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Properties of the density-wave phase of a two-dimensional dipolar Fermi gas
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The rapid progress in the production and cooling of molecular gases indicates that experimental studies of
quantum gases with a strong dipolar interaction is soon within reach. Dipolar gases are predicted to exhibit very
rich physics including quantum liquid crystal phases such as density waves as well as superfluid phases, both of
which play an important role for our understanding of strongly correlated systems. Here, we investigate the zero
temperature properties of the density-wave phase of a two-dimensional (2D) system of fermionic dipoles using
a conserving Hartree-Fock theory. We calculate the amplitude of the density waves as a function of the dipole
moment and orientation with respect to the 2D plane. The stripes give rise to a 1D Brillouin zone structure,
and the corresponding quasiparticle spectrum is shown to have gapped as well as gapless regions around the
Fermi surface. As a result, the system remains compressible in the density-wave phase, and it collapses for
strong attraction. We show that the density waves have clear signatures in the momentum distribution and in the
momentum correlations. Both can be measured in time-of-flight experiments. Finally, we discuss how the striped
phase can be realized with experimentally available systems.
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I. INTRODUCTION

The investigation of ultracold atomic gases has produced
several breakthrough results in the past two decades [1,2].
Atomic gases are used to simulate many-body systems without
the presence of disorder, intricate band structures, etc., which
significantly complicates the understanding of conventional
condensed matter systems. One limitation is that the atom-
atom interaction is typically short range and isotropic (s wave),
whereas the order parameters in nature often exhibit richer
p- and d-wave symmetries. The impressive progress in the
production of cold gases consisting of fermionic heteronuclear
molecules with an electric dipole moment [3–9] promises to
remove this limitation, since the dipole-dipole interaction is
long range and anisotropic with both repulsive and attractive
parts [10]. The attractive head-to-tail part of the dipole-dipole
interaction can lead to severe losses via chemical reactions,
which however can be suppressed by orders of magnitude by
confining the dipoles to low dimensional geometries [11,12],
or by using molecules which are chemically stable such as
23Na40K [6,7] or 40K133Cs. Dipolar gases are predicted to
exhibit a wealth of new phases in 2D, including p-wave
superfluids [13,14] as well as quantum liquid crystals such
as nematic [15], density-wave (smectic) [16–23], and hexatic
phases [24,25]. The presence of both superfluid and liquid
crystal order occurs in several strongly correlated systems,
and it plays a central role in the physics of the cuprate and
pnictide superconductors [26,27].

We analyze in this paper the zero temperature (T = 0)
properties of the density-wave phase of a two-dimensional
(2D) gas of fermionic dipoles aligned by an external field. In
this phase, the dipoles form density waves (stripes) in order
to minimize the repulsive side-by-side part of the interaction.
Several groups have predicted a 2D dipolar gas to form such a
striped phase for large dipole moments [16–22].
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Partitioning momentum space into one-dimensional Bril-
louin zones, we develop a conserving Hartree-Fock approx-
imation (HFA) [28], which is shown to recover previous
results for the critical coupling strength for the onset of stripe
formation. The resulting equations are solved self-consistently,
and we calculate the amplitude of the stripes as a function
of the dipole moment and its orientation with respect to the
2D plane. We then calculate the quasiparticle spectrum and
show that the 1D Brillouin zone structure gives rise to a Fermi
surface with gapless as well as gapped regions. As a result,
the system remains compressible, and the formation of stripes
does not stabilize the system against collapse for large dipole
attraction. The presence of stripes is demonstrated to have
clear signatures in the momentum distribution and to give rise
to characteristic momentum correlations, both of which can
be measured in time-of-flight experiments. Finally, we show
how the effects described in this paper can be observed with
experimentally available dipolar gases.

II. SYSTEM

We consider identical fermionic dipoles of mass m moving
in a 2D layer defining the xy plane at T = 0. The dipole
moment p of the fermions is aligned forming the angle θ with
respect to the normal of the layer (z axis) with its projection
onto the planes defining the x axis; see Fig. 1. We assume that
the layer is formed by a deep 1D optical lattice so that the
dipoles reside in the lowest harmonic oscillator level ϕ(z) =
exp(−z2/2w2)π−1/4w−1/2 in the z direction with w the width
of the layer. We neglect any trapping potential in the xy plane
so that the transverse states are labeled by the momentum
k = (kx,ky) (we take � = kB = 1).

The Hamiltonian of the system is

Ĥ =
∑

k

k2

2m
ĉ
†
kĉk + 1

2A

∑
k,k′,q

V (q)ĉ†k+qĉ
†
k′−qĉk′ ĉk, (1)

where ĉk removes a dipole with momentum k. The
interaction between two dipoles separated by r is
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FIG. 1. (Color online) Dipoles are confined in the xy plane, and
they are aligned by an external electrical field E forming the angle
θ with respect to the z axis. The density waves are along the x axis
which is defined by the projection of the field E onto the plane.

V3D(r) = D2[1 − 3 cos2(θr )]/r3, where θr is the angle be-
tween r and the dipole moment p, and D2 = p2/4πε0

for electric dipoles. The effective interaction V (q) in (1)
is obtained by integrating the interaction V3D(r) over the
Gaussians ϕ(z)2, which yields [29]

V (q) = πD2

[
8

3w
√

2π
P2(cos θ ) − 2ξ (θ,ϕ)F (q)

]
. (2)

Here, P2(x) = (3x2 − 1)/2 is the second Legendre poly-
nomial, F (q) = q exp[(qw)2/2]erfc(qw/

√
2), and ξ (θ,ϕ) =

cos(θ )2 − sin(θ )2 cos(ϕ)2. The constant term in Eq. (2) corre-
sponds to a contact interaction which plays no role here, since
we consider identical fermions. We characterize the strength
of the interaction by the ratio of the typical interaction and
kinetic energy,

g = 4mD2k0
F

3π�2
, (3)

where k0
F = √

4πρ0 is defined from the areal density ρ0. We
likewise define the Fermi energy of a noninteracting system
of the same density as E0

F = k0
F

2
/2m. For simplicity we only

consider the limit w → 0 corresponding to a strict 2D system.
A nonzero value of w leads to qualitatively the same physics
with only a small shift in the critical coupling strength for
stripe formation, as long as k0

F w � 1 [22].

