
PHYSICAL REVIEW B 90, 155105 (2014)

Infrared-active phonon modes in monoclinic multiferroic MnWO4
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We report on polarized infrared reflectivity measurements of multiferroic, monoclinic MnWO4 between 10 and
295 K. All five nonvanishing components of the dielectric tensor have been determined in the frequency range of
the phonons. All infrared-active phonon modes (7 Au modes and 8 Bu modes) are unambiguously identified. In
particular, the strongest Bu modes have been overlooked in previous studies, in which the monoclinic symmetry
was neglected in the analysis. The combined analysis of reflectance data measured in different experimental
geometries (Rac and Rp) is particularly helpful for a proper identification of the Bu modes. Using a generalized
Drude-Lorentz model, we determine the temperature dependence of the phonon parameters, including the
orientation of the Bu modes within the ac plane. The phonon parameters and their temperature dependence were
discussed controversially in previous studies, which did not include a full polarization analysis. Our data do not
confirm any of the anomalies reported above 20 K. However, in the paramagnetic phase we find a drastic reduction
of the spectral weights of the weakest Au mode and of the weakest Bu mode with increasing temperature. Below
20 K, the parameters of the Au phonon modes for E ‖ b show only subtle changes, which demonstrate a finite but
weak coupling between lattice dynamics and magnetism in MnWO4. A quantitative comparison of our infrared
data with the quasistatic dielectric constant εb yields a rough estimate for the oscillator strength �εem � 0.02
of a possible electromagnon for E ‖ b. Furthermore, we report on a Kramers-Kronig-consistent model which is
able to describe non-Lorentzian line shapes in compounds with monoclinic symmetry.
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I. INTRODUCTION

The metal tungstate family AWO4 with divalent A metal
ions includes a number of compounds with interesting proper-
ties. The range of possible applications is very broad, including
(phonon-) scintillation detectors, laser waveguides, laser crys-
tals, and photocatalysis [1–6]. The compound MnWO4, also
known from nature as mineral hübnerite, belongs to the class
of multiferroics, displaying a coexistence of antiferromagnetic
and ferroelectric order parameters [7–9]. The Mn2+ ions
are in a high-spin 3d5 configuration with spin S = 5/2.
Magnetic frustration leads to a competition of magnetic
ground states. Upon cooling, one finds a series of magnetic
phase transitions [9,10], first to an incommensurate collinear
antiferromagnetic phase (AF3) at TN3 = 13.5 K, then to an
incommensurate spiral phase (AF2) at TN2 = 12.5 K, and fi-
nally at TN1 ≈ 6.5 − 8.0 K to a commensurate collinear phase
(AF1). A ferroelectric polarization and thus magnetoelectric
multiferroicity is observed in the AF2 phase [7–9] as well
as in a further phase occurring in high magnetic fields [11].
The spontaneous polarization is parallel to the b axis [8,9].
Ferroelectricity originates from the spiral spin structure via the
inverse Dzyaloshinskii-Moriya effect [7–9,12–14]. Recently, it
was pointed out that competing isotropic exchange interactions
are also important for multiferroicity [15]. The coupling
between electric and magnetic effects gives rise to particularly
rich physics, ranging from the switching of the electric polar-
ization by an external magnetic field [7–9] via the coupling
of magnetic and electric domains [16] to second-harmonic
generation from an incommensurate magnetic structure [17]
and to a magnetoelectric memory effect [18,19].

The magnetoelectric coupling is not restricted to static
properties, but is also relevant for the dynamics. The char-
acter of magnons may change from purely magnetic to

magnetoelectric, and these so-called electromagnons can be
excited by the electric field component of an electromagnetic
wave [20–23], i.e., electromagnons contribute to the optical
conductivity and to the dielectric function ε(ω). The spectral
weight of the electromagnons has to be transferred from
another dipole-active excitation [21,24]. In the multiferroic
phase of the manganites AMnO3 (with A = Gd1−xTbx and
Eu1−xYx), the spectral weight of the electromagnons partially
stems from the phonon mode lowest in energy [25–33]. This
behavior differs from the familiar case of proper ferroelectrics
with a displacive phase transition. There, the continuous phase
transition into the polar phase is accompanied by the softening
of an infrared-active phonon mode. At the phase transition,
the vanishing phonon frequency ω0 leads to a divergence
of the static permittivity via a diverging contribution to the
dielectric function (or oscillator strength) �ε ∝ (ωp/ω0)2,
where ωp denotes the plasma frequency of the phonon. This
does not require a change of the phonon’s spectral weight
∝ω2

p in the optical conductivity. Multiferroic MnWO4 is an
improper ferroelectric, in which ferroelectricity is not directly
connected to a softening phonon but rather to the onset
of complex magnetic order. In this case, the multiferroic
phase transition may be accompanied by the softening of an
electromagnon as discussed for DyMnO3 [34]. A finite spectral
weight for electromagnons is expected due to the reduced
symmetry in the multiferroic phase with an order parameter of
magnetoelectric origin. This spectral weight may stem from
the phonons [21]. A detailed study of the lattice vibrations
and of the phonon parameters thus may provide valuable in-
formation about the ferroelectric transition and the spin-lattice
coupling.

In monoclinic MnWO4, several results suggest that the
spin-lattice coupling is only weak. High-resolution thermal
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expansion data show subtle but clear anomalies at both TN1

and TN3 [35]. The ferroelectric polarization is of the order of
50 μC/m2 [8,9], more than an order of magnitude smaller than
in, e.g., TbMnO3 [36]. At TN1, the static dielectric constant
along the b axis, εb, shows only a small jump of roughly
0.01 [8,9], which is about two orders of magnitude smaller than
the effects observed in the manganites at low frequencies [36].

The phonon modes of MnWO4 have been studied by
Raman scattering and optical spectroscopy. Using polarized
Raman scattering, Iliev et al. [37] found no anomalies of
the phonon parameters down to 5 K, while Dura et al. [38]
reported an enhanced damping of several phonon modes in the
ferroelectric AF2 phase which was attributed to spin-phonon
interactions. In contrast, Hoang et al. [39] observed phonon
anomalies at about 50 K and between 150 and 200 K in their
Raman data of MnWO4 and suggested a new phase transition
at 180 K, far above the known magnetic phase-transition
temperatures. As far as the infrared-active phonon modes
are concerned, a consistent description is still lacking. Choi
et al. [40] measured polarized reflectivity spectra for three
different polarization directions of the electric field E (E ‖ a,
b, and c), which is not sufficient for a proper identification of
the eigenmodes in this monoclinic compound where a and c

are not mutually perpendicular. To the best of our knowledge,
an analysis of the full dielectric tensor in the frequency range
of the phonons has not been reported for any monoclinic
tungstate AWO4 with divalent A metal ions thus far. Choi
et al. [40] found no anomalies of the phonons as a function
of temperature and reported only representative data on the
temperature dependence for two high-energy features above
80 meV.

Remarkably, stronger anomalies were reported both in
Raman and infrared data for polycrystalline samples of
Mn1−xAxWO4 doped with a few percent of A = Fe, Co, or
Ni [41,42]. Most of these anomalies were observed between
20 and 200 K, i.e., far above the magnetic phase-transition
temperatures of undoped MnWO4. In the case of A = Co,
high-resolution synchrotron x-ray diffraction data [43] for
x = 0.05 and 0.20 show only small anomalies at the magnetic
phase transitions. Moreover, the reported eigenfrequencies of
the slightly doped samples [41,42] strongly deviate from those
reported for pure MnWO4 [40]. None of these studies takes
the monoclinic structure fully into account. For monoclinic
symmetry, optical phonon modes in general show a mixture
of transverse (TO) and longitudinal (LO) character, and this
mixture depends on the direction of the wave vector k. Due
to the LO-TO splitting, the eigenfrequency of a given phonon
mode also depends on the direction of k, thus the apparent peak
frequency varies with the geometry of the experiment [44,45].
This explains the difficulties in determining the correct
eigenfrequencies, in particular for polycrystalline samples.

Further infrared studies were performed on nanocrystalline
MnWO4 with different morphologies of the nanoparticles
[46–48]. In contrast to Raman modes, the infrared-active
phonons show a pronounced dependence on particle size and
morphology [46,47]. As stated above, this is not surprising
since the TO-LO mixture and thus the mode frequency depend
on the direction of k [44]. It has been concluded [46] that a
detailed understanding of the bulk modes is a prerequisite for
a correct description of the phonon modes of nanocrystals.

Here, we report on a full polarization analysis of single-
crystalline MnWO4, which allows us to identify unam-
biguously all expected phonon modes, both for Au and
Bu symmetry. Using a generalized Drude-Lorentz model,
we determine the temperature dependence of all phonon
parameters, including the orientation of the Bu modes within
the ac plane. A comparison to previous studies [40–42] shows
that in particular the strongest modes have been overlooked
thus far. This surprising result can be explained easily. Weaker
modes show a small LO-TO splitting and thus give rise to rather
narrow but clear features. Strong modes with a very large
LO-TO splitting yield broad features, and the orientational
dispersion of the dielectric tensor gives rise to unusual line
shapes of these broad peaks. Moreover, the TO-LO mixture
depends on the direction of the wave vector k; thus the
eigenfrequency of modes with a large LO-TO splitting may
change strongly as a function of k.

