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Excitonic Bose-Einstein condensation in Ta2NiSe5 above room temperature

K. Seki,1 Y. Wakisaka,2 T. Kaneko,1 T. Toriyama,1 T. Konishi,3 T. Sudayama,2 N. L. Saini,4 M. Arita,5 H. Namatame,5

M. Taniguchi,5,6 N. Katayama,7 M. Nohara,8 H. Takagi,9 T. Mizokawa,2 and Y. Ohta1

1Department of Physics, Chiba University, Inage-ku, Chiba 263-8522, Japan
2Department of Physics and Department of Complex Science and Engineering, University of Tokyo, Kashiwa, Chiba 277-8561, Japan

3Department of Nanomaterial Science, Chiba University, Inage-ku, Chiba 263-8522, Japan
4Department of Physics, Sapienza University of Rome, 00185 Rome, Italy

5Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan
6Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

7Department of Applied Physics, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
8Department of Physics, Okayama University, Tsushima-naka, Okayama 700-8530, Japan

9Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
(Received 4 March 2014; revised manuscript received 24 September 2014; published 13 October 2014)

We show that finite temperature variational cluster approximation (VCA) calculations on an extended Falicov-
Kimball model can reproduce angle-resolved photoemission spectroscopy (ARPES) results on Ta2NiSe5 across
a semiconductor-to-semiconductor structural phase transition at 325 K. We demonstrate that the characteristic
temperature dependence of the flat-top valence band observed by ARPES is reproduced by the VCA calculation
on the realistic model for an excitonic insulator only when the strong excitonic fluctuation is taken into account.
The present calculations indicate that Ta2NiSe5 falls in the Bose-Einstein condensation regime of the excitonic
insulator state.
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I. INTRODUCTION

The diversity of Bose-Einstein condensation (BEC) with
spin (and orbital) degrees of freedom is one of the main targets
in the research of ultracold atom systems [1–3]. On the other
hand, in electronic systems with holelike and electronlike
Fermi pockets, interaction between hole and electron in the
Fermi pockets tends to induce charge density wave (CDW) or
spin density wave (SDW) with wave vector Q which spans
the holelike and electronlike Fermi pockets in the Brillouin
zone. Such CDW or SDW transitions can be described as
Peierls transitions due to Fermi surface nesting. An alternative
way to understand CDW or SDW transitions in the electronic
systems is the theory for excitonic insulators that was proposed
nearly half a century ago [4–7]. Since the electron and
hole concentrations are relatively low, Coulomb interaction
between holes and electrons in the Fermi pockets is weakly
screened and stabilizes electron-hole bound states (excitons)
with wave vector Q. In the Peierls picture and the excitonic
insulator picture for metallic systems, the CDW or SDW
transitions are basically BCS type. On the other hand, the
theory of excitonic insulators can be extended to semiconduc-
tors where excitons are formed due to Coulomb interaction
between valence band holes and conduction band electrons
and undergo BEC. Very recently, BCS-BEC crossover of
an excitonic insulator has been examined in more advanced
calculations using such as a Mott-Wannier-type exciton model
with T -matrix approximation [8] and an extended Falicov-
Kimball model (EFKM) [9–11]. If the normal state above the
excitonic transition temperature is semimetallic, namely the
magnitude of the band gap EG < 0, the excitonic transition is
well described in the BCS framework. On the other hand, the
excitonic transition is expected to be a BEC of excitons if the
normal state is semiconducting or EG > 0 as schematically
shown in Fig. 1(a). In the BEC regime with EG > 0, a

large amount of excitons are preformed above the excitonic
transition temperature and the excitonic transition corresponds
to the BEC of excitons.

