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Entanglement properties of the antiferromagnetic-singlet transition in the Hubbard model
on bilayer square lattices
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We calculate the bipartite Rényi entanglement entropy of an L × L × 2 bilayer Hubbard model using a
determinantal quantum Monte Carlo method recently proposed by Grover [Phys. Rev. Lett. 111, 130402 (2013)].
Two types of bipartition are studied: (i) one that divides the lattice into two L × L planes and (ii) one that
divides the lattice into two equal-size (L × L/2 × 2) bilayers. We compare our calculations with those for
the tight-binding model studied by the correlation matrix method. As expected, the entropy for bipartition
(i) scales as L2, while the latter scales with L with possible logarithmic corrections. The onset of the
antiferromagnet to singlet transition shows up by a saturation of the former to a maximal value and the latter to a
small value in the singlet phase. We comment on the large uncertainties in the numerical results with increasing
U , which would have to be overcome before the critical behavior and logarithmic corrections could be quantified.
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I. INTRODUCTION

There are several reasons for recent excitement in the
condensed-matter theory community regarding quantum en-
tanglement entropies of many-body lattice models [1,2]. These
entropies connect widely disparate fields of physics such
as quantum information theory, quantum gravity, and black
holes with the many-body description of quantum phases
and material science. When a macroscopic system is divided
into two parts, the bipartite entanglement entropies provide
universal signatures of quantum phase transitions and critical
phenomena [1–3] and have also been used to demonstrate the
existence of topological quantum phases in spin models [4–9].

In a typical eigenstate of a many-body Hamiltonian, these
entropies are extensive; that is, in a large system they are
proportional to the volume of the system and are closely
related to the thermal entropy [10–12]. However, in the many-
body ground state, such entropies typically obey an “area
law” [13]; that is, they scale with the measure of the “area” or
boundary between subsystems. Such an area law provides the
basis for novel approaches for quantum many-body systems
including density-matrix renormalization group and their
higher-dimensional tensor-network generalizations [14–16].

Despite this progress, unbiased numerical calculations of
entanglement entropies in interacting lattice models of spatial
dimensionality greater than 1 remain a big challenge. Over
the last few years several methods have been developed
for quantum spin models, which go beyond the very small
finite-systems for which exact eigenstates, reduced density
matrices, and entanglement entropies can be calculated using
standard Lanczos-type methods. The first such method is the
quantum Monte Carlo (QMC) method, which allows unbiased
stochastic simulation of large systems [17,18]. A second
method is that of series expansions, where entanglement
entropies are obtained as a power-series expansion in a
suitable coupling constant [19–21]. A third method is that
of numerical linked cluster expansion (NLCE), where the
entanglement properties of the thermodynamic system are
expressed as a sum over the contributions from different-sized
clusters, which can be evaluated numerically through exact
diagonalization [22,23].

Different methods have their advantages and disadvantages.
The QMC method deals with finite systems, and its conver-
gence can be rigorously established by sufficient sampling.
One then needs an extrapolation to the thermodynamic limit.
Since rather large system sizes can be simulated, many quanti-
ties can be calculated with high accuracy. The series expansion
method is particularly suitable for a system in which a small
parameter exists. In that limit, it provides highly accurate
answers in the thermodynamic limit. However, critical points
necessarily lie at the boundary of the convergence radius of
the series, and thus studying critical properties requires the
use of series extrapolation methods [24]. Both QMC and series
expansion methods are suitable for calculating Rényi entropies
of low integer order. In contrast, the NLCE method can be used
to calculate any index Rényi or von Neumann entanglement
entropy. Series expansions and NLCE are also particularly
useful for studying entanglement contributions from corners
and other subleading manifolds as those contributions can be
analytically isolated from those of other larger boundaries.

Unbiased calculations of entanglement properties of inter-
acting lattice fermion systems in dimensionality greater than
1 have only recently been initiated. In a system with only
bilinear fermion terms in the Hamiltonian, the correlation
matrix method provides a very efficient method [25–27].
This technique is very powerful, allowing for calculations
of ground-state, excited-state, finite-temperature, or nonequi-
librium entropy. All Rényi or von Neumann entropies can
be computed with similar ease. Recently, several unbiased
approaches for treating interacting fermion systems were
proposed using quantum Monte Carlo techniques [18,28–30].
In particular, Ref. [28] uses the determinant quantum Monte
Carlo (DQMC) method to calculate the low integer Rényi
entropies, and has triggered many applications [31,32]. This
is the method we employ here.