The paper is organized as follows. Experimental details
are given in Sec. II, followed in Sec. III by a factor-
group analysis. Section IV describes the dielectric tensor in
monoclinic symmetry as well as the models used to analyze
the infrared data, i.e., a generalized Drude-Lorentz model
(Sec. IVA), an asymmetric, Kramers-Kronig-consistent oscil-
lator model (Sec. IVB), and a Kramers-Kronig-constrained
variational approach (Sec. IVD). The reflectivities Rb, Rac,
and Rp measured in different experimental geometries are
introduced in Sec. IVC. Section V describes our results
for the phonon modes. In Secs. VA and VB we address
the Au and Bu modes, respectively, followed by a detailed
discussion of the line shape of the highest Bu mode in
Sec. VC. Finally, the temperature dependence and the transfer
of spectral weight from the phonons to either lower or higher
frequencies are discussed in Sec. VD. Conclusions are given
in Sec. VI.

II. EXPERIMENT

Single crystals of MnWO4 were grown from the melt using
the top-seeding technique. The Mn ions can be kept in the
divalent state during growth by using a high growth temper-
ature and avoiding melt solvents [5]. We obtained ruby-red
transparent crystals with dimensions up to 5 × 5 × 25 mm3.
The crystal structure [49,50] of MnWO4 is monoclinic with
space group P 2/c, the monoclinic angle amounts to β =
91.08◦. Edge-sharing distorted [MnO6] octahedra and edge-
sharing distorted [WO6] octahedra form alternating zig-zag
chains running along the c axis, see Fig. 1. We used natural
growth faces and Laue diffraction for the crystallographic
sample orientation. After orientation, the samples were lapped
and polished.

Using a Bruker IFS 66v/S Fourier-transform spectrometer,
we performed reflectivity measurements at nine different
temperatures ranging from 10 to 295 K in the frequency
range of 50–7000 cm−1. The sample was mounted on the
cold finger of a continuous-flow He cryostat. The angle of
incidence α was about 11◦, i.e., near-normal incidence. The
incident light was linearly polarized, while the polarization
state of the reflected light was not analyzed. The temperature
of the sample was measured with a thermometer glued on the
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FIG. 1. (Color online) Sketch of the crystal structure of mono-
clinic MnWO4 highlighting the chains of WO6 octahedra running
along the c axis. Left: ac plane; right: bc plane. Dark red spheres
refer to the O(2) ions with short W-O(2) bonds of only 1.79 Å. The
WO6 octahedra are connected along edges via two O(1) ions (light
red spheres). Within one octahedron, the diagonals are either formed
by a short W-O(2) bond (thick, dark red lines) in combination with a
long W-O(1) bond (2.13 Å, thin, yellow lines) or by two of the shorter
W-O(1) bonds (1.91 Å, thin, light red lines). The two blue lines in
the bottom left corner indicate the orientations of the two highest
Bu phonon modes as derived from the infrared reflectance data. The
orientations of these two modes support the interpretation as W-O
bond stretching modes.

sample, avoiding direct thermal contact between thermometer
and sample holder. We report data down to 20 K for the
paramagnetic phase, for 13 K in the AF3 phase, and for 10 K
in the multiferroic AF2 phase. The phase transition to the
commensurate collinear AF1 phase at 6.5–8.0 K could not be
reached. Reference measurements were obtained using in situ
Au evaporation.

In monoclinic MnWO4 the b axis is perpendicular to the
ac plane. We use a Cartesian coordinate system with y ‖ b,
z ‖ c, and x lying in the ac plane with x ⊥ z, see Fig. 2(b). The
reflectivity Rb(ω) was measured on a surface containing the b

axis with polarization of the electric field E ‖ b. To avoid any
contribution from the ac plane, we chose the (010) plane as
plane of incidence, i.e., Rb(ω) was measured with s-polarized
light [E ⊥ to (010)] with an angle of incidence of α = 11◦,
see Fig. 2(a). The sample surface deviates from a (100) surface
by 10◦, i.e., ϕ = 80◦ denotes the angle by which the x axis
has to be rotated around the y axis to coincide with the sample
surface. In the same geometry, we measured the reflectivity
Rp(ω,α,ϕ) for p-polarized light, i.e., with E ⊥ b.

For a full polarization analysis of this monoclinic com-
pound, we measured the reflectivity Rac(ω,χ ) on a (010)
surface, where χ denotes the angle between the incident
electric field E and the x axis, see Fig. 2(b). For simplicity, we
assume normal incidence for the definition of χ and for the
analysis of Rac(ω,χ ). The polarization direction χ was varied
by rotating not the sample but the polarizer using a stepper
motor. This bears the advantages that the angular precision is
higher and that the polarization angle can be changed while
the sample is kept at low temperature. The disadvantage is that
the incident electric field is not exactly parallel to the ac plane
(with the exception of s-polarized light) due to the finite angle
of incidence. We measured Rac(ω,χ ) for χ = 0◦, 30◦, 60◦,

FIG. 2. (Color online) Sketches of the experimental geometries
for measuring (a) Rb(ω) and Rp(ω,α,ϕ) with (010) as plane of
incidence, and (b) Rac(ω,χ ) on a (010) surface. In both cases, the view
is along the b axis with b ‖ y. Red: Cartesian coordinates x and z ‖ c.
(a) Dotted: Surface normal. Dashed: Wave vectors of incident and
reflected light. α = 11◦ denotes the angle of incidence, and ϕ = 80◦

is the angle between the x axis and the sample surface. Rb was
measured with s-polarized light, Rp with p-polarized light. (b) For
the analysis of Rac(ω,χ ) we assume normal incidence. χ denotes the
angle by which the polarization direction of the electric field E has to
be rotated to coincide with the x axis. The angle β = 91.08◦ between
a and c axes is exaggerated for clarity.

and 90◦, see Fig. 3. Any three of these data sets can be used to
calculate Rac(ω,χ ) for any value of χ [53]. The comparison
of the measured reflectivity for χ = 60◦ with the calculated
one in Fig. 4 demonstrates the consistency of our data.

Additionally, we measured the real part of the quasistatic
dielectric constant along the b axis, Re{εb}, between 5 and
50 K at 96.8 kHz and 45 MHz. At 96.8 kHz we employed
a frequency-response analyzer (NOVOCONTROL) and a small
single crystal of MnWO4 with dimensions of about 2 × 0.5 ×
2 mm3, which was prepared as a plate-type capacitor using
silver-paint electrodes on the {010} surfaces. At 45 MHz
we used a microstrip setup and a vector network analyzer
(ROHDE & SCHWARZ). The quasistatic data show a high relative
accuracy. Here, we use the results from the infrared data to fix
the absolute value of Re{εb}.
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FIG. 3. (Color online) Reflectance Rac(ω,χ ) of MnWO4 for E ⊥
b measured on a (010) surface for four different polarization angles
χ at T = 10 K, cf. Fig. 2(b). Note the logarithmic frequency
scale.
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FIG. 4. (Color online) Solid: Measured reflectivity Rac(ω,χ )
for χ = 60◦ at T = 10 K. Red dashed: Calculated reflectivity
Rcalc

ac (60◦) = − 1
2 Rac(0◦) + Rac(30◦) + 1

2 Rac(90◦). The maximum de-
viation between measured and calculated data amounts to 5% at about
600 cm−1.

III. FACTOR-GROUP ANALYSIS

The number of phonon modes can be derived from a factor-
group analysis [51]. Monoclinic MnWO4 with space group
P 2/c has Z = 2 formula units per unit cell. For T = 295 K,
the site symmetries as well as the irreducible representations
of each atomic site are given in Table I. In the presence of
a center of inversion, Raman activity and infrared activity of
normal modes are mutually exclusive. In total the irreducible
representations contain 36 modes,

	total = 8 Ag + 8 Au + 10 Bg + 10Bu. (1)

Subtracting the acoustic modes (Au + 2 Bu) and the Raman
modes (8 Ag + 10 Bg), we find 15 infrared-active phonon
modes

	IR = 7 Au + 8 Bu. (2)

The factor-group analysis thus predicts seven Au modes for
polarization of the electric field E ‖ b and eight Bu modes
for polarization within the ac plane, E ⊥ b. The magnetic
phase transition at TN3 is not connected with a structural
phase transition [10], thus our analysis is valid down to
TN2 = 12.5 K. Below TN2, the appearance of ferroelectricity
reflects the loss of a mirror plane and a concurrent change
of the selection rules. Thus, the distinction between Raman-
active and infrared-active modes is not strictly valid anymore.
However, the ferroelectric polarization Pb is only small [7–9]
in MnWO4, about 50 μC/m2. Hence the ionic displacements
δu ∝ Pb are expected to be small, and they have escaped
detection in structural studies so far [10]. Accordingly, we
expect that the Raman-active modes acquire only a tiny

TABLE I. Atomic site symmetries [5] and irreducible represen-
tations for the atoms in monoclinic MnWO4 with space group P 2/c.

