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Metallic interfaces between insulating perovskites are often observed in heterostructures combining polar
and nonpolar materials. In these systems, the polar discontinuity across the interface may drive an electronic
reconstruction inducing free carriers at the interface. Here, we theoretically show that a metallic interface
between a Mott and a band insulator can also form in the absence of a polar discontinuity. The condition for the
appearance of such a metallic state is consistent with the classical Mott criterion: the metallic state is stable if the
screening length falls below the effective Bohr radius of a particle-hole pair. In this case, the metallic state bears
a remarkable similarity to the one found in polar/nonpolar heterostructures. On the other hand, if the screening
length approaches the size of the effective Bohr radius, particles and holes are bound to each other resulting in an
overall insulating phase. We analyze this metal-insulator transition, which is tunable by the dielectric constant, in
the framework of the slave-boson mean-field theory for a lattice model with both on-site and long-range Coulomb
interactions. We discuss ground-state properties and transport coefficients, which we derive in the relaxation-time
approximation. Interestingly, we find that the metal-insulator transition is accompanied by a strong enhancement
of the Seebeck coefficient in the band-insulator region in the vicinity of the interface. The implications of our
theoretical findings for various experimental systems such as nonpolar (110) interfaces are also discussed.
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I. INTRODUCTION

Recent advances in the crystal-growth techniques allowed
researchers to fabricate precise heterojunctions of different
transition metal oxides [1,2]. Heterostructures and superlat-
tices exhibit various properties, which dramatically differ from
those of a single bulk substance, yielding new possibilities
to study electron correlations and potential novel devices.
One of the most renowned phenomena is the emergence of a
metallic quasi-two-dimensional electron gas at the interface
between two different insulators. Since Ohtomo and co-
workers found metallic properties in LaTiO3 (LTO)/SrTiO3
(STO) (Ref. [3]) and LaAlO3 (LAO)/STO (Ref. [4]), the
occurrence of conducting interfaces with high carrier num-
bers has frequently been reported for those heterostructures
[5–11] as well as for other material combinations [12–14]. As
explanations for the formation of the metallic interface, several
possibilities have been proposed, including carrier doping from
oxygen vacancies [4,6,8,15,16], lattice relaxations [17–22],
and interfacial roughening [22,23].

In this context, an important observation was that the
metallic state usually forms at interfaces between a polar and a
nonpolar insulator of the ABO3 perovskite type [4,24–29]. A
first understanding of this observation is gained by considering
the charge distribution across such a heterostructure using an
ionic picture with doubly charged negative oxygen ions O2−.
In this picture, heterostructures grown along the cubic (001)
direction are viewed as a stack of alternating AO and BO2

layers. Materials such as STO are of the type A2+B4+O3 and
therefore only contain neutral atomic layers, i.e., these are
nonpolar materials. On the other hand, materials of the type
A3+B3+O3 are polar along the (001) direction in the sense that
they consist of alternating charged planes (AO)+ and (BO2)−.

LTO and LAO belong to this class of materials. The polar
and nonpolar situation described above also correspond to the
two values of the formal bulk polarization allowed by the
cubic symmetry, which for band insulators can be directly
obtained via the calculation of the Berry phase [29,30]. From
the ionic picture we now see that a polar discontinuity arises at
the interface in the LTO/STO and LAO/STO heterostructures.
Such a situation would cause the so-called polar catastrophe, if
the width of the polar material is increased. To avoid this huge
energy penalty, the systems reacts by charging the top surface
and interface by an amount of ±e/2 per surface unit cell. For
the top surface, this usually happens via atomic reconstruction,
resulting in a charged but insulating surface. For the interface,
however, it was suggested [4,24–26] that a more interesting
situation can occur, which is called electronic reconstruction.
In this scenario, the additional electronic charge e/2 resides
on the transition-metal ions near the interface, leading to a
mixed-valence state (e.g., Ti4+/Ti3+) with metallic properties.

While the scenario of the electronic reconstruction driven
by the polar discontinuity provides a robust criterion to identify
interfaces with expected metallic properties, it can not make
predictions about interfaces which lack a polar discontinuity.
Clearly, in the ionic picture, such interfaces are expected to
be insulating. However, unexpected interfacial conductivity
was observed recently in the LAO/STO heterostructure with
a (110) growth direction [11]. This is interesting because
the ideal (110) system does not have a polar discontinuity.
Instead, the ionic picture predicts a polar/polar situation with
alternating (ABO)4+ and (O2)4− planes for any A and B atoms.
Nevertheless, it was found that the (110) interface bears a
great resemblance to the (001) structure in the conductivity,
carrier density, Hall mobility, and even the critical width for
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the metal-insulator transition [11]. One possible reason for
this resemblance is that the (110) interface is nonideal and
formed by several plateaus of the (001)-type interface [11].
But there is also the possibility that the ionic picture fails and
that a metallic state is formed at the ideal interface in the
absence of a polar discontinuity as a result of the covalent
character of the transition-metal oxides. It is intuitively clear
that enhanced charge fluctuations near the interface, which
result in a smooth electronic charge distribution, can lead to
metallicity, irrespective of the polar or nonpolar nature of the
involved materials.

The goal of this paper is to explore this latter possibility,
namely the formation of a metallic state in heterostructures
without polar discontinuity. In particular, we focus on the role
of the dielectric constant, which is an important parameter in
determining the smoothness of the global charge distribution.
For this purpose, we theoretically investigate a lattice model
of a Mott-insulator (MI)/band-insulator (BI) heterostructure,
which consists of only electrically neutral layers along the
growth direction, i.e., the nonpolar/nonpolar structure, and
contrast these results to earlier studies of polar/nonpolar
heterostructures [17,31–44]. We examine the ground-state and
transport properties in the absence of the polar discontinuity,
using the Kotliar-Ruckenstein slave-boson mean-field (SBMF)
theory [38,39,45] to treat the on-site and long-range Coulomb
interactions. We identify two different regimes in accordance
with Mott’s classical criterion: [46] first, if the screening
length is smaller than the effective Bohr radius, both the
polar/nonpolar and the nonpolar/nonpolar MI/BI heterostruc-
tures exhibit an interfacial metallic state. In this case, the
transport properties are rather similar for the two cases.
Second, if the screening length exceeds the effective Bohr
radius, the nonpolar heterostructures undergo a metal-insulator
transition while the polar/nonpolar interfaces remain metallic.
The metal-insulator transition in the nonpolar system is tunable
by the electrical permittivity, which controls the “sharpness”
of the electronic charge distribution across the interface. In
some materials, such as STO, the static dielectric constant
strongly varies with temperature and electric field, potentially
allowing to tune this transition externally. Interestingly, we find
that the metal-insulator transition is accompanied by a strong
enhancement of the thermoelectric response in the vicinity of
the interface.