The bilayer Hubbard model is a particularly simple model
that is known to have several phase transitions [33–35]. In the
large U limit, it reduces to the bilayer Heisenberg model, which
has been extensively studied using quantum Monte Carlo
simulations and other methods [36–38]. When the interlayer
coupling is weak, the model has a Néel ordered phase. When
the interlayer coupling is strong, it has a spin-gapped singlet
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FIG. 1. (Color online) Subsystem partitions studied in this work:
(a) single layer and (b) two half layers. The corresponding entangle-
ment entropies are denoted by Ss

2 and Sh
2 , respectively.

phase. The two phases are separated by a second-order phase
transition. It has been shown numerically that the transition
is in the universality class of the three-dimensional classical
Heisenberg model [36].

The entanglement entropy offers a potentially very in-
teresting way of studying this model. In addition to the
possible signature of the phase transition, the entanglement
entropy can also provide a measure of the Fermi surface
properties of the system. It is well known that in noninteracting
fermion systems, there is a logarithmic breakdown of the
area law. Furthermore, this breakdown can be related via
the Widom conjecture to quantitative geometrical features of
the Fermi surface relative to the boundary partitioning the
two subsystems [12,39–43]. Thus, entanglement entropy can
provide direct evidence for a Fermi surface [44,45] and hence
a metallic phase in the model.

In this work, we study entanglement properties in the
antiferromagnet (AF) to band insulator (BI) transition of the
bilayer Hubbard model. We study two bipartitions of the
lattice, one where the lattice is divided into two planes and
another where the system is split up into two halves along
one axis of the square lattice, as illustrated in Fig. 1. Our
study of the tight-binding model further confirms the Widom
conjecture. One can also see the metal to band-insulator
transition and associated singularity in the tight-binding model
study. For the Hubbard model, entanglement properties are
examined as a function of interlayer hopping. We also discuss
challenges in extracting critical properties of the Rényi entropy
and suggest possible solutions.

II. BILAYER SQUARE-LATTICE HUBBARD MODEL

The bilayer square-lattice Hubbard model is defined by the
following Hamiltonian:

H = − t
∑
�σ

∑
〈ij〉

(c†i�σ cj�σ + H.c.) − tz
∑

iσ

(c†i1σ ci2σ + H.c.)

+ U
∑

i�

(
ni�↑ − 1

2

)(
ni�↓ − 1

2

)
− μ

∑
i�σ

ni�σ . (1)

Here c
†
i�σ (ci�σ ) creates (annihilates) an electron at site i with

spin σ ∈ {↑,↓} on an L × L × 2 lattice. � ∈ {1,2} is the layer
index. t and tz are intra- and interlayer hoppings, respectively.
U > 0 is the on-site repulsion, and the chemical potential μ

determines the density of the system. We measure the energy
in units of t = 1. The chemical potential is kept at μ = 0 so
that the system stays half filled.

In the tight-binding limit, U = 0, the physics of the
system is determined solely by the interlayer hopping tz.

tz = 2.0 tz = 4.5(a) (b)

tz = 0 tz = 4

band insulatormetal
(c)

FIG. 2. (Color online) Noninteracting density of states of the
half-filled bilayer system at (a) tz = 2.0 and (b) tz = 4.5. The Fermi
level is at ω = 0. (c) Noninteracting phase diagram of the model
equation (1).

As demonstrated in Fig. 2, at tz � 4 the system is in the
metallic phase with fully nested bonding and antibonding
Fermi surfaces and a finite density of states at the Fermi level.
For tz > 4, a gap opens up at the Fermi level, and the system
becomes a band insulator. The phase transition at U = 0 is
associated with the closing of the gap in the particle-hole
excitation spectra, and this gap closes continuously.

At finite U , the model has been studied by several groups
using numerical methods such as QMC [33,46], dynamical
mean-field theory (DMFT) [34], and variational Monte Carlo
(VMC) [35]. These studies generally agree that at large U ,
there is a direct transition from a singlet to a Néel phase as the
interlayer hopping is varied. However, properties of the model
at small U remain controversial. Is there a direct transition from
a singlet to a Néel phase as interlayer hopping matrix elements
are varied? Early DQMC [33] and DMFT [34] studies suggest
a paramagnetic metal phase. However, in roughly the same
parameter range, recent combined functional renormalization
group and DQMC [46] as well as the VMC [35] works predict
a Néel phase. We will not address the details of the phase
diagram in this paper. Rather, we will examine entanglement
properties of the system across the phase transition at small U

where there are no exact results.