Wyckhoff Site Irreducible
atom notation symmetry representations

Mn 2(f) C2 Ag + Au + 2Bg + 2Bu

W 2(e) C2 Ag + Au + 2Bg + 2Bu

O(1) 4(g) C1 3Ag + 3Au + 3Bg + 3Bu

O(2) 4(g) C1 3Ag + 3Au + 3Bg + 3Bu

oscillator strength �ε ∝ P 2
b in the dielectric function [52]

below TN2, possibly below the detection limit.

IV. DIELECTRIC RESPONSE OF A
MONOCLINIC COMPOUND

In monoclinic MnWO4, the tensor of the dielectric function
ε̂(ω) has the following form:

ε̂(ω) =
⎛
⎝εxx(ω) 0 εxz(ω)

0 εyy(ω) 0
εxz(ω) 0 εzz(ω)

⎞
⎠ . (3)

Here, we used the Cartesian coordinate system defined in
Sec. II with y ‖ b, z ‖ c, and x lying in the ac plane (see Fig. 3).
In the absence of an external magnetic field and neglecting a
possible magnetization, the off-diagonal matrix elements εxz

and εzx are equal. We decompose the three-dimensional tensor
ε̂(ω) into a scalar εb(ω) = εyy(ω) and a two-dimensional tensor

ε̂ac(ω) =
(

εxx(ω) εxz(ω)
εxz(ω) εzz(ω)

)
. (4)

The scalar εb(ω) contains information on the Au modes
and can be studied by measuring the reflectivity Rb(ω) with
E ‖ b and a subsequent analysis using a Drude-Lorentz model
(see Sec. IV A). For the analysis of ε̂ac(ω) and the modes
with Bu symmetry, we employed three different methods: a
generalized Drude-Lorentz model [45,53] (see Sec. IV A), an
oscillator model which takes an asymmetric (non-Lorentzian)
line shape into account (see Sec. IV B), and a Kramers-Kronig-
constrained variational analysis [54] (KKvar, see Sec. IV D).
The two-dimensional tensor ε̂ac(ω) can be determined by
measuring the reflectivity Rac(ω,χ ) with E ⊥ b for three
different polarization directions χ (see Sec. II and Fig. 2).
For the analysis of Rac(ω,χ ), we assume normal incidence
and that only transverse modes are excited by the incident
wave. For E ⊥ b, the excitation of purely transverse modes
actually requires that k ‖ b, i.e., strictly normal incidence on the
(010) plane. A posteriori, this assumption of purely transverse
excitations is validated by our analysis with the exception of
the Bu mode highest in energy, which is nearly degenerate
with a longitudinal mode and shows a non-Lorentzian line
shape (see Sec. V C). We use the terms transverse mode
and longitudinal mode for, e.g., the discussion of a strong
Reststrahlen band (with reflectance close to 1) in Rac(ω,χ ),
even though a strict distinction between TO and LO modes is
generally not valid for monoclinic symmetry.

A. Generalized Drude-Lorentz model

To determine the scalar εb(ω) from the measured reflectivity
data in the frequency range of the phonon modes, εb(ω) can be
described by a sum of oscillators. We employ a Drude-Lorentz
model

εb(ω) = ε∞
b +

∑
i,Au

ω2
p,i

ω2
0,i − ω2 − iγiω

, (5)

where ε∞
b denotes the high-frequency dielectric constant, ω0,i

the transverse eigenfrequency, ωp,i the plasma frequency, and
γi the damping of the ith oscillator, where i is running over
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all Au modes. The oscillator strength is given by �εi =
(ωp,i/ω0,i)2.

The parametrization of ε̂ac(ω) is somewhat more difficult
because the axes a and c are not mutually perpendicular. For
any frequency, one can find a set of orthogonal axes within
the ac plane that yields a diagonal form of the real part of
ε̂ac and a second set of axes for which the imaginary part is
diagonal. In the case of an orthorhombic crystal, the two sets of
axes coincide and are fixed with respect to the crystallographic
axes. In the case of monoclinic MnWO4, symmetry fixes only
the y axis of the tensor ε̂ with respect to the crystallographic
axes, the two other axes may rotate within the ac plane. The
rotation angles φRe(ω) and φIm(ω) of the principal axes of
Re{ε̂ac(ω)} and Im{ε̂ac(ω)} may differ from each other and
depend on the frequency ω. This orientational dispersion of
the principal axes of the dielectric tensor usually gives rise to
so-called axial dispersion, i.e., an orientational dispersion of
the optical axes. For a given frequency ω0, φRe(ω0) �= φIm(ω0)
implies that the complex tensor ε̂ac(ω0) cannot be diagonalized
by a rotation. In terms of an oscillator model, the orientational
dispersion of ε̂ac(ω) can be described by assigning a particular
orientation to each oscillator. This generalized Drude-Lorentz
(gDL) model [45,53] reads

ε̂ gDL
ac (ω) = ε̂∞

ac +
∑
i,Bu

ω2
p,i

ω2
0,i − ω2 − iγiω

×S(θi)

(
1 0
0 0

)
S−1(θi) , (6)

where ε̂∞
ac is a symmetric real two-dimensional tensor denoting

the high-frequency contribution, θi is the angle by which the
dipole moment of mode i has to be rotated to coincide with
the x axis, and S(θi) is the rotation matrix

S(θi) =
(

cos θi − sin θi

sin θi cos θi

)
. (7)

Note that θi and φIm(ω0,i) or φRe(ω0,i) do not necessarily
coincide. In the case of a weak mode, φIm(ω0,i) may be
dominated by a stronger mode which is close in energy,
and thus θi and φIm(ω0,i) may differ significantly from each
other [55].

B. Asymmetric oscillator model

On the whole, the generalized Drude-Lorentz model yields
a satisfactory description of the reflectance of MnWO4.
However, the highest Bu phonon mode shows an unusual
line shape in Rac(ω,χ ) (see Sec. V C). In the case of a
scalar dielectric function, an asymmetric line shape [or,
more precisely, a non-Lorentzian line shape of ε(ω)] can be
described using a factorized four-parameter model [41,56,57]
which employs two different values γT,i and γL,i for the
damping of the ith oscillator at the transverse and longitudinal
eigenfrequencies. This mimics an approximately quadratic
frequency dependence of the damping γ = γ (ω). However,
the condition γL,i > γT,i has to be satisfied [58], thus the
factorized model is capable of describing an asymmetric mode
which is steep at low frequencies and washed out at the
high-frequency side. Our data show the opposite behavior
(see below). Moreover, the factorized model describes a scalar

dielectric function and cannot be written as a sum of individual
oscillators, thus the generalization of the factorized model for
monoclinic symmetry with orientational dispersion of ε̂ac(ω)
is not straightforward.

In the case of the tensor ε̂ac(ω), we choose a different
approach for the description of a non-Lorentzian line shape,
starting from a sum of oscillators as described in Eq. (6).
A thorough discussion of the frequency dependence of the
damping γ (ω) requires to treat γ (ω) as a response function to
keep ε̂ac(ω) Kramers-Kronig consistent, i.e., to obey causality.
To this end, we consider the coupling between two oscillators
as discussed by Barker and Hopfield [59] (a simplified version
valid in a narrow frequency range has been proposed by
Humlı́ček et al. [60]). More precisely, we study the coupling
of one infrared-active mode (IR) and one IR-silent mode (s)
with vanishing effective charge to describe the unusual line
shape of the highest Bu mode. A possible candidate for the
IR-silent mode is a Raman-active mode. In MnWO4, we find
the highest Bu mode at 767 cm−1 at 10 K which is close
in energy to the highest Bg mode observed at 776 cm−1 at
5 K [37]. Another possible origin of the asymmetric line shape
is the mixing between transverse and longitudinal modes, see
Sec. V C. However, we may also adopt a phenomenological
point of view, in which case we do not attempt to assign this
silent mode to a particular eigenmode of the compound but
view it as a phenomenological source for an asymmetric line
shape of the infrared-active mode. The dielectric function can
be derived from the classical equations of motion for two
damped harmonic oscillators with eigenfrequencies ωIR and
ωs and damping constants γIR and γs, respectively,

ẍIR = −ω2
IRxIR − ω2

IRs(xIR − xs) − γIRẋIR + eE0

m
e−iωt ,

(8)
ẍs = −ω2

s xs − ω2
IRs(xs − xIR) − γsẋs,

where xi denotes the displacement of oscillator i ∈ {IR,s}, t is
the time, E0 the amplitude of the driving electric field, e and m

are the effective charge and mass of oscillator “IR”, and ωIRs

describes the coupling. We are only interested in solutions for
the polarization P which oscillate with the frequency ω of the
driving force

P = ε0[ε(ω) − 1]E0e
−iωt = N

V
· exIR, (9)

with N/V being the density, and ε0 being the vacuum
permittivity. Thus the dielectric function reads

ε(ω) = 1 + ω2
p,IR

ω2
IR + ω2

IRs − ω2 − iγIRω − ω4
IRs

ω2
s +ω2

IRs−ω2−iγsω

(10)

with the plasma frequency

ω2
p,IR = 1

ε0

N

V

e2

m
. (11)

Equation (10) reduces to the conventional Drude-Lorentz
model [cf. Eq. (5)] for ωIRs = 0. For finite ωIRs, the damping
is not a real function of ω, but is effectively described by a
complex term. The main merit of this model is that it offers
a Kramers-Kronig-consistent way for the description of a
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non-Lorentzian line shape, which requires the introduction
of three additional parameters (ωs, γs, and the coupling ωIRs).
Here, we use this asymmetric model only for the Bu phonon
mode with the highest eigenfrequency. The total dielectric
function thus reads

ε̂ asym
ac (ω) = ε̂∞

ac +
7∑

i=1

ω2
p,i

ω2
0,i − ω2 − iγiω

×S(θi)

(
1 0
0 0

)
S−1(θi)

+ ω2
p,8

ω2
0,8 − ω2 − iγ8ω − ω4

IRs

ω2
0,s−ω2−iγsω

×S(θ8)

(
1 0
0 0

)
S−1(θ8) , (12)

with the abbreviations ω2
0,8 := ω2

IR + ω2
IRs and ω2

0,s := ω2
s +

ω2
IRs.