This paper is organized as follows. In Sec. II we summarize
the main results of our paper. In Sec. III we give a detailed
discussion of the model and used method. Sections IV and V
are devoted to show detailed results: The SBMF ground-state
properties are presented in the former section, and the transport
properties are discussed in the latter. We conclude in the final
Sec. VI.

II. MAIN RESULTS

Before we discuss our main results, we briefly describe the
considered model. The mathematical details are provided in
Sec. III. We study a lattice model of a BI/MI/BI sandwich
structure. Figure 1 schematically shows the electronic sites
along the z axis with N layers of positive pointlike background
charges ρc and ρ̃, which are located in between the electronic
sites and satisfy ρc + ρ̃ = 1 in units of e. We consider charge

FIG. 1. (Color online) Schematic view of the heterostructure
studied in this paper. The upper figure is the three-dimensional view
of a unit block indicated by the thick lines in the lower. The blue
circles represent the electron sites.

neutral systems; thus, the uniform MI material has precisely
one electron per site while the uniform BI is modeled by an
empty conduction band. The model describes a polar/nonpolar
heterostructure if the positive background charges are located
in the center of the cubes formed by the electronic sites:
ρc = 1 and ρ̃ = 0. In this case, the MI is polar along the
growth direction with alternating positively and negatively
charged layers. On the other hand, the model describes a
nonpolar/nonpolar heterostructure if we shift the positive
charges into the electronic layers: ρc = 0 and ρ̃ = 1; cf. Fig. 1.
In this case, the MI is nonpolar with charge neutral layers along
the growth direction. Besides the nearest-neighbor hopping
amplitude t , two more electronic energy scales are introduced:
(i) a local electron-electron repulsion U of the Hubbard
type and (ii) an energy scale Ec = e2/(εa) characterizing
the long-range Coulomb interaction, where ε is the dielectric
constant and a the lattice constant.

One important physical difference between the po-
lar/nonpolar (ρc = 1) and the nonpolar/nonpolar (ρ̃ = 1)
heterostructure is that the large U limit becomes apparent
if we consider the spatially resolved electric conductivity in
the direction perpendicular to the growth direction as function
of Ec; see Fig. 2. In the small Ec limit, electrons from the
MI region substantially leak into the BI region resulting in a
relatively smooth charge distribution. As a result, not only the
interface layers but also regions in the BI and MI significantly
contribute to the transport. Remarkably, the spatially resolved
conductivity of the ρ̃ = 1 nonpolar heterostructure shows a
high resemblance to the one of the ρc = 1 polar/nonpolar
structure for small Ec. The charge distribution becomes sharper
for increasing Ec and the spatially resolved conductivities
start to differ between the two heterostructures. In the ρc = 1
polar/nonpolar heterostructure, the MI and BI conductivities
approach zero around Ec = 1.6t due to the full occupation
of the lower Hubbard band in the MI region and the loss
of the itinerant electrons in the BI region. However, the
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FIG. 2. (Color online) The contributions from the MI, the inter-
face (IF), and the BI region to the total conductivity in the large-U
limit (Ur = U − Ec = 25t) as function of the parameter Ec for (a) the
polar/nonpolar and (b) the nonpolar/nonpolar heterostructures with
N = 10. The presented IF conductivity is a sum over three (two)
layers around the interface for ρc = 1 (ρ̃ = 1), and the MI and BI
conductivities are obtained from sums over the remaining inside and
outside layers, respectively.

interface remains metallic with the electronic charge density
n ∼ 0.5 per surface area required by charge neutrality. This
interfacial charge is a consequence of the polar/nonpolar nature
of the heterostructure and leads to transport dominated by the
interface layers. By contrast, in the ρ̃ = 1 nonpolar/nonpolar
heterostructure, the interfacial metallicity gradually disappear
with increasing Ec, and the whole system undergoes a metal-
insulator transition at Ec = 1.96t .

This transition is specific to the nonpolar/nonpolar het-
erostructure with exactly ρ̃ = 1 and depends both on the value
of U and Ec. Figure 3 shows the metal-insulator phase diagram
in the Ur-Ec plane (Ur = U − Ec) for two different system
sizes. The insulating regime requires both a large Ur and a large
Ec. A qualitative understanding of the phase diagram can be
obtained by considering the two relevant length scales in the
problem. First, in the metallic phase, the Coulomb interaction
is screened over a scale estimated from the Thomas-Fermi
length,

λTF =
√

ε

4πe2

∂μ0

∂n
=

√
1

4πaEcκ̄
, (1)

where μ0 and n are the chemical potential and the density of the
free electrons in the homogeneous system, respectively, and
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FIG. 3. The Ur-Ec phase diagram for the ρ̃ = 1 nonpo-
lar/nonpolar heterostructure showing the metallic and insulating
phases. The solid and dashed lines denote the boundaries between
metallic and insulating states for N = 10 and N = 2 numbers of MI
layers, respectively.

κ̄ = ∂n/∂μ0. Second, the effective Bohr radius of an exciton

aB = ε�
2

m∗e2
∼ 2mt

m∗Ec
a, (2)

describes the extension of a bound particle-hole pair. Mott
now argued that a metallic state requires λTF < aB [46], or,
in other words, the Coulomb potential has to be sufficiently
weak in order not to bind a particle and a hole. Applying Mott’s
criterion with the above estimates for the characteristic length
scales results in the condition Ec/t � 16πta3(m/m∗)2κ̄ for
metallic behavior. The function κ̄ and the inverse of the effec-
tive mass m/m∗ decrease with increasing U , and consequently
the critical Ec becomes a decreasing function of U as observed
in Fig. 3.