III. RÉNYI ENTANGLEMENT ENTROPY

For a quantum many-body system divided into two disjoint
subsystems A and B, one can define a reduced density matrix
for subsystem A by tracing out the degrees of freedom in
B: ρA = TrB (|�〉〈�|), where |�〉 is the ground state of the
total system. Then the Rényi entanglement entropy can be
calculated from ρA as

Sn = 1

1 − n
log

[
Tr

(
ρn
A
)]

, (2)

where the von Neumann entropy can be recovered in the n → 1
limit. In this paper, we focus on the second Rényi entanglement
entropy, i.e., n = 2. For the bilayer square lattice, we consider
the two different subsystem partitions shown in Fig. 1 and
label the corresponding second Rényi entropies as Ss

2 and Sh
2 ,

respectively.
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When there is no interaction, the model can be treated as
two independent collections of spinless free fermions. In this
case, the reduced density matrix ρA factorizes, and for each
collection, the second Rényi entropy can be expressed in terms
of eigenvalues of the correlation matrix defined as [25–27]

Cij = 〈c†i cj 〉, (3)

where i,j ∈ A and 〈· · · 〉 denotes the expectation value with
respect to the ground state. We numerically diagonalize the
tight-binding Hamiltonian and construct Cij using the ground-
state orbitals. Let λk denote the eigenvalues of Cij; then the
Rényi entropy S2 is given by

S2 = −
∑

k

log
[
λ2

k + (1 − λk)2
]
. (4)

For interacting itinerant fermions, the correlation matrix
method is not applicable, and measuring the entanglement
properties of the system often requires knowledge of the
ground-state wave function. Recently, there have been propos-
als to compute the Rényi entropy for lattice fermions using a
QMC technique that does not require access of the ground-state
wave function. For example, by writing S2 as a ratio of
partition functions, a generic scheme based on path-integral
Monte Carlo was developed in Ref. [18]. This method has
been successfully applied to the single-band Hubbard model
in one dimension [47] and becomes the basis of a more recent
proposal to compute S2 within the DQMC scheme [29].

In this work, we adopt the scheme proposed in Ref. [28].
This technique exploits the fact that DQMC maps interacting
fermions into a system of free fermions coupled to fluctuating
auxiliary fields. For a given set of auxiliary fields, the trace in
Eq. (2) can then be carried out explicitly, and the second Rényi
entropy is expressed as [28]

S2 =− log

⎛
⎝ ∑

{s},{s ′}
PsPs ′ det{GA(s)GA(s ′)

+ [I − GA(s)][I − GA(s ′)]}
⎞
⎠ . (5)

Here {s} and {s ′} represent two sets of auxiliary fields.
Ps , Ps ′ are the probability distributions used to sample the
fields. GA(s) and, similarly, GA(s ′) are one-particle Green’s
functions whose spatial indices are restricted within subregion
A. I is the identity matrix. While this technique allows the
measurement of higher-order Rényi entropies Sn [28,31], it
cannot directly access the von Neumann entanglement entropy.
Measuring Sn requires n replicas of subsystems. As a result,
the computation of Sn is significantly more demanding and not
much more informative [22]. Therefore, in this work we only
focus on S2.

IV. RESULTS AND DISCUSSIONS

A. Noninteracting bilayer model

We first discuss entanglement properties for free electrons
on the bilayer square lattice. Figure 3 summarizes the second
Rényi entropy as a function of tz. Both Ss

2 and Sh
2 show a

sharp signal at the critical point tz = 4.0. For the first partition

FIG. 3. (Color online) The second Rényi entropy as a function of
interlayer hopping tz for noninteracting electrons on bilayer square
lattices at half filling. L is the linear dimension of the bilayer lattice.
The plateau structure seen for tz < 4 is caused by the ground-state
degeneracy at the Fermi surfaces of free electrons on finite lattices.