C. Reflectance and fitting procedure

For (near-) normal incidence, the reflectance Rb(ω) for
E ‖ b is given by

Rb(ω) =
∣∣∣∣1 − √

εb(ω)

1 + √
εb(ω)

∣∣∣∣
2

, (13)

whereas the reflectance Rac(ω,χ ) is related to the tensor ε̂ac(ω)
via [45,53]

Rac(ω,χ ) =
∣∣∣∣([1̂ −

√
ε̂ac(ω)

] · [
1̂ +

√
ε̂ac(ω)

]−1) (
cos χ

sin χ

) ∣∣∣∣
2

,

(14)

where 1̂ and (. . . )−1 denote the unity tensor and the inverse
tensor, respectively. The square root of the tensor ε̂ac(ω) is
taken by rotating ε̂ac(ω) to a diagonal form (employing a
“rotation” matrix with complex entries), then taking the square
root for each matrix element, and the resulting matrix is rotated
back to its original basis [45,53].

The reflectivity Rp(ω,α,ϕ) measured for p-polarized light
with (010) as plane of incidence [see Sec. II and Fig. 2(a)] is
given by [44]

Rp(ω,α,ϕ) =
∣∣∣∣C cos(α) −

√
εww(ω) − sin2(α)

C cos(α) +
√

εww(ω) − sin2(α)

∣∣∣∣
2

(15)

with C =
√

εuu(ω)εww(ω) − ε2
uw(ω) , (16)

where α = 11◦ denotes the angle of incidence. Here, we use a
Cartesian coordinate system u, v, w with v ‖ b and w normal to
the surface, and ϕ denotes the angle between the x axis (which
is fixed to the crystal axes) and the u axis, i.e., the surface, see
Fig. 2(a). In our case, ϕ = 80◦. In the basis u, w, the tensor
ε̂ac(ω) is given by(

εuu εuw

εuw εww

)
= ε̂uw

ac (ϕ,ω) = S(ϕ) ε̂ac(ω) S−1(ϕ) , (17)

with the rotation matrix S(ϕ) as described in Eq. (7). For E ⊥
b, the parameters of the generalized Drude-Lorentz model and

of the asymmetric oscillator model were obtained by fitting
the measured reflectance Rac(ω,χ ) and Rp(ω,α,ϕ) simultane-
ously. In Rp(ω,11◦,80◦), transverse and longitudinal modes
are strongly mixed. The consideration of Rp(ω,11◦,80◦) thus
offers an excellent test for the validity of the analysis, see
Sec. V C.

For the fits we employed the Modeling and Analysis
Generic Interface for eXternal numerical codes package
(MAGIX) [61], which permits us to combine different opti-
mization algorithms to make use of their specific advantages.
One may, e.g., combine a swarm algorithm to roughly
localize a minimum in parameter space with the Levenberg-
Marquardt algorithm to optimize the parameters. Due to
the large number of parameters, we typically used only
the Levenberg-Marquardt algorithm. However, we employed
the particle-swarm-optimization algorithm and the interval-
nested-sampling algorithm [61] to search for alternative
parameter values of weak oscillators.

D. Kramers-Kronig-constrained variational approach

In the case of a scalar dielectric function such as εb(ω),
a Kramers-Kronig analysis of, e.g., the normal-incidence
reflectance Rb(ω) — with appropriate extrapolations to ω = 0
and ∞ — permits a model-independent determination of
εb(ω). An extension to monoclinic symmetry has been dis-
cussed by Kuzmenko et al. [62]. Their approach is still based
on a Kramers-Kronig analysis of the measured reflectance data
[in this case Rac(ω,χ )], but employs a variational analysis.
More recently, a Kramers-Kronig-constrained generalization
of the variational approach (KKvar) has been discussed by
Kuzmenko [54]. In short, it uses a large number N of
oscillators, where N is comparable to the number of measured
data points. The N eigenfrequencies ω1, . . . ,ωN may coincide
with the frequency points of the measured data. The fixed width
of each oscillator is of the order of the step size ωi+1 − ωi ,
thus the contribution of any oscillator to the imaginary part
Im{εKKvar(ω)} is restricted to a small frequency interval. The
oscillator strengths of the N oscillators are used to parametrize
the frequency dependence of Im{εKKvar(ω)}, whereas the
real part Re{εKKvar(ω)} is obtained via a Kramers-Kronig
transformation. Finally, the oscillator strengths are varied by
fitting the experimental data. Due to the large number of
oscillators, this approach is well suited to describe asymmetric
non-Lorentzian line shapes of phonon modes or tiny spectral
details and still yields a Kramers-Kronig-consistent result for
the dielectric function.

Here, we use 3N oscillators with a triangular pro-
file [54] at N frequency points to parametrize Im{εKKvar

xx (ω)},
Im{εKKvar

xz (ω)}, and Im{εKKvar
zz (ω)}. To reduce the calculational

effort, we use a step size of 1 cm−1 with ω1 = 100 cm−1

and ωN = 1000 cm−1. A Kramers-Kronig analysis requires
a reasonable extrapolation beyond the underlying frequency
mesh ω1 to ωN . Therefore, the result ε̂

gDL
ac of the generalized

Drude-Lorentz fit [cf. Eq. (6)] is used as a starting point. The
total dielectric function reads

ε̂total
ac (ω) = ε̂ gDL

ac (ω) + ε̂KKvar
ac (ω) . (18)

The signs of Im{εKKvar
xx (ω)}, Im{εKKvar

xz (ω)}, and Im{εKKvar
zz (ω)}

are arbitrary with the constraints Im{εtotal
xx (ω)} � 0 and
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Im{εtotal
zz (ω)} � 0. We use this Kramers-Kronig-constrained

variational approach to fit the reflectivity Rac(ω,χ ) for three
different polarization angles (χ = 0◦, 30◦, and 90◦).

V. PHONON MODES

Figures 5 and 6 show the reflectance Rac(ω,χ ) for three
different polarization angles χ as well as Rp(ω,α,ϕ) and Rb(ω)
at T = 10 and 295 K, respectively. Additionally, we show the
reflectance as obtained from the fits based on the generalized
Drude-Lorentz model. We fitted Rp(ω,α,ϕ) and Rac(ω,χ )
for χ ∈ {0◦,30◦,90◦} simultaneously. The fit parameters are
listed in Table II. The asymmetric non-Lorentzian line shape
observed in Rac(ω,χ ) in case of the Bu mode highest in
energy is discussed in Sec. V C. In Sec. V D, we address the
temperature dependence of the spectra which is depicted in
Fig. 7 for the low-frequency range.
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FIG. 5. (Color online) Reflectance of MnWO4 at T = 10 K
(black) and generalized Drude-Lorentz fit (red). (a) – (c) Rac(ω,χ )
for different polarization angles χ as defined in Fig. 3. (d) Reflectance
Rp(ω,11◦,80◦) for p-polarized light incident within the (010) plane
with E ⊥ b, see Fig. 2(a) and Eq. (15). (e) Reflectance Rb(ω) for
E ‖ b.
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FIG. 6. (Color online) Reflectance of MnWO4 at T = 295 K
(black) and generalized Drude-Lorentz fit (red). (a) – (c) Rac(ω,χ )
for different polarization angles χ , (d) Rp(ω,11◦,80◦), (e) Rb(ω).