We can gain further understanding by considering the
insulating phase in the two extreme limits (i) Ur → ∞ and
(ii) Ec → ∞. In the first regime, where the local Coulomb
repulsion U dominates over the kinetic energy W , particle-hole
excitations predominantly occur between the BI and the lower
Hubbard band of the MI material, as illustrated in Fig. 4(a).
Consequently, the phase boundary in this regime is roughly
independent of U and the transition is driven by the electric
permittivity, alone. Furthermore, on the metallic side of the
transition, we expect that the free carriers are predominantly
located in the BI region close to the interface. This is indeed
observed in the layer-resolved coherent charge density ncoh

shown in Fig. 5 [the definition of ncoh is given in Eq. (12)].
On the other hand, in the parameter regime with large Ec,
the transition is essentially governed by the suppression of
the local charge fluctuations in the central region of the
heterostructure. It corresponds to the usual Mott insulator
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FIG. 4. (Color online) Schematic energy diagram for the insula-
tor with (a) large U and small Ec, and (b) large Ec and small U .

situation where particles are excited across the Mott-Hubbard
gap [Fig. 4(b)]. Hence, the critical Ur becomes independent
of Ec and saturates roughly at the metal-insulator transition of
the bulk system (in our approximation given by the Brinkman-
Rice transition point [47], UBR

c ∼ 16t). Furthermore, the
coherent particles on the metallic side of the transition are
predominantly located in the MI region, as can be seen in
Fig. 5.

The electric permittivity driven metal-insulator transition
is accompanied by characteristic features in the layer-resolved
electrical and thermal transport. We illustrate this aspect in
Fig. 6, where the layer-resolved contributions to the total
conductivity σ = ∑

	 σ	 and total Seebeck coefficient S =∑
	 S	σ	/σ are presented for various Ec with Ur = 25t . For

small Ec, the main contribution to σ comes from the layers in
the BI region neighboring the interface. With increasing Ec,
the electrical conductivity is suppressed and tends to zero if
the metal-insulator transition at Ec = 1.96t is approached. The
Seebeck coefficient also has a maximum on the same layers for
Ec = 0.8t [Fig. 6(b)]. However, in contrast to σ	, the peak in
S	σ	/σ gradually moves out into the BI region and experiences
a strong enhancement toward the metal-insulator transition.
This behavior is caused by the reduction of free carriers in
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FIG. 5. Distributions of the coherent particle densities ncoh.
The solid and dashed lines indicate (Ur,Ec) = (34.0,1.70)t and
(16.2,2.30)t , respectively.

0

1

2

3

4

5

6

7

8

9

10

−30 −20 −10 0 10 20 30

σ
[e

2
/
h̄
]

(a)

−0.08

−0.06

−0.04

−0.02

0

−30 −20 −10 0 10 20 30

S
σ

/
σ

[k
B

/
e ]

(b)

Ec = 0.8t

Ec = 1.2t

Ec = 1.6t

Ec = 1.9t

Ec = 2.0t

FIG. 6. (Color online) The distributions of the layer-resolved
conductivity σ	 and the contribution to the total Seebeck coefficient
S	σ	/σ in the ρ̃ = 1 nonpolar/nonpolar heterostructure with Ur = 25t

and Ec = 0.8t, . . . ,2.0t . The dashed lines indicate the position of the
interfaces, 	 = −4 and 5.

the BI region: near the transition point, the chemical potential
approaches the band edge of the bands describing the weakly
bound states in the BI region. This causes the reduction of the
conductivity and the enhancement of the Seebeck coefficient.
The spatial distribution of S	σ	/σ essentially follows the shape
of the wave function, as discussed in more detail in Sec. IV B.

In the following sections, we present details of our
models, methods, and numerical results in the ρ̃ = 1 nonpolar
heterostructure and clarify the origin of the metallic interface.

III. MODEL AND FORMALISM

A. Model of a nonpolar BI/MI/BI heterostructure

Our model for the BI/MI/BI heterostructure is given by a
generalized Hubbard model

H = −t
∑

〈i,j〉,σ
ĉ
†
i,σ ĉj,σ + U

∑
i

n̂i,↑n̂i,↓ +
∑

i

φi n̂i , (3)

where ĉ
(†)
iσ is the creation (annihilation) operator for an electron

with spin σ on site i, n̂iσ = ĉ
†
iσ ĉiσ and n̂i = n̂i↑ + n̂i↓. In

transition-metal oxide heterostructures, the relevant orbital
degrees of freedom are usually the d orbitals. In model (3),

155118-4



ELECTRICAL PERMITTIVITY DRIVEN METAL- . . . PHYSICAL REVIEW B 90, 155118 (2014)

we disregard this additional complication and consider a
single-orbital model, instead. Although the orbital physics is
a crucial ingredient to describe real oxide heterostructures, it
is not important for addressing the differences or similarities
between nonpolar and polar heterostructures, which is the main
focus of this paper.

The first term of model (3) describes the kinetic energy from
nearest-neighbor hopping processes with transfer energy t .
The second term describes the on-site repulsion with Hubbard
interaction U . Finally, the third term describes the long-range
Coulomb interaction: The quantity φi is the electrostatic
potential at the electron site Ri = ar i , and obeys Poisson’s
equation. Its discretized solution for the pointlike charges in
our system is

φi = Ec

∑
j (
=i)

nj

|r i − rj | − Ec

ion∑
j

ρj∣∣r i − r ion
j

∣∣ . (4)

For simplicity, we assume a constant Ec = e2/εa over the
whole lattice. The first term in Eq. (4) is the electron-
electron Coulomb interaction and nj = 〈n̂j 〉. The second is
the electron-ion attraction with the positively charged ions
ρj at Rion

j = ar ion
j . As indicated in Fig. 1 and described in

Sec. II, we take ρj = ρc or ρ̃ according to the position r ion
j , and

impose ρc + ρ̃ = 1. For the nonpolar heterostructure, ρc = 0
and only the charges ρ̃, which are located in the same xy

planes as the electron sites, are considered. On the other
hand, the model with ρc = 1 describes the polar/nonpolar
heterostructure and was previously studied as a model of the
LTO/STO heterostructure [32,38].