The BEC transition temperature of excitons can be much
higher than those of liquid He or cold atoms since the
electron and hole masses are much smaller than atomic masses.
Therefore, the BEC regime of the excitonic insulator can
provide a unique opportunity to study “high temperature”
BEC. Real materials studied in relevance to excitonic insulator
states are limited to several rare-earth or transition-metal
calcogenides such as Tm(Se,Te) [12,13] and 1T -TiSe2 [14].
The possible excitonic insulator transition in Tm(Se,Te) has
been studied using various transport measurements including
electrical resistivity [12] and heat conductivity [13]. Although
the increase of electrical resistivity at the transition and
the increase of heat conductivity at the low temperature
are assigned to the BEC and the superfluidity of excitons
respectively, the excitonic insulator transition in Tm(Se,Te)
is not established well due to the lack of quantitative theory.
On the other hand, the CDW transition in semimetallic
1T -TiSe2, which has holelike (electronlike) Fermi pockets at
the zone center (boundary), has been identified as a BCS-like
excitonic insulator transition by angle-resolved photoemission
spectroscopy (ARPES) [14]. The BCS-like excitonic transition
in 1T -TiSe2 is a semimetal-to-semimetal transition due to the
small off-stoichiometry or the small difference between the
hole and electron densities. Therefore, it is rather difficult
to characterize the excitonic transition by means of transport
measurement, and the band dispersion observed by ARPES
is the very direct evidence of the excitonic transition. The
BCS-like excitonic transition can be described by the mean-
field theory and the ARPES result can be compared with the
theoretical calculation [14]. As for the BEC-like excitonic
transition, it has been proposed that Ta2NiSe5 would have
an excitonic insulator transition in the BEC regime based
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FIG. 1. (Color online) (a) Electronic phase diagram of an exci-
tonic insulator as a function of temperature and band gap EG. The
white dashed curve indicates the boundary between semimetal and
semiconductor regions, which roughly corresponds to the BCS-BEC
crossover. In the BEC region, preformed excitons are formed even
above the excitonic insulator transition temperature. (b) Sketch of
quasi-1D crystal structure of Ta2NiSe5. The excitons are formed
between the electrons at the Ta chains and the holes at the Ni chains.

on the ARPES results below the transition temperature [15].
The BEC-like excitonic transition is an insulator-insulator
transition, and it is rather difficult to identify the BEC of
excitons using transport measurement. Similar to the BCS-like
excitonic transition in 1T -TiSe2, the band dispersion observed
by ARPES can be one of the most straightforward evidence of
the excitonic transition. Namely, the single particle excitation
can be a fingerprint of the excitonic BEC just like the opening
of a superconducting gap in the BEC of Cooper pairs. However,
the BEC regime of the excitonic insulator transition cannot
be described by the mean-field theory and, therefore, a new
theory beyond mean-field approximation should be developed
and compared with the ARPES result in order to establish the
excitonic insulator transition in the BEC regime. In this sense,
the BEC-like excitonic transition is not well established yet in
any real materials including Ta2NiSe5.

As illustrated in Fig. 1(b), Ta2NiSe5 has a quasi-one-
dimensional (quasi-1D) structure where Ni and Ta atoms
are arranged in one-dimensional chains [16,17]. Resistivity
of Ta2NiSe5 is insulating below 500 K and exhibits an
anomaly around 325 K which is assigned as second-order
or weak first-order structural phase transition without CDW.
The resistivity exhibits insulating behaviors both above and
below the transition temperature at 325 K. The magnetic
susceptibility shows a gradual drop around 325 K suggesting
spin singlet formation. The flattening and sharpening of the
valence band top in insulating Ta2NiSe5 suggests that the
phase transition at 325 K corresponds to an excitonic insulator
transition in the BEC regime. In addition, Ta2NiSe5 is unique
in that the excitons are formed between the electrons and holes

that are located in spatially separated chains, i.e., holes in the
Ni chain and electrons in the two neighboring Ta chains in the
quasi-1D structural units, which has an interesting similarity
with the 2D bilayer electron systems of semiconductors where
the electrons and holes are also spatially separated [18]. In the
present work we have developed finite temperature variational
cluster approximation (VCA) methods on EFKM for Ta2NiSe5

and have applied it to interpret temperature-dependent ARPES
results of Ta2NiSe5 across the transition and to reveal the nature
of the transition in this material.

II. EXTENDED FALICOV-KIMBALL MODEL

In order to include the electron correlation effects on
the single-particle excitation spectra of Ta2NiSe5 across
the excitonic insulator transition, we have employed VCA
calculations on EFKM which is known as a minimal lattice
model to describe the excitonic insulator state [9–11]. The
Ta 5d and Ni 3d orbital degeneracy at the conduction-band
bottom and the valence-band top is removed due to the
quasi-one-dimensional structure [11]. Therefore, in order to
describe the excitonic condensation and spectral function
of valence-band top, the Coulomb interaction between the
valence-band hole and the conduction-band electron is enough
and, consequently, the EFKM with nondegenerate and spinless
conduction and valence bands is sufficient. The Hamiltonian
of the EFKM [9–11] is given as