where subsystemA is a single layer (see Fig. 1), Ss
2 approaches

the value 4(L − 1) ln 2 when tz → 0, which, surprisingly, is
different from the tz = 0 case, where it vanishes identically. To
understand the results, let us recall that for tz = 0, the ground
state can be chosen independently in the two planes. There
should be no entanglement. However, ground-state degeneracy
leads to finite entanglement for infinitesimal tz. To see this,
consider the Fermi surfaces with tz set to zero. In each plane
and for each spin component, the Fermi surface consists
of the diamond-shaped boundary of the antiferromagnetic
Brillouin zone at half filling. For an L × L square lattice,
exactly (2L − 2) k points lie on the Fermi surface for each
spin component. Half of them will be occupied, and the
other half will be unoccupied. This degeneracy is lifted by
an infinitesimal tz, which leads to an equal number of bonding
and antibonding states with all the bonding states having
negative energy and all the antibonding states having positive
energy. Thus, at nonzero tz, all the bonding states will be
occupied, and all the antibonding states will be empty. Each
occupied bonding state contributes ln 2 to the entanglement
entropy between the planes. There are (2L − 2) k points where
such bonding states happen at the Fermi surface for each
spin component. This gives us a total entanglement entropy
between the planes of 4(L − 1) ln 2.

In the insulating phase tz � 4.0, the system consists of
localized singlet pairs across the layers. We observe that
Ss

2 = 2L2 ln 2. This is because for free electrons, each spin
component (up or down) contributes ln 2 to the entropy at
each site since the bonding state is occupied. Thus, the total
entanglement entropy for the free-fermion bilayer is 2L2 ln 2.
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FIG. 4. (Color online) Scaling properties of (top) Ss
2 and (bottom)

Sh
2 for the noninteracting bilayer model. Dotted lines represent linear

fits to the data extracted from Fig. 3 at selected tz’s.

Alternatively, the free-fermion singlet state on every pair of
sites of the bilayer has ln 4 entropy because the reduced density
matrix has four equally likely choices: empty, spin up, spin
down, and both present. As a result, the total entropy is also
L2 ln 4 = 2L2 ln 2 as there are L2 pairs of sites.

The second Rényi entropy behaves quite differently for the
second partition where A has two half layers. In particular, Sh

2
decreases monotonically with increasing tz. In the insulating
phase where the lattice is filled with localized singlet pairs,
Sh

2 = 0 since A and the rest of the lattice are decoupled
completely.

Next, we move on to examining the scaling properties of S2.
In the band-insulator phase, the previously mentioned result
Ss

2 = 2L2 ln 2 indicates that Ss
2 scales as the “volume” of A,

i.e., L2. To examine the scaling behavior of Ss
2 in the metallic

phase, we plot in the top panel of Fig. 4 Ss
2/L

2 versus the linear
dimension L of the subsystem for tz < 4.0. The data are fitted
to a linear function, and the results are shown as dotted lines
in Fig. 4. Within regression uncertainties, the slope of the fit
is essentially zero, implying that Ss

2 ∼ L2. In other words, Ss
2

obeys a “volume law.” This result is a consequence of the fact
that the interfacial area due to the partition scales as L2.

The entanglement properties for the second partition (two
half layers) are more intricate in the range tz < 4.0. Since the
orientation of the boundary between A and B and the normal
vector of the Fermi surfaces are no longer perpendicular, the
behavior of Sh

2 is closely connected to the local geometry of
Fermi surfaces. In the bottom panel of Fig. 4, we show the

FIG. 5. (Color online) Squares represent the coefficient of the fit
Sh

2 /L = α ln L + β as a function of interlayer hopping tz. The vertical
line denotes the uncertainty of the regression. The solid curve is the
function α(tz) = 1/(2π ) cos−1(tz/2 − 1) derived using Eq. (6) for the
noninteracting bilayer model.

scaling of Sh
2 in the metallic phase. Dotted lines are fits to

the data according to the formula Sh
2 /L = α ln L + β. Instead

of an area law where Sh
2 ∼ L, the result of the fits shows

that there is a logarithmic correction to the area law. We
note that in the bottom panel of Fig. 4, there are outliers in
the Sh

2 /L versus ln L plot at tz = 1.312, 2.726, and 3.736.
These fluctuations result from finite-size effects produced by
ground-state degeneracy at the Fermi level. Such effects have
a strong dependence on L and tz.