B. Slave-boson mean-field treatment

We treat the model Hamiltonian (3) within the Kotliar-
Ruckenstein slave-boson method [45] following the formalism
introduced in Ref. [38] for the polar/nonpolar heterostructure,
which also provides additional details. In the paramagnetic
saddle-point approximation, the long-range Coulomb inter-
action decouples in a Hartree-like way while the local
interaction is treated in a Gutzwiller-type approximation. As
a consequence, a noninteracting problem for the fermions
supplemented with self-consistency equations has to be solved.
We remark that the Gutzwiller approximation has also been
applied directly to related problems [48,49] and we expect it
to be feasible also for the current problem. In the Gutzwiller
approximation, the local interaction is treated analogously
to the SBMF approximation but the decoupled long-range
Coulomb interaction would also include Fock terms. Despite
these differences, we expect qualitatively similar results for
the paramagnetic solution.

In the slave-boson treatment, the Fock space is enlarged
to contain a set of two fermions and four bosons at each
site with the pseudofermionic operator f̂

(†)
iσ and the bosonic

annihilation (creation) operators ê
(†)
i , p̂

(†)
iσ , and d̂

(†)
i , which

represent an empty, a singly occupied site with spin σ , and
a doubly occupied site, respectively. To eliminate unphysical
states, constraints are imposed to these operators as described
in Ref. [45]. The electron annihilation (creation) operator
is mapped on the enlarged Fock space as ĉ

(†)
iσ → (ẑiσ f̂iσ )(†),

where the Kotliar-Ruckenstein bosonic operator ẑ
(†)
iσ ensures

that the movement of the bosons follows the fermions.
Using this slave-boson representation, we can reformulate the
Hamiltonian (3) as

H sb = − t
∑

〈i,j〉,σ
ẑ
†
iσ ẑjσ f̂

†
i,σ f̂j,σ

+ Ur

∑
i

d̂
†
i d̂i +

∑
i,σ

(
φi + U0

2
n̂i,σ̃

)
n̂i,σ , (5)

where we redefine n̂i,σ = f̂
†
i,σ f̂i,σ = p̂

†
iσ p̂iσ + d̂

†
i d̂i , and σ̃ =↑

(↓) for σ =↓ (↑). Note that Ur = U − U0, and as shown below,
U0 is the amount of the on-site repulsion treated within the
Hartree approximation. Although there is an ambiguity to
settle the value of U0, we define U0 = Ec since the physical
relevant parameter regime is expected to be U � Ec [38]. The
freedom to choose U0 is intrinsic to any lattice model approach,
which treats the local Coulomb interaction differently from
the long-range one. As such, it is closely related to the
ambiguity in the choice of the double-counting correction in
the DFT+DMFT scheme [50].

In the mean-field approximation, the slave-boson fields are
replaced by their mean values. In order to investigate the
essential aspects of the interfacial metallicity, it is enough
to concentrate on the paramagnetic solutions. In addition, for
solutions satisfying the lattice symmetry, all the mean fields
depend only on the layer index 	. In this case, only three
kinds of layer-dependent mean fields remain to be determined:
the electronic charge density n	, the amplitude of doubly
occupancy d	, and a Lagrange multiplier λ	. These fields are
determined from the saddle point of the free energy,

f [n,d,λ] = − 2

βN‖

∑
k,ν

ln(1 + e−βEkν )

+ Ur

∑
	

d2
	 −

∑
	

(λ	 + μ) n	, (6)

where β = 1/kBT and N‖ denotes the number of sites in a
layer. The chemical potential μ is determined by the condition
of charge neutrality,

∑
	 n	 = N . The quasiparticle energy

spectrum Ekν with the in-plane wave vector k and a band index
ν are obtained from an effective one-dimensional Schrödinger
equation,

Ekνψkν(	)

= {
z2
	εk + φ̄	 + λ	

}
ψkν(	) − t

∑
	′=±1

z	z	+	′ψkν(	 + 	′),

(7)

with the kinetic energy εk = −2t(cos kxa + cos kya). We
define an order of the energy spectrum as Ek,ν=1 � Ek,ν=2 �
· · · . The k dependence of Ekν is taken into account only
through the function εk, and thus the quasiparticle spectrum
can be represented as Ekν = Eν(εk). The factor z2

	 represents
a renormalization factor of the in-plane hopping arising from
interactions. The explicit form of z	 is given by a function of
n	 and d	 as [45]

z	 =
√(

1 − n	 + d2
	

)(
n	 − 2d2

	

) + d	

√
n	 − 2d2

	√
n	(1 − n	/2)

. (8)
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TABLE I. Numerically estimated values of the correction terms
in Eq. (9).

n 0 1 2

�c(n + 1/2) −0.1389 −0.0003 |...| < 10−4

�̃(n) −1.6156 −0.0071 |...| < 10−4

�(n) −3.9003 0.0078 |...| < 10−4

The quantity φ̄	 in Eq. (7) represents the effective one-
dimensional electrostatic potential on the 	th layer including
the additional term from the on-site repulsion U0. It can be
obtained by integrating the x and y components in Eq. (4) as

φ̄	

Ec
=

∑
	′

′{2πρc|	 − 	′
1/2| + 2πρ̃|	 − 	′|}

−
∑
	′

2πn	′ |	 − 	′|

−
∑
	′

′{�c(|	 − 	′
1/2|)ρc + �̃(|	 − 	′|)ρ̃}

+
∑
	′

�(|	 − 	′|)n	′ + U0

4Ec
n	δ		′, (9)

where
∑

	′
′ = ∑

−N/2+1�	′�N/2 and 	′
1/2 = 	′ − 1/2. The

first and second terms represent the electrostatic potential
of homogeneously charged infinite planes located at z/a =
	′ or 	′

1/2. The two subsequent terms originate from the
difference between the electrostatic potential generated by the
homogeneous planes and the one arising from the pointlike
charges ni , ρc, and ρ̃ located at discrete positions in the lattice
model, and can be numerically calculated [51] as presented in
Table I. The divergent contribution of each term in Eq. (4) is
precisely canceled out due to the charge neutrality.

A self-consistent solution provides us with the properties of
the coherent (low-energy) quasiparticle, which are renormal-
ized by the electronic correlations. For example, the in-plane
quasiparticle velocity is given by

vkν = Zkνvk, (10)

with vk = ∇εk/� and the renormalization amplitude

Zkν = ∂Ekν

∂εk
=

∑
	

z2
	ψkν(	)2 � 1. (11)

The coherent electron density is also directly accessible from
the mean-field solution [38]

ncoh(	) = z2
	n	. (12)

Finally, we can also derive the retarded quasiparticle Green
function as

G
(0)
		′(k,ω) =

∑
ν

ψkν(	)ψkν(	′)
�ω − Ekν + i0+ . (13)

All SBMF calculation shown in this paper are performed at
T = 0. The free energy and its gradients are calculated in the
thermodynamic limit N‖ → ∞. Unless otherwise noted, we
set the system size as N = 10 and M = 30, and impose open

boundary conditions for the diagonalization of Eq. (7). In the
following calculation, we fix Ur = 25t .