A. Au phonon modes

For E ‖ b, the agreement between data and fit is excellent,
and the analysis is straightforward (see bottom panels of Figs. 5
and 6). The spectra show seven Au modes, in agreement with
the predictions of the factor-group analysis for T > TN2 =
12.5 K. We do not find any additional mode at 10 K, i.e.,
below TN2. The small discrepancies between data and fit
around some of the maxima and minima of Rb(ω) can be
attributed to small deviations from a Lorentzian line shape,
typically caused by small contributions stemming from the
multiphonon continuum. Remarkably, the frequency of the
highest Au mode amounts to 859 cm−1, which is unusually
high for a transition-metal oxide in which oxygen is the
only light element. However, comparable values have been
reported for other tungstates AWO4 with divalent A = Cd,
Ni, or Mg [63–67]. This mode can be assigned to a symmetric
W-O(2) bond stretching phonon. The high frequency reflects
the strong bonding between the nominally hexavalent W ions
and the O(2) ions, as the shortest W-O(2) bond in MnWO4

amounts to only 1.79 Å (see Fig. 1) [50]. Similar energies
of stretching modes have been observed in, e.g., multiferroic
Ni3V2O8 and α′-NaV2O5 with nominally pentavalent and
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TABLE II. Parameters of the generalized Drude-Lorentz model
for T = 10 K and 295 K. Here, �ε = (ωp/ω0)2 denotes the oscillator
strength. The parameters ω0, ωp , and γ are given in units of [cm−1],
whereas the angle θ is given in [◦]. For the high-frequency dielectric
constant at T = 10 K (295 K) we find ε∞

xx = 5.59 (5.25), ε∞
yy =

5.48 (5.35), ε∞
zz = 6.25 (5.88), and ε∞

xz = 0.29 (0.25). The calculated
values for ω0 (right column) and the characters of the Au modes are
reproduced from Ref. [41], where T′ stands for T′(Mn)+T′(W) and
denotes a lattice translational mode, τ is a W-O(2) twisting mode,
δsc a W-O(2) scissoring mode, δas an antisymmetric W-O(1) bending
mode, and νas [νs] an antisymmetric W-O(1) [symmetric W-O(2)]
stretching mode [41].

Bu modes at 10 K/295 K
ω0 ωp γ θ �ε ωcalc

0 [41]

139/137 310/288 0.7/ 2.6 22/ 20 4.98/4.44 163
201/197 393/386 1.4/ 5.8 162/157 3.84/3.84 186
241/239 424/390 0.5/ 1.1 121/122 3.10/2.66 206
273/277 865/822 2.7/13.2 72/ 72 10.1/8.84 263
283/283 65/ 45 3.0/ 4.9 168/167 0.05/0.02 323
455/453 345/319 5.9/14.8 0/ 1 0.58/0.50 467
554/553 1102/1071 8.3/18.6 123/123 3.96/3.76 576
767/771 1043/1008 6.6/12.4 34/ 34 1.85/1.71 777

Au modes at 10 K/295 K
ω0 ωp γ �ε char. [41] ωcalc

0 [41]
174/168 348/342 1.1/ 5.4 3.99/4.12 T′ 156
309/306 133/110 2.3/ 4.2 0.18/0.13 τ + δsc 246
341/341 501/494 1.5/ 4.2 2.15/2.11 δsc + τ 410
419/416 308/288 5.2/11.5 0.54/0.48 δas + τ 455
500/498 513/518 9.2/21.0 1.05/1.08 νas + δsc 547
664/663 756/759 11.5/21.8 1.30/1.31 νas 671
859/860 425/422 6.2/10.0 0.24/0.24 νs 837

tetravalent V ions [24,68]. The character of the other Au modes
is given in Table II.

As far as the eigenfrequencies ω0,i of the Au modes along
the unique b axis are concerned, the results of Refs. [40,41] and
our data agree very well with each other. With the exception of
the lowest Au mode, the values for ω0,i agree within about 1–
2 %. In MnWO4, we and Choi et al. [40] found the lowest mode
at 168 cm−1 at room temperature, whereas it was reported at
180 and 182 cm−1 in Mn0.85Co0.15WO4 and Mn0.97Fe0.03WO4,
respectively [41]. Note that the values of the damping γi and the
oscillator strength �εi are not reported for the single-crystal
data in Refs. [40,41].

The Au phonon parameters enable us to determine the
contribution Re{εhigh

b } = ε∞
yy + �7

i=1�εi of phonons and of
excitations at higher energies to the quasistatic dielectric con-
stant Re{εb}, i.e., for frequencies well below the phonon range.
Combining this result with low-frequency data measured at
96.8 kHz and 45 MHz — far below the frequency range
of a possible electromagnon — allows us to estimate the
contribution of a possible electromagnon to Re{εb}, which
will be discussed together with the temperature dependence
in Sec. V D. At 10 K we find Re{εhigh

b } = 14.9. This has
to be compared to the results reported from impedance
measurements using LCR meters, Re{εb} = 16.4 at 1 MHz
(Ref. [9]) and 12.3 at 1 kHz (Ref. [8]). Note that impedance
measurements typically show a high relative accuracy, but
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FIG. 7. (Color online) Temperature dependence of the re-
flectance in the low-frequency range. (a) – (d): Rac(ω,χ ), (e)
Rp(ω,11◦,80◦), (f) Rb(ω). The largest changes of the spectral weight
are observed for the weak Bu mode at 283 cm−1 and for the weak Au

mode at 309 cm−1. The lowest Au mode shows the largest softening.

larger errors concerning the absolute value due to uncertainties
in the size and shape of the electrodes.

B. Bu phonon modes

The case of E ⊥ b requires a more careful analysis. The
interplay of partially overlapping modes with different rotation
angles θi gives rise to complex line shapes in Rac(ω,χ ) [69],
see Figs. 5 to 7. Therefore it is more difficult to disentangle
the contributions of the different modes. We find that the data
can be described by a sum of eight Bu modes, as predicted by
the factor-group analysis for T > 12.5 K [cf. Eq. (2)]. Eight
separate Bu modes are most easily recognizable in the data of
Rp(ω). However, the eigenfrequencies can be inferred more
easily from Rac(ω,χ ). Five of the eight Bu modes have an
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eigenfrequency lower than 300 cm−1, see Table II. Four out
of these five modes are easily recognized in the spectrum of
Rac(ω) for χ = 0◦ below 300 cm−1 at T = 10 K (see Fig. 7).
These four modes have eigenfrequencies of ω0,1 = 139 cm−1,
ω0,2 = 201 cm−1, ω0,3 = 241 cm−1, and ω0,5 = 283 cm−1.
The mode with ω0,4 = 273 cm−1 has a much larger oscillator
strength, giving rise to the pronounced Reststrahlen band
observed between about 250 cm−1 and 400 cm−1 for χ = 90◦.
The eigenfrequency ω0,4 = 273 cm−1 corresponds to the
low-frequency edge of the Reststrahlen band, whereas the
steep drop of Rac(ω,90◦) at about 390 cm−1 can be identified
with its longitudinal eigenfrequency (see Secs. IV and V C
for a discussion of the mixing of LO and TO modes). This
mode with θ4 = 72◦ gives rise to the peculiar feature peaking
at about 375 cm−1 for χ = 0◦ and 30◦. The sixth mode at
ω0,6 = 455 cm−1 is well separated in frequency from all other
modes and thus can be observed easily for all values of χ

considered here. Due to the strong orientational dispersion
of ε̂ac(ω) in the vicinity of this mode (see below), it also
affects Rac(ω,90◦) although χ = 90◦ is almost orthogonal to
its orientation θ6 ≈ 0◦.

Modes number seven and eight determine Rac(ω) between
500 and 900 cm−1. With θ7 = 123◦ and θ8 = 34◦, these
two modes are nearly orthogonal to each other. Accordingly,
Rac(ω,30◦) predominantly shows the higher mode with ω0,8 =
767 cm−1. The signature of the lower mode will be most
pronounced for χ ≈ θ7 = 123◦, whereas the measured data
sets with χ = 0◦, 60◦, and 90◦ show complicated line shapes
which reflect the existence of both modes. Note that the
pronounced peak at about 750 cm−1 for χ = 0◦ does not
require to invoke a further infrared-active mode. This peak
is located at the frequency of the steep drop of Rac(ω,90◦),
i.e., at the longitudinal eigenfrequency of mode seven with
ω0,7 = 554 cm−1 (see also Fig. 3). For comparison, it is
instructive to consider the nearly triangular hump around
375 cm−1 for χ = 0◦ which stems from the phonon mode
with θ4 = 72◦. Similarly, the peculiar shape of the peak at
750 cm−1 for χ = 0◦ or 60◦ (see Figs. 3 and 4) originates
from the phonon mode with θ7 = 123◦, i.e., roughly ±60◦
different from the value of χ . Moreover, lattice dynamical
calculations [41] for MnWO4 predict only two Bu modes
above 500 cm−1, namely at 576 and 777 cm−1, in reasonable
agreement with our experimental values of 554 and 767 cm−1.
Also first-principles calculations [65] for NiWO4 find only two
modes with Bu symmetry above 500 cm−1.

