(E−�−a|J |)

a2J 2 , E > � + 2a|J |,
i

2(E−�−a|J |)2

a2J 2
√

a2J 2−(E−�−a|J |)2
− i 1√

a2J 2−(E−�−a|J |)2
− 2(E−�−a|J |)

a2J 2 , � < E < � + 2a|J |,
− 2(E−�−a|J |)2

a2J 2
√

(E−�−a|J |)2−a2J 2
+ 1√

(E−�−a|J |)2−a2J 2
− 2(E−�−a|J |)

a2J 2 , E < �.

(A10)
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At E = εk , Eqs. (31) and (A6) give

G0(εk) = iπg0(εk), (A11)

G1(εk) = − 1

aJ
+ iπg0(εk) cos k, (A12)

G2(εk) = iπg0(εk) cos (2k) − 2 cos k

aJ
, (A13)

where g0(εk) = 1/(π |aJ sin k|) is the pure system DOS and we get from Eq. (A7)

T (k,εk) =
(
u + 2au1 cos k + au2

1 cos k/J
)

(1 + u1/J )2 − iπg0(εk)
(
u + 2au1 cos k + au2

1 cos k/J
) . (A14)

One leads to Eqs. (36) from Eqs. (A14) and (22).
We turn now to DOS, the general expression for which,

g(E) = g0(E) + c

π
�
(

d

dE
ln Det|1 − G0V |

)
, (A15)

can be rewritten in the following form using the transformation to the irreducible representations basis:

g(E) = g0(E) + c

π

∑
μ=s,p

D′
μ(E)

Dμ(E)
, (A16)

where the prime denotes the derivative on E. The contribution from μ = p is equal to zero in Eq. (A16) and we obtain

g(E) = g0(E) + c

π

Re(Ds(E))(Im(Ds(E)))′ − (Re(Ds(E)))′Im(Ds(E))
(Re(Ds(E)))2 + (Im(Ds(E)))2

. (A17)

Roots of equation Re(Ds(E)) = 0 can give locations
of virtual resonance levels inside the band and posi-
tions of isolated impurity levels outside the band. Us-
ing Eqs. (A11)–(A13), we lead after tedious transfor-
mations to the following quadratic equation on x =
(E − � − a|J |)/a|J |:
(
1 + 4t1 + 2t2

1

)
x2 − 2t0t1(2 + t1)x − [

t2
0 + (1 + t1)4

] = 0,

(A18)

where t0 = u/a|J | and t1 = u1/J . Solutions of Eq. (A18),

x =
t0t1(2 + t1) ± (1 + t1)2

√
t2
0 + 1 + 4t1 + 2t2

1

1 + 4t1 + 2t2
1

, (A19)

determine location of DOS peculiarities and they should also
satisfy the following condition:

t0

x
− 1 + (1 + t1)2 � 0. (A20)

For u1 = 0, one obtains Eq. (35) for the energy of the isolated
level that is modified as follows at |u| � a|u1|:

Ed = � + a|J | + sgn(u)
√

a2J 2 + u2

(
1 − 2

u1

J

)
+ 2u

u1

J
.

(A21)

When u = 0, solutions exist at t1 > 0 or t1 < −2 only. DOS
peculiarities lie outside the band and we have for energies of
two isolated impurity levels arising above and below the band

Ed = � + a|J | ± a|J | (1 + t1)2√
1 + 4t1 + 2t2

1

. (A22)
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