C. Transport coefficients

1. Transport distribution function

Relying on the above T = 0 SBMF approximation for
the low-temperature electric properties [38,39], we derive
the transport coefficients within the linear-response Kubo
formalism [39]. In this work we focus on the in-plane
longitudinal dc electrical conductivity σ and the Seebeck
coefficient S, which are expressed as

σ =L(0), S = − 1

eT

L(1)

L(0)
. (14)

Here, the Seebeck coefficient was obtained by applying the
Jonson-Mahan theorem [52]. The functions L(n) are defined as

L(n) =
∫

dE

(
−∂f (E)

∂E

)
En�(E), (15)

with f (E) = (1 + eE/kBT )−1 and the transport distribution
function,

�(E) = 2πe2
�

N‖

∑
k

(
vx

k

)2
Tr[Â(k,E)2]. (16)

Here, Â(k,E) is the spectral density matrix of quasiparticles,
Â(k,E) = − 1

π
Im Ĝ(k,E), with the retarded Green function

Ĝ(k,E), which is derived in the following section.

2. Impurity scattering

We derive the spectral density matrix Â(k,E) under the
assumption that the dominant relaxation mechanism at low
temperatures is elastic scattering by impurities or vacancies.
For this purpose, we add a short-range impurity Hamiltonian
to our model,

Himp = V0

∑
σ,i ′

c
†
i ′σ ci ′σ , (17)

where the label i ′ denotes impurity sites. We assume a dilute
impurity concentration cimp which is on average independent
of the layer index 	. In this case, the self-energy of the
quasiparticles due to impurity scattering, �

imp
νν ′ (k,ω), can

be obtained from the T -matrix approximation using the
quasiparticle Green function of the pure system (13). If we
neglect the real part of G

(0)
		′(k,ω) and the nondiagonal term of

the self-energy, the imaginary part of the total self-energy is
given as

γkν(ω) ≡ −Im [�νν(k,ω)] = γ
imp
kν (ω) + γ ′. (18)

γ
imp
kν (ω) = −Im[�imp

νν (k,ω)] originates from the impurity scat-
tering and is given by

γ
imp
kν (ω) = cimpV0

∑
	

ψkν(	)2 {πV0ρ	(ω)}
1 + {πV0ρ	(ω)}2 , (19)
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with the layer-resolved quasiparticle spectral density of the
pure system,

ρ	(ω) = 1

N‖

∑
k

(
− 1

π
ImG

(0)
		 (k,ω)

)
. (20)

The additional quantity γ ′ in Eq. (18) is introduced to
include contributions from other factors, e.g., electron-phonon
couplings, high-energy corrections due to electron-electron
interactions, or lattice disorder, and is assumed to be constant
for simplicity. Hereafter, we ignore the real part of the self-
energy: note that the real part of �

imp
νν ′ (k,ω) has no contributions

to Tr[Â(k,E)2] in the limit of cimp → 0. In this case, we obtain

Tr[Â(k,ω)2] = 1

π�

∑
ν

Z2
kντkν(ω)δ(�ω − Ekν), (21)

for the dilute impurities in the limit of cimp → 0 with the
relaxation time τkν(ω) = �/2γkν(ω).

3. Total and resolved transport coefficients

By introducing the weighted density of states

N (ε) = 1

(2π )2

∫
dk |vk|2 δ(ε − εk), (22)

we can finally obtain the transport distribution function (16)
in the following form:

�(ω) = e2

�

∑
ν

Z∗
ν (ω)τ ∗

ν (ω)N [ε∗
ν (ω)]. (23)

Here Z∗
ν (ω), τ ∗

ν (ω), and ε∗
ν (ω) are values of Zkν , τkν(ω), and

εk for k = k∗
ν(ω), respectively, where k∗

ν(ω) is determined by
Ek∗

ν (ω),ν = Eν[ε∗
ν (ω)] = �ω. In the derivation of Eq. (23), we

assume nondegenerate subbands.
The resultant total transport distribution function (23) is a

sum of contributions from each subband, �(ω) = ∑
ν �ν(ω),

where

�ν(ω) = e2

�
Z∗

ν (ω)τ ∗
ν (ω)N [ε∗

ν (ω)]. (24)

With this function, we can define the band-resolved conduc-
tivity and Seebeck coefficients as [39]

σν =L(0)
ν , Sν = − 1

eT

L(1)
ν

L
(0)
ν

, (25)

where L(n)
ν is the Fermi integrals over the band-resolved trans-

port distribution function �ν(ω) in the same way as Eq. (15).
These values represent the contributions from each subband to
the total transports, σ = ∑

ν σν and S = ∑
ν Sνσν/σ .

On the other hand, we can also define the layer-resolved
transport distribution function �	(ω) from Eq. (16) as

�	(E) ≡2πe2
�

N‖

∑
k

(
vx

k

)2
[Â(k,E)2]		

=e2

�
z2
	

∑
ν

ψk∗
ν (ω),ν(	)2τ ∗

ν (ω)N [ε∗
ν (ω)], (26)

which is obtained from the same calculations as Eq. (23), and
satisfies �(ω) = ∑

	 �	(ω). With this function, we can define

the layer-resolved conductivity and Seebeck coefficients as

σ	 =L
(0)
	 , S	 = − 1

eT

L
(1)
	

L
(0)
	

, (27)

where L
(n)
	 is obtained from �	(ω). These values represent the

contributions from each layer to the total transport, σ = ∑
	 σ	

and S = ∑
	 S	σ	/σ .

All the results presented in this paper are obtained using
the following parameters: kBT = 0.01t , the impurity con-
centration cimp = 0.1, the impurity scattering V0 = 0.3t , and
γ ′ = 0.001, which gives γ

imp
kν (ω) > γ ′ except in the vicinity

of the phase transition, as shown in Sec. V.