For free fermions such a logarithmic correction to the
area law is expected [40]. The coefficient of the logarithmic
correction has been derived in Ref. [39] based on the Widom
conjecture [48]:

α(tz) ∼
∫

FS
|n̂x · n̂k| dSxdSk. (6)

The integral is carried out over the surfaces of the subsystem
and the Fermi surface. n̂x and n̂k are the unit normal vectors
to the surfaces. In Fig. 5, we compare the exact result of
free fermions and the coefficient α(tz) extracted from the fits.
The agreement is reasonably good and supports the Widom
conjecture for the bilayer tight-binding model.

B. Bilayer Hubbard model

The behavior of the second Rényi entropy for the bilayer
Hubbard model is shown in Fig. 6 at temperature T/t = 0.05.
We have performed simulations at different temperatures and
made sure the results do not change with temperature when
T/t reaches 0.05. As indicated by Eq. (5), the method relies
on computing the determinant of single-particle Green’s func-
tions, which become ill conditioned at large U/t values [49].
Therefore, the interaction strength will be constrained in the
range U/t � 4.0 in our work.

Using Eq. (5), the Monte Carlo procedure accumulates
statistics for the trace of the squared reduced density matrix
Tr(ρ2

A), and the Rényi entropy is a derived quantity from the
final results. To obtain a reliable estimation of S2 and minimize
possible bias, we use the jackknife resampling method to
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FIG. 6. (Color online) The second Rényi entropy for the bilayer Hubbard model as a function of interlayer hopping tz. The top and bottom
rows show Ss

2 and Sh
2 , respectively. Simulations are performed at temperature T/t = 0.05. Each data point is obtained by averaging over

periodic and antiperiodic boundary conditions. In (a)–(c), the open diamonds represent the ground state Ss
2 for the bilayer Hubbard model in

the tight-binding (tb) limit U = 0 computed using the correlation matrix technique.

estimate S2 and its statistical error. We also average the data
over periodic and antiperiodic boundary conditions in order to
reduce finite-size effects.

Figures 6(a)–6(c) summarize S2 for the single-layer par-
tition at U = 1.0, 2.0, and 4.0. The overall behavior of Ss

2
as a function of tz is similar to that for free fermions: the
entanglement entropy increases monotonically with tz and
saturates when tz � t cz . For comparison, we also plot Ss

2 of
free fermions for L = 10 and 12. The data (represented by
open diamonds) are consistent with the bilayer Hubbard model
results, albeit finite-size fluctuations are much stronger in the
free-fermion data. At a given L, the maximal value of Ss

2
for the bilayer Hubbard model agrees with the free-fermion
result. This, again, is due to the fact that Ss

2 only picks up
short-range entanglement between singlet pairs across the
two layers. We speculate that the observed critical t cz in the
bilayer Hubbard model also corresponds to the place where
the singlets start to break up, indicating the onset of the singlet
to AF transition. For U = 1.0 and 2.0, t cz ∼ 4.0; however,
at U = 4.0, the entanglement entropy plateaus at a slightly
lower t cz ∼ 3.5. Interestingly, these values are very close to
the AF-BI transition phase boundary predicted by the VMC
study [35].

Next, we turn our attention to the partition containing two
half layers. Simulations are carried out at weak to moderate
coupling strengths. Although details of the phase diagram in
this parameter range are still under debate, it is generally
agreed that at U � 4, there is a direct AF to BI transition
[33–35]. In the Heisenberg limit where U → ∞, however,
the phase transition is well characterized [36–38]. Recently,
it has also been shown that the leading area-law coefficient
shows a local maximum at the quantum critical point [50],
signaling the phase transition in the Heisenberg square-lattice
bilayer.

The Rényi entropy Sh
2 as a function of the interlayer hopping

tz is plotted in Figs. 6(d) � 6(f) at temperature T/t = 0.05
and U = 1.0, 2.0, and 4.0 respectively. As a reference, the
free-fermion Sh

2 data are also shown in the same plots for
L = 10 and 12 (empty diamonds). The plateau-like structure in
the free-fermion data is caused by the degeneracy at the Fermi
surfaces on a finite lattice. At U = 1, the Sh

2 data still show
kinks near the edge of the U = 0 plateaus. As the interaction
strength is increased, the kinks become less pronounced. This
suggests that the U = 0 finite-size fluctuations can get carried
over at small U ’s and produce the kinks. A general trend
of Sh

2 for the system is that it reduces with increasing tz.
However, unlike the free-fermion case, here the Rényi entropy
converges at a very slow rate to a low value for tz � 4.0. The
comparison between the free-fermion and the Hubbard model
data suggests that Sh

2 gets enhanced, particularly in the region
tz � 3.0, by increasing U . It is likely that the enhancement
in the Rényi entropy is due to antiferromagnetic correlations
developed across the two subsystems when the interaction is
increased.