The existence of eight Bu modes is corroborated by the data
for Rp(ω,α,ϕ) measured with p-polarized light and (010) as
plane of incidence [see Figs. 5(d) and 6(d) and Eq. (15)]. In
particular, Rp shows the five lowest modes clearly separated
from each other and only two Bu modes above 500 cm−1.
For this measurement geometry, the modes show a strong LO-
TO mixing, and the character changes from predominantly
transverse to predominantly longitudinal as a function of the
orientation angle θi of the mode with respect to the wave
vector k. Accordingly, both the apparent peak position and the
oscillator strength depend strongly on the angle of incidence
α and on the angle ϕ, which describes the orientation of the ac

plane with respect to the surface [see Fig. 2(a) and Eq. (15)].
This explains in particular the pronounced changes between
Rac(ω) and Rp(ω) observed for modes 4 and 8: Rp(ω,11◦,80◦)
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FIG. 8. (Color online) The sum Im{εxx(ω)} + Im{εzz(ω)} shows
all eight Bu phonon modes. A Kramers-Kronig-constrained varia-
tional analysis of Rac(ω,χ ) (KKvar, red line, cf. Sec. IV D) confirms
the results of a generalized Drude-Lorentz fit [gDL, black line, cf.
Eq. (6)] with the exception of the line shape of the highest mode at
767 cm−1. For this mode, the KKvar result supports a non-Lorentzian
line shape as described by the asymmetric oscillator model [blue
dashed line, cf. Eq. (12)]. Inset: Weak mode at 283 cm−1 on an
enlarged scale.

shows the high-frequency edges of the phonon modes (i.e., the
LO frequencies) at the same frequencies as Rac(ω,χ ), but the
apparent oscillator strength is very different in Rp and Rac.
As a result, all eight Bu modes are clearly separated from
each other in Rp, but the apparent order of modes 4 and 5
is reversed. The weak mode 5 gives rise to a feature close to
ω0,5 = 283 cm−1 also in Rp, but the much stronger mode 4
with ω0,4 = 273 cm−1 appears as a band between 300 and
400 cm−1 in Rp. With small exceptions, our fit describes both
Rp(ω,α,ϕ) and Rac(ω,χ ) very well. This clearly demonstrates
that ε̂ac(ω) has been determined correctly (cf. Sec. V C).

A Kramers-Kronig-constrained variational analysis of
Rac(ω,χ ) for χ ∈ {0◦,30◦,90◦} (see Sec. IV D) supports our
results from the generalized Drude-Lorentz model for the
number of modes and for the properties of the lower seven
modes. Figure 8 compares Im{εxx(ω)}+ Im{εzz(ω)} obtained
by the two approaches. The Kramers-Kronig-constrained
variational analysis equally shows four strong Bu modes below
300 cm−1, a weak feature that corresponds to the mode at
ω0,5 = 283 cm−1 (see insets of Figs. 8 and 9), one mode
at about 450 cm−1, and two modes above 500 cm−1. The
Kramers-Kronig-constrained variational analysis employs a
fixed line width and thus encounters problems to precisely
describe the phonon modes number 1 and 3 with line widths
smaller than 1 cm−1. This explains the spike observed at about
154 cm−1 in Fig. 8.

The results of the two approaches for the diagonalized
form of the real part of the dielectric function Re{ε̂ac} are
given in Fig. 9 for the high-frequency range. The main
discrepancy between the generalized Drude-Lorentz model
and the Kramers-Kronig-constrained variational approach is
observed for the line shape of the highest Bu mode (see
Sec. V C).

The rotation angles φIm(ω), φRe(ω), and the angles θi of
the different oscillators of the generalized Drude-Lorentz
model are plotted in Fig. 10. Below 500 cm−1, MnWO4
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FIG. 9. (Color online) The two entries of the diagonal form of
the real part Re{ε̂ac(ω,χ )} at 10 K as obtained from a generalized
Drude-Lorentz fit [gDL, black lines, cf. Eq. (6)], a Kramers-Kronig-
constrained variational analysis of Rac(ω,χ ) (KKvar, red lines, cf.
Sec. IV D), and a fit using an asymmetric, non-Lorentzian line shape
for the highest Bu mode [blue dashed lines, cf. Eq. (12)]. Insets: Same
data on an enlarged scale.
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FIG. 10. (Color online) The rotation angles φIm(ω) of
Im{ε̂ac(ω,χ )} (solid lines, top panel) and φRe(ω) of Re{ε̂ac(ω,χ )}
(solid lines, bottom panel) at 10 K as obtained from a generalized
Drude-Lorentz fit [gDL, cf. Eq. (6)]. Full red symbols: φRe(ω) as
obtained from a Kramers-Kronig-constrained variational analysis.
The angles φIm(ω) and φRe(ω) are plotted modulo 90◦. Open symbols:
The angle θi between the dipole moment of mode i and the x axis
(cf. Table II).

shows a pronounced orientational dispersion of ε̂ac(ω). The
two high-energy modes above 500 cm−1 originate from
stretching/bending vibrations of W-O bonds of the tightly
bound WO6 octahedra. Remarkably, the rotation angles θ7 =
123◦ and θ8 = 34◦ of these two modes agree very well with
the projections of the W-O bonds on the ac plane, see Fig. 1.
The O(2)-O(2) edge of the WO6 octahedra is rotated by about
30◦ with respect to the x axis, and the rotation of the shorter
O(1)-W-O(1) bond (light red bonds in Fig. 1) amounts to
about 123◦.

In total, we have identified both the seven Au modes and the
eight Bu modes predicted by a factor-group analysis. This has
been claimed before both by Choi et al. [40] and by Maczka
et al. [41], but both studies investigated only two polarization
directions within the ac plane. Our analysis demonstrates that
this is clearly not sufficient to determine the modes with Bu

symmetry in this monoclinic compound. In the analysis of the
single-crystal data of Maczka et al. [41], modes are missing
at 273, 283, and 554 cm−1 in Mn0.85Co0.15WO4 and at 201,
273, and 455 cm−1 in Mn0.97Fe0.03WO4. Partially, these modes
have been observed in the polycrystalline samples [41]. Choi
et al. [40] reported eight frequencies for E ‖ a and six more
frequencies for E ‖ c, five (four) of them nearly degenerate
with the ones reported for E ‖ a (b). Our data reveal that
several of these modes are actually Au modes, whereas the
Bu modes at 273, 283, 554, and 767 cm−1 are missing. At
first sight, it may seem surprising that in particular the modes
with large oscillator strength at 273 and at 554 cm−1 have
been overlooked. However, our reflectivity data show that
in particular the line shapes of the strong modes with large
LO-TO splitting — giving rise to spectral overlap with other
bands [69] — depend strongly on the angle χ . Moreover, the
reflectivity spectrum of the Bu modes strongly depends on
the measurement geometry, i.e., on the direction of the wave
vector. Weaker modes give rise to sharper features, which
facilitates the determination of their eigenfrequencies.

C. Line shape of the highest Bu mode

The line shape of Rac(ω,χ ) is not described very well
between about 700 and 800 cm−1 if we stick to eight modes
with a Lorentzian line shape (see Fig. 11). We emphasize
that adding a further Lorentzian mode to ε̂

gDL
ac (ω) in Eq. (6)

does not significantly improve the quality of the fit. The steep
drop of the Reststrahlen band at about 900 cm−1 indicates
a small value of the damping γ8 of the eighth Bu mode,
whereas the much more gradual rise at the low-frequency side
of this mode between 700 and 800 cm−1 for χ = 30◦ ≈ θ8

is a clear signature of a larger damping. Accordingly, a fit
based on Eq. (12) with an asymmetric line shape for the mode
with ω0,8 = 767 cm−1 yields a much better description of
Rac(ω,χ ) (cf. blue lines in Fig. 11). The fit parameters are
given in Table III. An asymmetric line shape is supported by the
Kramers-Kronig-consistent variational analysis of Rac(ω,χ )
(see Figs. 8 and 9).

In contrast to Rac(ω,χ ), Rp(ω) is described very well by
the generalized Drude-Lorentz model [red line in Fig. 11(d)].
In fact, the description of the highest Bu mode in Rp(ω)
becomes slightly worse if we use the asymmetric oscillator
model, which overestimates the absolute value of Rp(ω) at the
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FIG. 11. (Color online) Comparison of fits based on the gener-
alized Drude-Lorentz model [red, cf. Eq. (6)] and the asymmetric
oscillator model [blue, cf. Eq. (12)]. In both cases, Rp(ω) and
Rac(ω,χ ) with χ ∈ {0◦,30◦,90◦} were fitted simultaneously. Black:
Measured reflectance data. Inset: Highest Bu mode on an enlarged
scale.

maximum of the highest mode at about 880 cm−1. This is a
compromise of the fit which aims at a simultaneous description
of Rac(ω,χ ) and Rp(ω). Note that the agreement between
Rac(ω,χ ) and the fit is not improved significantly if we fit
only Rac(ω,χ ) but not Rp(ω).

One possible source for the asymmetric line shape in
Rac(ω,χ ) is a mixing of transverse and longitudinal modes.
Our analysis of Rac(ω,χ ) assumes that only transverse modes
are excited, which strictly is valid only for normal incidence.
This assumption thus may break down for an angle of
incidence of α = 11◦. In the analysis of Rp(ω,α,ϕ), the finite
value of α and the mixing of longitudinal and transverse
modes are taken into account, see Eq. (15). The mixing of
transverse and longitudinal character is particularly strong
if the corresponding eigenfrequencies are nearly degenerate.
The near degeneracy of ωLO,7 and ω0,8 is apparent from
Fig. 9, which shows the two entries of the diagonal form
of the real part Re{ε̂ac(ω)}. The two zero crossings of the

TABLE III. Parameters of the asymmetric oscillator model for
the eighth Bu mode at T = 10 K.