IV. GROUND-STATE PROPERTIES

A. Charge distribution and electrostatic potential

For the emergence of an interfacial metallic state between
a Mott and a band insulator, the electronic charge distribution
around the interface is of paramount importance. Deviations
of the density from that of the homogeneous systems, i.e.,
n = 0 in the BI and n = 1 in the MI material, directly leads
to electronic conductivity. In Fig. 7(a), we show the layer-
resolved electronic charge density n	 for various values of Ec

in the ρ̃ = 1 nonpolar heterostructure. We fix Ur = 25t for the
following discussion. The electrons reside in the central region

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10

n

Ec = 0.8t

Ec = 2.0t

(a)

−8

−6

−4

−2

0

−10 −5 0 5 10

φ̄
/
t

Ec = 0.8t

Ec = 2.0t(b)

FIG. 7. (Color online) (a) The electronic charge distribution n	

and (b) the effective one-dimensional (1D) electrostatic potential
φ̄	 for Ur = 25t with Ec = 0.8t, · · · ,2.0t around the MI region in
the ρ̃ = 1 structure. The dashed lines indicate the position of the
interfaces, 	 = −4 and 5.
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where the positive charges are localized, and realize the bulk
densities n	 ∼ 1 or n	 ∼ 0 away from the interface. However,
for the plausible value Ec = 0.8t , the distribution is broad
around the interface with n	=5 ∼ 0.8 and n	=6 ∼ 0.2. This
smooth distribution changes with increasing Ec, and becomes
completely “sharp” for Ec � 1.96t : all the layers are either at
a density n	 = 0 or 1, even at the interface.

The screened electrostatic potential follows the behavior of
the electronic charge distribution. In Fig. 7(b) we show φ̄	,
which represents the electrostatic potential on the 	th layer
including the contribution from U0; see Eq. (9). For small
Ec, the smooth charge distribution results in interfacial dipole
moments formed by positively and negatively charged planes
around the interface in the MI and BI regions, respectively.
These interfacial dipoles lower the electrostatic potential in
the center region due to the first two terms of Eq. (9). When
Ec > 1.96t all the layers are neutral, and only the last three
terms in Eq. (9) contribute. This leads to a piecewise constant
electrostatic potential as seen in Fig. 7(b).

The dependence of n	 and φ̄	 on Ec (or the dielectric
constant ε) is in agreement with the expectation from the
Thomas-Fermi screening length Eq. (1): like the spread of
the itinerant electron density n	 around the localized positive
background charges, λTF is a decreasing function of Ec. For
large Ec (small ε), charge fluctuations are strongly suppressed,
and both λTF as well as the effective Bohr radius Eq. (2)
approach the size of the lattice constant. Only in this limit we
recover the ionic picture and an insulating interface [4,24,29].

B. Localization and renormalization

The electrons in the central region are localized due to
the strong on-site Coulomb repulsion Ur. Within the SBMF
method, the localization is apparent from the amplitude of
the double occupancy d	 and the in-plane-hopping renormal-
ization factor z2

	 , which are presented in Fig. 8 for various
Ec in the ρ̃ = 1 heterostructure. It is obvious that they are
reduced by increasing Ur as already studied in the ρ̃ = 0
polar/nonpolar heterostructure [38]. Again, the dependence
on Ec can be understood from the behavior of the electron
density n	: localization effects are larger if n	 → 1. The value
of the double occupancy at the interface for Ec = 0.8t is
d	=5 = 0.068, which is similar to the value found in the ρ̃ = 0
polar/nonpolar heterostructure [38]. With increasing Ec, the
double occupancy tends to zero in the whole system, which
is accompanied by the change of the electron densities to
the steplike distribution n	 → 0 or 1. As a consequence, the
in-plane-hopping renormalization factor z2

	 also goes to zero
in the central region, as shown in Fig. 8(b). Note that the
amount z2

	 also gives the mass renormalization in the 	 th layer,
z2
	 = m/m∗

	 . These results demonstrate Mott’s metal-insulator
transition in the center material tuned by the dielectric constant
(or Ec).

The renormalization effects are also apparent in the
quasiparticle velocity vkν = Zkνvk; see Eq. (10). We show
its renormalization factor Zkν as a function of Ec for the
ρ̃ = 1 heterostructure in Fig. 9. We present the value at the
Fermi energy, Z∗

ν (ω = 0), which is one of the key quantities to
determine the transport coefficients [see Eqs. (24) and (26)].
High-energy bands with the index ν > 15 lie above the

0

0.02

0.04

0.06

0.08

0.1

−10 −5 0 5 10

d

Ec = 0.8t

Ec = 2.0t

(a)

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10

z
2

Ec = 0.8t
Ec = 2.0t

(b)

FIG. 8. (Color online) (a) The amplitude of the double occupancy
d	 and (b) the in-plane-hopping renormalization factor z2

	 for Ur = 25t

with Ec = 0.8t, . . . ,2.0t around the MI region in the ρ̃ = 1 structure.
The dashed lines indicate the position of the interfaces, 	 = −4
and 5.

Fermi energy for Ec > 0.8t , and Z∗
ν (ω = 0) is undefined

(however, Zkν = 1 for ν > 15). The wave functions ψkν(	)
of quasiparticles belonging to the low-energy bands ν � 10
have spatial weights only in the central layers as shown in
Fig. 10. Consequently the velocities derived from these bands
are strongly renormalized and tend to zero with increasing Ec.

0.70

0.80

0.90

1.00

Z
∗ ν
(ω

=
0
)

(a)
ν = 13.14

ν = 11.12

0.00

0.02

0.04

0.06

0.8 1.2 1.6 2 2.4

Z
∗ ν
(ω

=
0
)

Ec

(b)

ν = 1, · · · , 10

FIG. 9. (Color online) The renormalization amplitude of the
quasiparticle velocity Zkν for k satisfying Ekν = �ω = 0, i.e.,
Z∗

ν (ω = 0), as a function of Ec for Ur = 25t in the ρ̃ = 1 structure.
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ν = 1, · · · , 10
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FIG. 10. (Color online) Square of the wave function at the Fermi
energy ψk∗

ν (ω=0),ν(	)2 for (a) Ec = 0.80t and (b) Ec = 1.90t , and Ur =
25t and ρ̃ = 1. The dashed lines indicate the position of the interfaces,
	 = −4 and 5.