H = −
∑

δ=x,y,z

t δc

∑
〈ij〉

(c†i cj + H.c.) + (D/2 − μ)
∑

i

nic

−
∑

δ=x,y,z

t δf

∑
〈ij〉

(f †
i fj + H.c.) + (−D/2 − μ)

∑
i

nif

+U
∑

i

nicnif , (1)

where ci (c†i ) denotes the annihilation (creation) operator of an
electron on the c orbital (corresponding to the Ta 5d conduction
band) at site i and nic = c

†
i ci is the particle number operator. t δc

represents the spatially anisotropic hopping integral between
neighboring sites parallel (δ = x) and perpendicular (δ = y,z)
to the one-dimensional chain direction, as it is realized in the
quasi-one-dimensional material Ta2NiSe5. These are the same
for the f orbital (corresponding to the Ni 3d-Se 4p valence
band). D is the on-site energy split between the c and f orbitals
and U is the interorbital Coulomb repulsion between electrons.
Note that U can be considered as an interorbital electron-hole
attraction and thus can drive the excitonic insulator state in this
model at low temperature. The effect of the electron-lattice
interaction has been examined in Ref. [19] and it has been
found that the electron-lattice interaction plays a secondary
role and helps the excitonic transition driven by the electron-
hole interaction [19]. The chemical potential μ is determined
so as to maintain the average particle density at half filling.
The order parameter is given by

2� = U 〈c†i fi + H.c.〉. (2)

We use a parameter set of txc = −txf = 0.4 eV, t
y
c = −t

y

f =
−t zc = t zf = 0.024 eV, D/2 = 0.44 eV, and U = 0.84 eV so as
to reproduce the single-particle excitation spectrum observed
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in ARPES for Ta2NiSe5 and the transition temperature at the
same time. The dependence on the cluster size of the calculated
results was checked by changing the cluster size such as the
one-dimensional 4-, 5-, 6-site (8-, 10-, and 12-orbital) clusters,
where each site contains a pair of the c and f orbitals, and no
significant cluster-size dependence was found. Here it should
be noted that this parameter set corresponds to the semimetallic
state in the noninteracting (U = 0) limit while it can describe
the semiconducting state due to the Hartree shift by U [10].

III. METHODS

A. Variational cluster approximation

The VCA [20] with its finite temperature algorithm was
employed to calculate the temperature dependence of the
excitonic order parameter and the single-particle excitation
spectra. Here let us describe the formulation of the variational
cluster approximation (VCA) at finite temperature used in this
article.

First we briefly review the rigorous variational principle for
the thermodynamic potential functional derived by Luttinger
and Ward [21] and revisited by Potthof [20]. It has been shown
by Potthoff [20] that the thermodynamic potential functional
as a functional of the self-energy can be written as

�[�] = F[�] − Tr ln
(−G−1

0 + �
)
, (3)

where F[�] is the Legendre transform of the Luttinger-
Ward functional �[G] [21], G0 is the noninteracting Green’s
function, and the self-energy � is considered as a trial
function for the variational calculation described below. Tr
represents the sum over fermionic Matsubara frequencies
iων = (2ν + 1)πT , where T is the temperature and ν is an
integer, and trace over the single-particle basis. The stationarity
condition

δ�[�]/δ� = 0 (4)

gives the Dyson equation and the functional at the stationary
point gives the thermodynamic potential of the system [20,21].

The self-energy functional theory (SFT) [20] provides a
way to compute � by using the fact that the functional
form of F[�] depends only on the interaction terms of
the Hamiltonian. In SFT, the original lattice is divided into
disconnected finite-size clusters and the reference system is
introduced as their collection. The clusters form a superlattice
and have the same interaction term as the original system
because the interaction term of the Hamiltonian of the extended
Falicov-Kimball model [EFKM, Eq. (1)] is local in real
space. Therefore, the functional form F[�] of the reference
system is the same for that of the original system. The exact
thermodynamic potential of the reference system is given by
�′ = F[�′] − Tr ln(−G′−1

0 + �′), where G′
0 and �′ are the

noninteracting Green’s function and the exact self-energy of
the reference system, respectively. Then, by restricting the
self-energy � to �′, we can eliminate the functional F[�′]
and obtain

�[�′] = �′ − Tr ln(I − V G′), (5)

where I is the unit matrix, V ≡ G′−1
0 − G−1

0 represents
the difference of the one-body terms between the original

and reference systems, and G′ = (G′−1
0 − �′)−1 is the exact

Green’s function of the reference system. The size of these
matrices are 2Lc × 2Lc, where Lc is the number of sites within
a disconnected finite-size cluster.