ω0,8 ωp,8 γ8 θ8 ω0,s γs ωIRs

762 1048 3.9 33 765 162 56

diagonal components which correspond to ωLO,7 and ω0,8

nearly coincide in frequency at roughly 760–770 cm−1. This
is the frequency range with the largest deviations between
Rac(ω,χ ) and the Lorentzian fit. In this range, Re{ε̂ac(ω)} is
close to zero in any direction within the ac plane. We propose
that this causes the unusual line shape.

In Rp(ω,α,ϕ) with ϕ = 80◦, the highest Bu mode predomi-
nantly shows longitudinal character, giving rise to only a small
peak close to ωLO,8. The eigenfrequency of this predominantly
longitudinal mode does not coincide with ωLO,7, thus the
mixing of Bu modes 7 and 8 does not play a role for this
geometry. Accordingly, Rp(ω,11◦,80◦) is well described by a
model employing a constant value of γ8.

D. Temperature dependence

1. Au modes

The Drude-Lorentz fit parameters of all Au phonon modes
are plotted as a function of temperature in Fig. 12. Above
20 K, all parameters evolve smoothly with temperature, there
is no evidence for any strong anomaly. Six of the seven Au

modes soften by only 1% or less between 10 and 295 K. The
lowest Au mode with ω0,1 = 174 cm−1 forms an exception.
Between 10 and 295 K, it softens by 5.6 cm−1 or 3%, showing
the largest redshift for E ‖ b both on a relative and on an
absolute scale. This pronounced shift can be clearly seen in
the reflectivity data, see Fig. 7. In Raman data, the largest
relative shift of 2.5% between 5 and 300 K is observed for
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FIG. 12. (Color online) Temperature dependence of the parame-
ters of the Drude-Lorentz fit for E ‖ b, i.e., for the Au phonon modes:
eigenfrequency ω0,i , oscillator strength �εi , and damping γi .
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Dotted lines: Phase transition temperatures.

the lowest Ag mode [37]. Also in the case of the Bu modes,
the largest relative redshift is observed for the two lowest
modes (see below). The phonon softening observed above
20 K can be attributed to the typical thermal expansion of the
lattice, reflecting anharmonicity. The damping constants γi of
all Au modes behave as expected, showing a smooth increase
with increasing temperature. Again, the strongest change (on
a relative scale) is observed for the lowest Au mode. The
oscillator strength �εi , i.e., the contribution of a given mode
i to the real part of εb at subphonon frequencies, is obtained
via �εi = (ωp,i/ω0,i)2. On a relative scale, the Au mode at
309 cm−1 shows the most pronounced reduction of �εi with
increasing temperature, but this mode also has the smallest
absolute value of �εi (see Table II and Fig. 7). According to
Maczka et al. [41], this mode corresponds to a WO2 bending
mode (twisting and scissoring, see Table II). Note that the
observed phonon softening with increasing temperature leads
to an enhanced oscillator strength �εi . A decrease of �εi with
increasing temperature reflects that the increase of 1/ω2

0,i is
overcompensated by a reduction of the spectral weight ∝ ω2

p,i ,
i.e., of the effective ionic charge.

Below 20 K, we observe only small changes of the phonon
parameters of the Au modes. We focus on the mode with
ω0,1(10 K) = 174 cm−1, which exhibits the largest changes
of ω0,i , ωp,i , and �εi at low temperatures. Figure 13 shows
the temperature dependence of ω0,1, ω2

p,1, and of �ε1 on an
enlarged scale. The changes of ω0,1 between the different
phases amount to only 0.1–0.2 cm−1 or 0.1%, which is hard to
resolve experimentally. However, the values for ω0,1 found
at 10 and 13 K clearly deviate from the approximately
quadratic temperature dependence of ω0,1 observed above
20 K. In particular, the hardening of ω0,1 with decreasing
temperature is the opposite of the conventional phonon mode
softening occurring in proper ferroelectrics. At the same
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FIG. 14. (Color online) Blue and cyan blue symbols: Real part of
the dielectric constant εb(T ) measured by dielectric spectroscopy at
45 MHz and 96.8 kHz, respectively. Red dots: Oscillator strength �ε1

of the lowest Au mode. Red crosses: Sum of the oscillator strengths
�ε = �i�εi of all Au modes. All data sets are normalized to their
value at 13 K.

time, spin-phonon coupling is expected to cause a phonon
shift proportional to the nearest-neighbor spin-spin correlation
function [70–74]. For the spectral weight we find a reduction of
�ω2

p,1 = [ωp,1(13 K)]2 − [ωp,1(10 K)]2 ≈ 6 · 102 cm−2, see
Fig. 13. Note that this corresponds to only 0.5% of ω2

p,1.
Together, the decrease of ω2

p,1 and the increase of ω2
0,1 between

13 and 10 K yield a reduction of the oscillator strength �ε1

of about 0.03 (see top panel of Fig. 13 and red dots in Fig. 14).
Note that the sum of the changes of all other modes including
the change of ε∞ is about an order of magnitude smaller.

In the following, we estimate the oscillator strength of
a possible electromagnon by comparing the results of our
phonon study with the temperature dependence of the real
part Re{εb} measured by dielectric spectroscopy at 45 MHz
and 96.8 kHz, see Fig. 14. Consider a single infrared-active
oscillator with oscillator strength �εi , eigenfrequency ω0,i ,
and damping constant γi � ωi . For ω � ω0,i , this oscillator
gives rise to a constant contribution �εi = (ωp,i/ω0,i)2

to Re{ε(ω)} (see, e.g., Eq. 5). For frequencies far below
the phonon range, the contribution of phonons and higher-
lying excitations to Re{εb} may thus be approximated by
Re{εhigh

b } = ε∞
yy + �7

i=1�εi , where the sum is running over

the seven Au modes. If Re{εhigh
b } is smaller than the quasi-

static value of Re{εb}, this implies a finite contribution of a
further infrared-active oscillator at intermediate frequencies.
We have chosen to measure Re{εb} at 45 MHz and 96.8 kHz
for two reasons. First, these frequencies are far below the
eigenfrequency ω0,em ≈ 2 − 3 cm−1 of a possible electro-
magnon as observed in inelastic neutron scattering [75,76] and
terahertz spectroscopy [77]. Secondly, they are high enough
to neglect contributions from domain-wall dynamics [78].
Therefore, differences between Re{εb(45 MHz)} and the value
of Re{εhigh

b } determined from the phonon parameters have to
be attributed to the possible contribution of an electromagnon.

In Fig. 14, we normalized both Re{εb(45 MHz)} and
Re{εhigh

b } to their respective values at 13 K to eliminate
uncertainties of the absolute value. At TN1 ≈ 6.5–8.0 K the
low-frequency data show a jump of Re{εb} of about 0.01, in
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agreement with the results of Refs. [8] and [9]. The peak in the
vicinity of TN2 reflects the washed-out divergence of Re{εb} at
the phase transition. Between 13 and 10 K, Re{εb} decreases
by about 0.01. At first sight, this may seem to contradict
the expected gain of oscillator strength of the electromagnon
upon entering the multiferroic phase. The expected increase
of Re{εb} can be reconciled with the observed decrease of
Re{εb} by considering a decrease of the effective ionic charge
causing a decrease of Re{εhigh

b }. As discussed above, we find
that Re{εhigh

b } decreases by about 0.03 between 13 and 10 K.
It is tempting to attribute the difference of 0.02 between the
changes of Re{εhigh

b } and Re{εb} to the oscillator strength
�εem of a possible electromagnon. However, the subtle change
of Re{εhigh

b } is difficult to quantify experimentally. Hence
we rather interpret this value as a rough estimate for the
upper boundary of the electromagnon oscillator strength,
�εem � 0.02. Using the eigenfrequency ω0,em ≈ 2–3 cm−1

of a possible electromagnon as observed in inelastic neutron
scattering and terahertz transmittance [75–77], we arrive at an
estimate for the upper boundary of the electromagnon spectral
weight ω2

p,em � 0.1–0.2 cm−2. This value is tiny, it is about
six orders of magnitude smaller than the oscillator strength
ω2

p,1 of the lowest Au phonon mode, and still more than three
orders of magnitude smaller than the small reduction of ω2

p,1
observed between 13 and 10 K.

From the point of view of symmetry, the oscillator strength
of the electromagnon has to be finite in the multiferroic phase.
However, symmetry does not quantify the oscillator strength,
it may be very small and hard to detect experimentally. In
this context, it is interesting to note that the enhancement
of the real part of the low-frequency dielectric constant
Re{εb} directly above TN2 for frequencies below about 2 GHz
has been interpreted as a signature of the critical slowing
down of magnetoelectric fluctuations, i.e., the softening of
an overdamped electromagnon [79].

We conclude that the spin-lattice interaction is not strong
enough in MnWO4 to change the phonon spectra substantially
at the magnetic phase transitions. Nevertheless we are able to
resolve small changes of the Au mode lowest in energy. Note
that also in the manganites AMnO3 (with A = Gd1−xTbx and
Eu1−xYx) it is the phonon mode lowest in energy that is most
affected by the transition to the multiferroic phase [25–31].
Contrary to the conventional phonon softening observed in
proper ferroelectrics, the hardening of phonons at the transition
to the multiferroic phase may turn out to be a characteristic
property of multiferroics [26–29].