On the other hand, the quasiparticles of the intermediate bands
ν = 11, . . . ,14 are located in the vicinity of the interface. Since
the wave functions of the higher-energy bands ν = 13 and 14
extend toward the BI area [Fig. 10(a)], the value of Z∗

ν (0) is
close to 1 indicating an exceedingly weak renormalization.
Upon reaching Z∗

ν (0) = 1 at Ec ∼ 1.4t , these two bands
become depopulated (Ekν > 0). The lower bands ν = 11
and 12 become depopulated only at Ec ∼ 1.96t , which is
the metal-insulator transition point. Although these bands
keep large velocities compared with the bands ν = 1, . . . ,10,
the renormalization factors do not reach 1, because their
wave functions penetrate the MI region two or three layers
deep (Fig. 10). These results illustrate the correspondence
between bands and spatial regions of the heterostructure [53]
as introduced in Fig. 2(b): The ν � 10 bands correspond to
the MI region, and ν = 11,12 to the interface. The others can
be assigned to the BI region with the dominant bands ν = 13
and 14.

C. The metal-insulator transition at the interface

We summarize the ground-state properties in Fig. 11 as
a function of Ec with focus on the interface layer, 	 = 5.
At the transition point Ec = 1.96t , the charge density at the
interface reaches n	=5 = 1 accompanied by d	=5 = 0 and
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n
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Ec/t
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0.8 1.6 2.4

φ̄
5
/
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d
5

Ec/t

(c)
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( z
5
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FIG. 11. The 	 = 5 interfacial quantities as a function of Ec for
Ur = 25t in the ρ̃ = 1 structure. (a) The electronic charge density n	,
(b) the effective 1D electrostatic potential φ̄	, (c) the amplitude of the
double occupancy d	, and (d) the in-plane-hopping renormalization
factor z2

	 .

z	=5 = 0. It indicates the full occupation of the lower Hubbard
band and the Mott transition at the interface. The transition
is captured most clearly by the electrostatic potential φ̄	=5

presented in Fig. 11(b). Below the transition, Ec < 1.96t ,
φ̄	=5 is dominated by contributions from infinite planes with a
nonvanishing net charge, resulting in an increasing function
of Ec. After the transition, all planes are neutral, and the
above contributions drop down. The remaining correction
terms in Eq. (9) make φ̄	 a linearly decreasing function of Ec.
Consequently, the electrostatic potential φ̄	 on the interface
has a kink at the transition point. These sharp features at the
transition visible in n	, d	, and φ̄	 are a reminiscence of the
mean-field treatment and are most likely washed out if charge
fluctuations beyond the SBMF approximation are included.
Nevertheless, we expect that the transition itself is robust.

V. TRANSPORT PROPERTIES

A. Relaxation time

The transport distribution functions (23), (24), and (26)
consist of three factors: The renormalization amplitude of the
quasiparticle velocity Z∗

ν (ω) or its components z2
	ψk∗

ν (ω),ν(	)2,
the relaxation time τ ∗

ν (ω), and the weighted density of state
N (ε∗

ν (ω)). The renormalization amplitude satisfies Z∗
ν (ω) � 1;

see Fig. 9. The weighted density of state N (ε), which corre-
sponds to a square mean value of velocity in the noninteracting
2D homogeneous system, can be obtained precisely in terms
of the complete elliptic integrals of the first and second kinds
and N (ε) � 8t/(π�)2.

Figure 12 shows the inverse of the relaxation time at the
Fermi energy, 1/τ ∗

ν (0), in the ρ̃ = 1 nonpolar heterostructure.
Only in this figure, we set γ ′ = 0 to focus on impurity
effects. Different behaviors of the relaxation time between

155118-9
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FIG. 12. (Color online) The inverse of the relaxation time at the
Fermi energy, τ ∗

ν (ω = 0)−1, for Ur = 25t , ρ̃ = 1, and γ ′ = 0, which
means 1/τ ∗

ν (0) = 2γ
imp
kν (0)/� in this figure.

the lower ν � 10 and higher ν = 11, . . . ,14 energy bands are
determined by a parameter πV0ρ	(0). For ν � 10, the wave
functions ψkν(	) on the Fermi energy are located in the MI
region as shown in Fig. 10, where the quasiparticle spectral
densities ρ	(ω) are strongly confined around ω = 0 [38]. Since
this confinement becomes stronger in association with the
renormalization effect, ρ	(0) are increasing functions of Ec

and πV0ρ	(0) � 1 for 	 belonging to the MI region. Thus
the contributions to γ

imp
k∗

ν (0),ν(0) for ν � 10 from each layer
gradually decrease with increasing Ec. On the other hand,
the higher-energy bands ν = 11, . . . ,14 correspond to the
outside region of the heterostructure, and πV0ρ	(0) take on
small values even for Ec = 0.80t . Since the values of ρ	(0)
in the BI region are reduced and tend to zero with losing the
electrons, γ

imp
k∗

ν (0),ν(0) decrease linearly with increasing Ec for
ν = 11, . . . ,14.

B. Conductivity

In Fig. 13 we show the band-resolved conductivities as
a function of Ec. The conductivities for the lower bands
ν � 10 are suppressed due to the strong renormalization of

0
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FIG. 13. (Color online) The band-resolved conductivity σν for
Ur = 25t and ρ̃ = 1.

the velocity vkν = Zkνvk. The higher-energy bands ν = 13
and 14 have a large relaxation time τ ∗

ν (0) and velocities vkν ,
but the weighted density of states N [ε∗

ν (0)] are small [since
ε∗
ν (0) are close to ε ∼ −4.0t] resulting in a small contribution

to the total conductivity with increasing Ec. Consequently,
dominant contributions to the conductivity are given by
quasiparticles on the bands ν = 11 and 12. These observations
are consistent with the layer-resolved conductivities presented
in Fig. 6(a): The distributions of the wave functions for the
dominant ν = 11,12 and second-dominant ν = 13,14 energy
bands presented in Fig. 10 reproduce that of the layer-resolved
conductivity shown in Fig. 6(a). It is also confirmed in Fig. 2
that the total conductivity of the BI region slightly changes
around Ec = 1.4t due to the drop of the contributions from
the depleted bands ν = 13 and 14. We note that if only the
impurity scattering is taken into account to the self-energy (18),
the relaxation time τ ∗

ν (0) diverges upon reaching Ec → 1.96t

(Fig. 12), which leads to a unphysical rise in the conductivity.
In other words, the phenomenological constant γ ′ is crucial
for the transport in the vicinity of the transition because it
becomes the dominant scale.