The Hamiltonian of the reference system is defined as

H′ = H + HEI, (6)

HEI = �′ ∑
i

(c†i fi + H.c.), (7)

where H is the Hamiltonian of the EFKM defined in Eq. (1),
and �′ is a Weiss field for excitonic condensation which is
treated as a variational parameter. In other words, the self-
energy � is varied through �′ and thus the variational principle
Eq. (4) is practically given by ∂�/∂�′ = 0. Note that the
solution with �′ �= 0 corresponds to the spontaneous EI state.
Then we solve the eigenvalue problem H′|
n〉 = En|
n〉 for
all excited states of a finite-size cluster and calculate the trial
single-particle Green’s function. The Green’s function matrix
in Eq. (5) is defined as

G′(ω) =
(

G′cc(ω) G′cf (ω)
G′f c(ω) G′ff (ω)

)
, (8)

with the matrix elements of

G′cf
ij (iων) = eβ�′ ∑

r,s

(e−βEr + e−βEs )
〈
r |c†i |
s〉〈
s |fj |
r〉

iων − (Er − Es)
,

(9)
where |
r〉 is an eigenstate of H′ and Er is the corresponding
eigenvalue.

B. Cluster perturbation theory

The single-particle excitation spectra are calculated by the
cluster perturbation theory (CPT) [22]. In the CPT, the single-
particle Green’s function is given as

Gα(k,ω) = 1

Lc

Lc∑
i,j

Gα
CPT,ij (k,ω)e−ik·(ri−rj ), (10)

where α (=c,f ) denotes the orbital index, ri is the position of
the ith site within a cluster, and

Gα
CPT(k,ω) = {G′(ω)[I − V (k)G′(ω)]−1}αα (11)

is the CPT Green’s function [22]. Note that the wave vector
k can take arbitrary values in the Brillouin zone. The CPT is
exact both in the noninteracting (U = 0) and atomic (t = 0)
limits, and is expected to work well in the strongly interacting
regime since it is derived originally from the strong-coupling
expansion for the single-particle Green’s function. In the weak-
to intermediate-coupling regime, the CPT approximation is
generally improved with increasing the cluster size [22].
Thus larger clusters are in principle required to obtain more
accurate results. We have checked calculations of single-
particle excitation spectra as well as the excitonic order
parameters for one-dimensional clusters of the size Lc = 4, 5,

and 6 (8, 10, and 12 orbital), where each site contains a
pair of the c and f orbitals, and have found no significant
cluster-size dependence. In the next section, calculated results
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for the Lc = 5 (10-orbital) cluster are shown, thus the effects
of statical and dynamical electron correlation within the cluster
size are taken into account.

C. Angle-resolved photoemission spectroscopy

The ARPES data compared to the calculated results were
taken at beamline 9A, Hiroshima Synchrotron Radiation
Center (HSRC) using a Scienta R4000 analyzer with an
angular resolution of ∼0.3◦ and energy resolution ∼26 meV
using circularly polarized light of photon energy hν = 23 eV.
The ARPES data with higher quality than those reported in
Ref. [15] cover the temperature range from 40 to 360 K
including the transition temperature ∼325 K. The ARPES data
partially reported in Ref. 20 [20] were reanalyzed considering
the calculated results and are presented. ARPES spectra are
obtained as ρk(E), where E and k are electron energy and
wave vector. In the second derivative plot, −d2ρk(E)/dE2 is
smoothed and is plotted as a function of electron energy and
wave vector.

IV. RESULTS AND DISCUSSION

A. Transport properties

Figure 2 shows the electrical resistivity ρ and
−T 2d lnρ/dT as a function of temperature T as well as
the magnetic susceptibility M/H of Ta2NiSe5. The electrical
resistivity ρ and −T 2d lnρ/dT of Ta2NiSe5 exhibit an
anomaly at 325 K which corresponds to the excitonic insulator
transition. The resistivity exhibits insulating behaviors both

FIG. 2. (Color online) Electrical resistivity and magnetic suscep-
tibility of Ta2NiSe5 as functions of temperature. The arrows indicate
the transition temperature.

above and below the transition. If temperature dependence of
resistivity is given by a simple activation type function eEG/kBT

with band gap of EG, ρ and −T 2d lnρ/dT provides magnitude
of EG/kB . EG is estimated to be ∼1000 K which is consistent
with the magnitude of the gap observed by ARPES. The
magnetic susceptibility shows a gradual drop around 325 K
which can be assigned to the gradual increase of the band gap
due to the excitonic coupling between the valence band hole
and the conduction band electron.