2. Bu modes

Figure 15 shows the temperature dependence of the param-
eters of the generalized Drude-Lorentz fit for all Bu phonon
modes between 10 and 295 K. The overall picture is very
similar to the case of the Au modes. Six of the eight Bu modes
soften with increasing temperature, and the largest relative
redshift between 10 and 295 K is observed for the two modes
lowest in energy. The two modes with ω0,4 = 273 cm−1

and ω0,8 = 767 cm−1 show an unexpected increase of the
eigenfrequency with increasing temperature. For the highest
Bu mode with ω0,8 = 767 cm−1, we attribute this behavior
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FIG. 15. (Color online) Temperature dependence of the parame-
ters of the Drude-Lorentz fit for E ⊥ b, i.e., for the Bu phonon modes:
eigenfrequency ω0,i , oscillator strength �εi , angle θi , and damping γi .
Inset: Temperature dependence of ω0,i for i ∈ {1 − 4} on an enlarged
scale.

to the fact that the line shape of Rac(ω) is not described very
well by the generalized Drude-Lorentz model, as discussed
above. The deviations between the fit and measured data for
Rac(ω,30◦) at about 750 cm−1 [in Figs. 5(b) and 6(b)] show
that ω0,8 cannot be determined with the same precision as the
eigenfrequencies of the other modes with a Lorentzian line
shape.

The damping constants γi of all Bu modes increase with
increasing temperature. Similar to the Au modes, most Bu

modes show a modest increase of less than a factor of 2, while
the two modes lowest in energy show a more pronounced
temperature dependence. The temperature dependence of the
rotation angles θi is only moderate, for seven modes the
value of θi is stable within 2◦. A more detailed analysis of
the rotation angles would require measurements for a larger
number of polarization directions χ . Finally, the temperature
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dependence of the oscillator strengths �εi is somewhat larger
than observed for the Au modes. Remarkably, the mode with
ω0,5 = 283 cm−1 looses more than half of its oscillator
strength between 10 and 295 K (see also Fig. 7). As in the
case of the Au modes, this strong relative change of �εi is
observed for the mode with the smallest value of �εi .

Maczka et al. [41] observed anomalies in the eigenfre-
quencies and damping constants of Mn0.97Fe0.03WO4 and
Mn0.85Co0.15WO4 at about 50 K and around 150 to 200 K.
These results were obtained from absorption measurements
on polycrystalline samples, which were grown with a solvent,
resulting in dark plates [41]. The dark color of these samples
may be caused by the dopants Fe and Co, but it may also
indicate that not all Mn ions are in the divalent state, as it was
found for flux-grown, undoped MnWO4 [5]. In our ruby-red
transparent MnWO4 crystals, we do not find any evidence
for anomalies above 20 K, neither for Bu nor for Au phonon
modes.

Below 20 K, we find only subtle changes close to the
experimental uncertainty. For the Bu modes, a precise deter-
mination of possible small changes of the oscillator strength
�εi of oscillator i is more difficult than for the Au modes
because �εi is correlated to the value of the orientation θi .
The eigenfrequency ω0,1 = 139 cm−1 of the lowest Bu mode
hardens by about 0.05% between 20 and 13 K and by about
0.13% across TN2 between 13 and 10 K (see the inset of
Fig. 15). These values are very similar to the results obtained
for the lowest Au mode.

VI. CONCLUSION

We report on the first analysis of the full dielectric tensor
in the frequency range of the phonons for any monoclinic
tungstate AWO4 with divalent A metal ions. In MnWO4, we
unambiguously identified all infrared-active phonon modes
(seven Au modes and eight Bu modes) and determined their
temperature dependence. In particular, the strongest Bu modes
were overlooked in previous studies. A full polarization
analysis is an essential prerequisite for the identification of the
correct number of modes and of their parameters, in particular
in the case of overlapping modes. For phonon modes with
Bu symmetry, the combined analysis of Rp(ω) — measured

with the (010) plane as plane of incidence — and Rac(ω,χ )
is best suited for a reliable determination of ε̂ac and of the
phonon parameters. In the data on Rac(ω,χ ) of MnWO4, we
found deviations of the expected Lorentzian line shape around
750 cm−1 in a frequency range where both Re{εxx} and Re{εzz}
are close to zero. We derived a Kramers-Kronig-consistent
oscillator model which is able to describe asymmetric line
shapes in compounds with monoclinic symmetry. In particular,
our model also describes modes showing a gradual rise of
Im{ε(ω)} at the low-frequency side and a steep drop at high
energies. We propose that the asymmetric line shape observed
in Rac(ω,χ ) for near-normal incidence is caused by the mixing
of longitudinal and transverse modes in a frequency range
where Re{εac} ≈ 0 for all directions within the ac plane.

Based on a generalized Drude-Lorentz model, we deter-
mined the temperature dependence of the phonon parameters,
including the orientation of the Bu modes within the ac

plane. The phonons show only subtle changes at the magnetic
phase transitions between the AF2, AF3, and the paramagnetic
phase. In particular, the eigenfrequency of the lowest Au

mode increases by roughly 0.1% upon cooling from 13 to
10 K, while the spectral weight decreases by (�ωp,1/ωp,1)2 ≈
0.5%. A comparison to the data for the quasistatic dielectric
constant Re{εb} yields an upper boundary for the spectral
weight of a possible electromagnon of less than 0.1% of the
small change �ω2

p,1 of the spectral weight of the lowest Au

mode. Phonon hardening upon entering the multiferroic phase
may turn out to be a characteristic property of magnetoelectric
multiferroics of spin-spiral type. In contrast to previous reports
on MnWO4 or slightly doped Mn1−xAxWO4, we do not find
any anomalies above 20 K. We conclude that spin-lattice
coupling in MnWO4 is only small.

The quantitative understanding of the phonon modes
obtained here provides an excellent starting point for the
analysis of the optical data of nanocrystals [46–48] as well
as for an attempt to comprehend the anomalies reported for
doped polycrystalline samples [41,42].
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G. Eckold, J. Phys.: Condes. Matter 24, 335901 (2012).

[39] L. H. Hoang, N. T. M. Hien, W. S. Choi, Y. S. Lee, K. Taniguchi,
T. Arima, S. Yoon, X. B. Chena, and I.-S. Yang, J. Raman Spec.
41, 1005 (2010).

[40] W. S. Choi, K. Taniguchi, S. J. Moon, S. S. A. Seo, T. Arima,
H. Hoang, I.-S. Yang, T. W. Noh, and Y. S. Lee, Phys. Rev. B
81, 205111 (2010).

[41] M. Maczka, M. Ptak, K. Hermanowicz, A. Majchrowski,
A. Pikul, and J. Hanuza, Phys. Rev. B 83, 174439 (2011).

[42] M. Ptak, M. Maczka, K. Hermanowicz, A. Pikul, and J. Hanuza,
Spectrochim. Acta A 86, 85 (2012).

[43] I. Urcelay-Olabarria, J. L. Garcı́a-Munoz, E. Ressouche,
V. Skumryev, V. Yu. Ivanov, A. A. Mukhin, and A. M. Balbashov,
Phys. Rev. B 86, 184412 (2012).

[44] E. E. Koch, A. Otto, and K. L. Kliewer, Chem. Phys. 3, 362
(1974).

[45] A. B. Kuzmenko, D. van der Marel, P. J. M. van Bentum,
E. A. Tishchenko, C. Presura, and A. A. Bush, Phys. Rev. B
63, 094303 (2001).

[46] M. Maczka, M. Ptak, M. Kurnatowska, L. Kepinski,
P. Tomaszewski, and J. Hanuza, J. Solid State Chem. 184, 2446
(2011).

[47] M. Maczka, M. Ptak, A. Pikul, L. Kepinski, P. E. Tomaszewski,
and J. Hanuza, Vib. Spec. 58, 163 (2012).

[48] W. Tong, L. Li, W. Hu, T. Yan, X. Guan, and G. Li, J. Phys.
Chem. C 114, 15298 (2010).

[49] H. Weitzel, Z. Kristallogr. 144, 238 (1976).
[50] J. Macavei and H. Schulz, Z. Kristallogr. 207, 193 (1993).
[51] D. L. Rousseau, R. P. Bauman, and S. P. S. Porto, J. Raman

Spectrosc. 10, 253 (1981).
[52] R. Valdés Aguilar, A. B. Sushkov, S. Park, S.-W. Cheong, and

H. D. Drew, Phys. Rev. B 74, 184404 (2006).
[53] A. B. Kuzmenko, E. A. Tishchenko, and V. G. Orlov, J. Phys.:

Condens. Matter 8, 6199 (1996).
[54] A. B. Kuzmenko, Rev. Sci. Instr. 76, 083108 (2005).
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M. Röllig, and P. Schilke, Astronomy & Astrophys. 549, A21
(2013).

[62] A. B. Kuzmenko, E. A. Tishchenko, and A. S. Krechetov, Opt.
Spectrosc. 84, 402 (1998), arXiv:cond-mat/9707106.

[63] R. Lacomba-Perales, D. Errandonea, D. Martinez-Garcia,
P. Rodrı́guez-Hernandez, S. Radescu, A. Mujica, A. Muñoz,
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