From the relation between the parameter πV0ρ	(0) and
1/τ ∗

ν (0), cf. Eq. (19), we can also infer the dependence of
the transport coefficients on the impurity potential V0. For
the quasiparticles on the ν � 10 lower energy bands, the
corresponding ρ	(0) are quite large so that the relaxation
times τ ∗

ν (0) are expected to be unaffected largely by V0. In
contrast, τ ∗

ν (0) for ν = 11, . . . ,14 consists of the contributions
from the outside layers with small ρ	(0), where the parameter
satisfies πV0ρ	(0) < 1. Thus τ ∗

ν (0) can be varied significantly
by V0 for these bands. Accordingly, the conductivity is
expected to be highly dependent on the impurity scattering
V0 in the BI region, but not in the center MI region. In this
manner, the parameters introduced to calculate the transport
coefficients could change the layer dependence and the values
of the coefficients quantitatively, but they do not intrinsically
participate in the determination of the transition point.

C. Seebeck coefficient

The quasiparticles on the energy bands ν = 11 and 12 also
dominate the Seebeck coefficient. We show the dependence
of the band-resolved Seebeck coefficients on Ec in Fig. 14.
The contributions from these two bands are strongly enhanced
at the metal-insulator transition point Ec = 1.96t , where
the chemical potential approaches the lower edge of these
bands. Note that although the band edges of ν = 13 and 14
similarly move towards the chemical potential at Ec = 1.4t ,
the contributions of these bands to the Seebeck coefficient
are inhibited by γ ′. For Ec > 1.4t , the ν = 13 and 14 bands
lose the weights on the Fermi energy, and thus their Seebeck
coefficients become significantly small. However, finite values
of the Seebeck coefficients for ν = 13 and 14 are observed
again in the vicinity of the phase transition, because the
band edges moves down to the chemical potential. The
quasiparticles on the ν = 11 and 12 bands are located in the
vicinity of the interface (Fig. 10), and thus the enhancement
of the Seebeck coefficient is spatially confined to this region,
as presented in Fig. 6.
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FIG. 14. (Color online) The band-resolved contribution to the
total Seebeck coefficient, Sνσν/σ for Ur = 25t and ρ̃ = 1.

VI. CONCLUSION

In this work, we have examined interfacial metallicity
in a nonpolar/nonpolar heterostructure (i.e., without a polar
discontinuity) when a Mott and a band insulator are combined
in a sandwich structure. Using the SBMF theory in combina-
tion with the relaxation-time approximation, we studied the
influence of the dielectric constant on the electronic charge
distribution and the in-plane transport. Most importantly, we
find a metal-insulator transition tunable by the dielectric
permittivity.

If the dielectric constant is above a critical value (which
depends on the geometry and the onsite Hubbard interaction),
a high conductivity was obtained on several layers in the
vicinity of the interface. Interestingly, the characteristics of this
phase bear a great similarity to the one found in polar/nonpolar
structures with a similar dielectric constant. If the screening
length decreases, the conductivity gradually tends to zero,
while the Seebeck coefficient shows a strong enhancement
in the vicinity of the interface. Finally, when the dielectric
constant falls below the critical value, the system undergoes
the metal-insulator transition. The existence of such a metal-
insulator transition in the nonpolar/nonpolar structure is in
sharp contrast to the case of the polar/nonpolar heterostructure,
in which at least the interface remains metallic for all values
of the dielectric constant.

Nevertheless, our results imply that the polar discontinuity
is not an indispensable ingredient to obtain interfacial metal-
licity in MI/BI heterostructures. Furthermore, the parameter
range for metallicity (as obtained from the SBMF approxima-
tion) definitely lies in a physical regime. In fact, the condition
Ec ≡ e2/(εa) < 1.9t for metallicity is well above earlier es-
timates of Ec = 0.8t for the LTO/STO heterostructure [3,32].

We also note that the dielectric constant of certain insulating
perovskites (such as STO) strongly depend on temperature and
electric field. The metal-insulator transition discussed in this
paper therefore might be externally tunable.

Intriguingly, it is theoretically reported that a SrNbO3/STO
heterostructure is expected to show metallic transport proper-
ties without polar discontinuity [54]. In addition, we expect
that our theoretical setting for a heterostructure without a
polar discontinuity has some relevance for perovskite-type
MI/BI heterostructures grown along the [110] direction,
which also show no polar discontinuity across the interface.
Experimentally, an insulating MI/BI [110] interface without
polar discontinuity has been observed in LaVO3/STO het-
erostructures, which is a polar/nonpolar heterostructure along
the [100] direction but a polar/polar structure along [110] [55].
An other example of an insulating polar/polar interface is
the [100] heterostructure of LaVO3/LaAlO3 [56], where the
strong band insulator LaAlO3 provides a deep quantum well to
tightly confine the conduction electrons to the LaVO3 region.
In contrast to these examples, it is interesting to note a recent
experimental finding of emergent metallicity on the (110)
LAO/STO interface [11]. Opposite to the aforementioned
structures and the model discussed in this paper, this system
involves two different BIs. Nevertheless, we expect that at least
the metallic phase can in principle be compared to the one we
found here, although the origin of the metallicity might be
different in the actual experiment and beyond the scope of our
model [11].

Finally, we also mention limitations of our study within the
given model. First, we ignored the possibility for long-range
order. This is justified in order to discuss strong correlation
effects on a “generic” system. For a specific system such as
LaVO3/STO, however, the possibility for long-range ordered
phases would need to be considered carefully. Second, from the
methodical point of view, it is known that the SBMF neglects
intersite correlations such as superexchange. It also misses
local charge fluctuations beyond the Gutzwiller approxima-
tion. Both shortcomings could in principle be addressed using
DMFT and its cluster extensions. Such an approach would
nevertheless lead to considerably higher computational costs
and would also prohibit a direct access to the quasiparticle
transport properties.
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[38] A. Rüegg, S. Pilgram, and M. Sigrist, Phys. Rev. B 75, 195117

(2007).
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