B. Temperature dependence of ARPES spectra

Figure 3 shows temperature dependence of ARPES spectra
around the � point. In order to capture the temperature
evolution of the band dispersions, the valence-band-peak
positions evaluated from the energy distribution curves (which
are indicated by the dots with the error bars in Fig. 3) were
fitted to the model function εv(k) for the excitonic insulator
band dispersion (shown by the thick solid curves in Fig. 3).
The model function εv(k) for the excitonic insulator band
dispersion is obtained as below:

ε0
v (k) = ε1 +

√
(ε2/2)2 + (2tNi−Se cos2 ka/2)2, (12)

ε0
c (k) = ε3 − 2tTa cos ka, (13)

εv(k) = ε0
v (k) + ε0

c (k)

2
−

√(
ε0
v (k) − ε0

c (k)

2

)2

+ �2. (14)

Here ε0
v (k) and ε0

c (k) are the bare valence and conduction
bands derived by a tight-binding model free from excitonic
interaction. In the tight-binding model, the Ni-Se and Ta chains
are considered to form one-dimensional band dispersion
along the chain direction only through their nearest neighbor
transfer integrals tNi-Se and tTa without interchain hybridization.
Assuming linear temperature dependence of the chemical
potential, the model function εv(k) is fitted to the valence-band-
peak positions to optimize tNi-Se and the excitonic insulator
order parameter � as adjustable parameters. The fitting results
are shown by the thick solid curves in Fig. 3, indicating that
the fits are reasonably good to extract � as a function of
temperature. The bare valence-band dispersion ε0

v (k) without
the excitonic coupling is indicated by the thin solid curves in
Fig. 3.

C. Comparison between VCA calculations and ARPES results

Overall valence-band dispersions observed by ARPES
are consistent with the tight-binding or LDA band struc-
ture calculations [19,24]. However, there is a prominent
discrepancy near the top of the valence band located at the
� point where characteristically flat band dispersion is ob-
served as shown in Fig. 4(a). This flat band dispersion reminds
the experimental ARPES result of 1T -TiSe2, which is one
of the candidate materials for showing excitonic insulator
transition [14,25,26]. The experimentally observed bands of
1T -TiSe2 reported in the ARPES measurement [14] are well
reproduced by BCS-like theoretical calculation assuming the
excitonic insulator transition to be the origin of its CDW
transition [25,26]. Paying attention to this similarity with
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FIG. 3. (Color online) Second derivative plots of the ARPES spectra along the chain direction of Ta2NiSe5 taken at various temperatures.
The valence-band-peak positions evaluated from the energy distribution curves are indicated by the dots with the error bars. The fit to the
excitonic insulator band dispersion is shown by the thick solid curve. The thin solid curve indicates the bare valence-band dispersion without
the excitonic coupling.

1T -TiSe2, the ground state of Ta2NiSe5 can be viewed as
an excitonic insulator state, in which Ni 3d-Se 4p valence
band and Ta 5d conduction band hybridize each other due to
electron-hole Coulomb interaction [15]. In order to discuss
the nature of the transition to the excitonic insulator state,

we now analyze the temperature-dependent ARPES results
across the transition [23] on the basis of finite temperature
VCA calculations on EFKM.

Figure 4(b) shows temperature dependence in the second
derivative plots of the ARPES energy distribution curves along
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FIG. 4. (Color online) (a) Second derivative plots of the ARPES
spectra along the �-X direction taken at 40 K. The specific flat band is
formed at the top of valence band. (b) Band dispersions obtained from
the ARPES spectra at 40, 260, and 340 K. The dots with error bars
indicate the band positions determined from the ARPES data. The fit
to the excitonic insulator band dispersion is shown by the thick solid
curve. The thin solid curve indicates the bare valence-band dispersion
without the excitonic coupling. (c) Single-particle excitation spectra
for 40, 270, and 340 K obtained by the VCA calculation.