In Figs. 7(a) and 7(b), Ss
2 is rescaled by L2 and plotted

against tz for U = 1.0 and 2.0, respectively. While the data
have finite-size fluctuations at small L’s, the plots show
reasonably good data collapse, indicating that Ss

2 scales as the
volume of the subsystem, just as in the free-fermion case. In
the case of Sh

2 , we plot in Figs. 7(c) and 7(d) Sh
2 /L as a function

of interlayer hopping at U = 1.0 and 2.0. If the system has AF
ordering in this parameter range, as demonstrated by the VMC
results [35], the entanglement entropy is expected to scale
linearly as L. In the region 0 < tz < 4.0, Figs. 7(c) and 7(d)
seem to suggest that Sh

2 scales faster than L. In Figs. 7(e)
and 7(f), Sh

2 /L is fitted to a linear function α ln L + β for
several values of tz. The results for tz < 4.0 suggest that a loga-
rithmic correction to the linear scaling of Sh

2 might be possible.
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FIG. 7. (Color online) Scaling analysis of the Rényi entropy for the bilayer Hubbard model at U = 1 and 2. (a) and (b) S2
2/L

2 vs tz. Both
plots show good data collapse, suggesting a “volume law” for Ss

2. (c) and (d) Sh
2 /L vs tz. If the system has an AF order, Sh

2 is expected to have
a linear scaling in L. The plots, however, do not support the claim for small tz. (e) and (f) Sh

2 /L fitted to an ansatz α ln L + β. Dotted lines are
results of the fit at several representative tz values. These regression results indicate a possible logarithmic correction to the “area law.”

However, in order to differentiate the behavior of Sh
2 near the

phase transition, it is necessary to carry out a finite-size scaling
study of the Rényi entropy for larger system sizes. In particular,
if the logarithmic correction to the linear scaling of Sh

2 could be
confirmed at U � 2.0, it would indicate the possible existence
of a Fermi surface. Likewise, a linear scaling of Sh

2 is expected
in the AF phase when U is sufficiently large compared to the
bandwidth. As can be seen from Fig. 6, our data suffer from
strong statistical uncertainties in the region of interest. The
fluctuations seem to grow with the lattice dimension L and the
coupling strength U , making it challenging to simulate large
lattices at low temperatures.

We recall that the formalism presented by Eq. (5) requires
an explicit computation of the determinant of one-particle
Green’s functions. At zero temperature, it has been pointed
out that the determinant may not exist [31], and a thermal
broadening scheme is proposed to mend the issue [31]. At finite
temperatures, it is known [49] that, even at moderate coupling
strengths, the Green’s function matrix is ill conditioned at
low temperatures. As an example, the ratio of the largest and
smallest eigenvalues of the inverse of the Green’s function is
of the order 1080 on a 16 × 16 square lattice with U = 6.0 and
temperature T/t = 0.067 [51]. This is the primary issue that
plagues large-scale DQMC simulations at low temperatures.
An efficient matrix decomposition scheme has been proposed
to treat the instability issue inherited in DQMC and allows
large-scale simulations to be carried out successfully [51,52].
A similar stabilization scheme will be necessary in order to
extract S2 by directly computing determinants.

Very recently, an alternative method of measuring the
entanglement entropies has been proposed [29]. The method
expresses the Rényi entropy as a logarithmic function of the
ratio of two partition functions which can be sampled directly

within DQMC scheme. This technique avoids the need for
computing determinants and has been shown to be more
accurate than Eq. (5).