the Ta and Ni chain directions. The second derivative plots
at 40, 260, and 340 K are compared with the single-particle
spectral function obtained by the VCA calculations on EFKM
for 40, 270, and 340 K which are displayed in Fig. 4(c).
The flat-top valence band at 40 K is well reproduced by the
calculation on the EFKM with the appropriate parameter set as
well as the previous mean-field calculation on the multiband
Hubbard model [19]. Experimentally, as the temperature
increases, the area of the flat band region in the momentum
space decreases and the band top becomes closer to the Fermi
level (EF ). The band dispersion deviates from the parabolic
behavior and the flattening of the band top still remains even at
340 K, which is above the transition temperature. This situation
is well explained by the present VCA calculation including the
correlation effect beyond the mean-field or BCS limit. Here it
should be noted that the flat band dispersion at 40 K exhibits a

(b)

(a)

FIG. 5. (Color online) (a) ARPES spectra at � point taken at 40,
260, and 340 K, and single-particle excitation spectra at � point
calculated for 40, 270, and 340 K and multiplied by the Fermi-
Dirac distribution function. (b) Temperature dependencies of the peak
position of the flat valence band at � (��) and the order parameter �,
which are extracted from the ARPES results and are obtained from
the VCA calculations.

dip at the � point which is explained by the VCA calculation
on the quasi-1D EFKM.

By fitting the band positions to the band dispersion
renormalized in a mean-field treatment assuming the excitonic
insulator order parameter as indicated in Fig. 4, one can
decompose the temperature dependence of the band top
energy into the temperature dependence of � (due to the
electron-hole interaction) and the temperature dependence
of the bare valence band. The energy distribution curves
(EDCs) of the � point at 40, 260, and 340 K (from which the
temperature dependence of the bare valence band is subtracted)
are compared with the calculated spectra for 40, 270, and
340 K in Fig. 5(a). As the temperature increases, the EDC
peak position is shifted towards lower binding energy and
the EDC peak width of the flat band becomes broader. The
substantial spectral broadening is reminiscent of the breaking
of the quasiparticle peak structure, namely, the breaking of
the BEC. The broadening is similar to that observed in the
pseudogap region of the high Tc cuprates although the cuprate
case is more complicated with the pseudogap assigned to a
possible competing order instead of the fluctuation of Cooper
pairs [27]. Figure 5(b) shows the temperature dependence of
the order parameter � and �� (the energy position of the
spectral peak relative to EF at the � point) obtained from
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the calculation. First, the value of 2�/kBTc is approximately
10 indicating that the present transition falls in the strong
coupling regime. Second, �� remains finite even above the
phase transition temperature as observed in the experiment
showing that EG > 0 due to the Hartree shift by U . Third, the
band flattening remains even above the transition temperature
indicating the excitonic fluctuation. Interestingly, the strong
coupling nature and the strong fluctuation above the transition
in Ta2NiSe5 are very similar to the recent ARPES observation
on the strong coupling superconductivity with a pseudogap
behavior in FeSexTe1−x [28]. The exciton fluctuation above the
phase transition temperature is even indicated in a semimetal
1T -TiSe2 system which is thought to fall in the BCS regime of
the phase diagram [29,30]. The present VCA calculation with
fluctuation effect shows that the preformed exciton region in
the conventional phase diagram [Fig. 1(a)] corresponds to the
pseudogap phase with strong excitonic fluctuation. In addition,
the transition-metal 5d or rare-earth 4f orbitals with spin and
orbital degrees freedom under strong spin-orbit interaction can
provide a variety of spin-orbit coupled condensates derived
from their band gap structures and spin-orbital dependent
Coulomb interactions. Therefore, the excitonic insulators
including Ta2NiSe5 will provide a new playground to explore
physics of BCS-BEC crossover in various bosonic systems
with spin and orbital degrees freedom which have been

attracting great interest due to the discoveries in the ultracold
atom systems [1–3].

V. CONCLUSION

In summary, the transition to the excitonic insulator state in
Ta2NiSe5 has been identified as a BEC of excitons based on the
comparison between the finite temperature VCA calculations
and the ARPES results. A flat dispersion around the top of
the valence band was observed and assigned as the effect
of excitonic coupling between the valence and conduction
bands. As the system exceeds the transition temperature, the
flat feature of the valence band weakens though the exciton
fluctuations remain finite which is due to the strong fluctuation
effect expected in the BEC character of the excitonic insulator
transition from the semiconductor phase.
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