V. SUMMARY

In this work, we have studied entanglement properties
across the AF-BI transition in the bilayer Hubbard model.
We focused on the two bipartitions illustrated in Fig. 1. Using
the correlation matrix method, we have demonstrated that in
the tight-binding limit, the second Rényi entropy shows sharp
signals in the metal-BI transition. For the single-layer partition,
the entanglement entropy follows a strict volume law due to the
singlet formation across the layers. For the partition consisting
of two half layers, we were able to show a logarithmic
breakdown of the area law and to confirm the prediction based
on Widom’s conjecture. For the bilayer Hubbard model, we
have identified the value of tz that corresponds to the breakup
of singlet pairs across the bilayer, signaling the onset of the
AF to BI phase transition. However, we were not able to
pinpoint the critical point using the entanglement entropy data
because of large statistical uncertainties and the limited size
of the simulation cells. Finally, we have commented on the
challenges of computing S2 using the formalism adopted in
our study.

ACKNOWLEDGMENTS

C.C.C. and R.T.S. are supported by a DOE grant under
Contract No. DE-NA0001842-0 and the University of Califor-
nia Office of the President. R.R.P.S. acknowledges the support
from NSF Grant No. DMR-1306048.

155113-6



ENTANGLEMENT PROPERTIES OF THE . . . PHYSICAL REVIEW B 90, 155113 (2014)

[1] P. Calabrese and J. Cardy, J. Stat. Mech. (2004) P06002.
[2] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277

(2010).
[3] M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Phys. Rev. B 80,

115122 (2009).
[4] M. Levin and X. G. Wen, Phys. Rev. Lett. 96, 110405 (2006).
[5] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006).
[6] S. V. Isakov, R. G. Melko, and M. B. Hastings, Science 335, 193

(2012).
[7] S. Yan, D. A. Huse, and S. R. White, Science 332, 1173

(2011).
[8] H. C. Jiang, Z. Wang, and L. Balents, Nat. Phys. 8, 902 (2012).
[9] S. Depenbrock, I. P. McCulloch, and U. Schollwock, Phys. Rev.

Lett. 109, 067201 (2012).
[10] J. M. Deutsch, H. Li, and A. Sharma, Phys. Rev. E 87, 042135

(2013).
[11] L. F. Santos, A. Polkovnikov, and M. Rigol, Phys. Rev. E 86,

010102(R) (2012).
[12] M. Storms and R. R. P. Singh, Phys. Rev. E 89, 012125

(2014).
[13] M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, Phys.

Rev. Lett. 100, 070502 (2008).
[14] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
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[17] M. B. Hastings, I. González, A. B. Kallin, and R. G. Melko,

Phys. Rev. Lett. 104, 157201 (2010).
[18] S. Humeniuk and T. Roscilde, Phys. Rev. B 86, 235116

(2012).
[19] R. R. P. Singh, M. B. Hastings, A. B. Kallin, and R. G. Melko,

Phys. Rev. Lett. 106, 135701 (2011).
[20] A. B. Kallin, M. B. Hastings, R. G. Melko, and R. R. P. Singh,

Phys. Rev. B 84, 165134 (2011).
[21] R. R. P. Singh, R. G. Melko, and J. Oitmaa, Phys. Rev. B 86,

075106 (2012).
[22] A. B. Kallin, K. Hyatt, R. R. P. Singh, and R. G. Melko, Phys.

Rev. Lett. 110, 135702 (2013).
[23] A. B. Kallin, E. M. Stoudenmire, P. Fendley, R. R. P. Singh, and

R. G. Melko, J. Stat. Mech. (2014) P06009.
[24] J. Oitmaa, C. Hamer, and W. Zheng, Series Expansion Methods

for Strongly Interacting Lattice Models (Cambridge University
Press, Cambridge, 2006).

[25] V. Eisler and I. Peschel, J. Stat. Mech. (2007) P06005.

[26] I. Peschel and V. Eisler, J. Phys. A 42, 504003 (2009).
[27] H. F. Song, S. Rachel, C. Flindt, I. Klich, N. Laflorencie, and

K. Le Hur, Phys. Rev. B 85, 035409 (2012).
[28] T. Grover, Phys. Rev. Lett. 111, 130402 (2013).
[29] P. Broecker and S. Trebst, J. Stat. Mech. (2014) P08015.
[30] L. Wang and M. Troyer, Phys. Rev. Lett. 113, 110401 (2014).
[31] F. F. Assaad, T. C. Lang, and F. P. Toldin, Phys. Rev. B 89,

125121 (2014).
[32] D. Wang, S. Xu, Y. Wang, and C. Wu, arXiv:1405.2043.
[33] K. Bouadim, G. G. Batrouni, F. Hébert, and R. T. Scalettar, Phys.
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