III. MEAN-FIELD THEORY

The instability towards forming a striped phase is signaled
by a zero frequency pole in the density-density response
function at a given wave number qc [22]. Close to the transition
to the normal phase, the density modulation is dominated by
the lowest Fourier components qc and −qc, and we can write

ρ(r) = ρ0 + ρ1 cos(qc · r − u), (4)

with A−1 ∑
k〈ĉ†kĉk〉 = ρ0 and A−1 ∑

k〈ĉ†kĉk+qc
〉 =

ρ1 exp(iu)/2. Here, u is the phase shift of the wave and A

is the area of the system. The lowest Fourier components qc

and −qc also dominate deeper into the striped phase, and

in the following we therefore neglect the contribution of
higher harmonics to ρ(r). Using Wick’s theorem to expand
the interaction part of the Hamiltonian (1), we construct
a mean-field theory by including 〈ĉ†kĉk′ 〉 for k = k′ and
k = k′ ± qc, which yields the mean-field Hamiltonian

ĤMF =
∑

k

ε(k)ĉ†kĉk +
∑

k

[
h (k)ĉ†k+qc

ĉk + H.c.
]
. (5)

Here,

ε(k) = k2

2m
+ 1

A

∑
k′

[V (0) − V (k − k′)]〈ĉ†k′ ĉk′ 〉 (6)

is the Hartree-Fock single particle energy and

h (k) = 1

A

∑
k′

[V (qc) − V (k − k′)]〈ĉ†k′ ĉk′+qc
〉. (7)

As usual, these parameters have to be determined self-
consistently. This is complicated significantly by the fact that
h (k) is a function of k, since it includes the exchange inter-
action V (k − k′). It is however crucial to include exchange,
since it is known to lead to important effects such as the
collapse of the system, a large deformation of the Fermi
surface [13,30], and a significant change in the critical coupling
strength for the stripe instability [20,22,31]. All these effects
are recovered in our calculation as will be discussed below.
For the self-consistent solution, we choose u = 0 in (4) which
corresponds to h (k) real.

A. Band structure

In the striped phase, the translational symmetry is spon-
taneously broken in the direction perpendicular to the stripes
in analogy with a classical smectic liquid crystal [32], while
it is conserved in the direction along the stripes. Each dipole
experiences the mean-field potential from the other dipoles
which is periodic in the direction perpendicular to the stripes.
It follows that a dipole with momentum k is coupled only to
dipoles with momenta k ± nqc with n an integer. This allows
us to think of k space in terms of having a 1D Brillouin zone
structure in the direction of qc and an unrestricted k space
in the direction perpendicular to qc. We therefore partition
the 2D k space into slices of width qc, by starting with
the first Brillouin zone B0 defined as the points k such that
−qc/2 < k · q̂c � qc/2, where q̂c is the unit vector in the
direction of qc. Then any k-space point k can be uniquely
written as

k = k′ + nqc where k′ ∈ B0 and n ∈ Z. (8)

The higher order zones are denoted by Bn = {k ∈ R2|∃k′ ∈
B0 : k = k′ + nqc}, and the full k space is the disjoint union of
all Bn’s. With this partitioning each k state only couples to itself
and precisely one state in each of the two neighboring Brillouin
zones, and the mean-field Hamiltonian (5) can be written as
a sum over Hamiltonians for each k in the first Brillouin
zone: ĤMF = ∑

k∈B0
ĉ†kH(k)ĉk. Here H(k) is a tridiagonal

matrix describing the coupling between states with momenta
k + nqc and ĉ†k = (. . . ,ĉ†k−nqc

, . . . ,ĉ
†
k,ĉ

†
k+qc

, . . . ,ĉ
†
k+nqc

, . . . ).
So the mean-field Hamiltonian can be diagonalized for each k
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in B0 separately. Note however that the self-consistent averages
in (6) and (7) are determined by summing over all k, thereby
coupling different k’s.

For each k in the first Brillouin zone, we diagonalize the
Hamiltonian H(k) by introducing the quasiparticle operator
γ̂k = U(k)†ĉk so that U(k)†H(k)U(k) = D(k) is a diagonal
matrix with quasiparticle energies Ei(k) on the diagonal. The
thermal average of the new operators for k,k′ ∈ B0 is given
by 〈γ̂ †

k,i γ̂k′,j 〉 = δk,k′δi,j f [Ei(k)], where f (x) = [exp β(x −
μ) + 1]−1 is the Fermi-Dirac distribution and μ is the chemical
potential. We can then calculate the Hartree-Fock energies
and the order parameter self-consistently from the diagonal
Hamiltonian. The chemical potential is determined by keeping
the density of dipoles fixed.

With the geometry illustrated in Fig. 1, the stripes are
parallel to the kx axis, since this minimizes the repulsion
between the dipoles. Thus the vector qc is parallel to the ky axis
corresponding to ϕc = π/2, where ϕ is the azimuthal angle
between a vector in k space and the kx axis. We furthermore
choose qc = 2kF (ϕc,θ,g) since we expect this to lead to
the lowest critical coupling strength for stripe formation,
as the density wave can then be formed by particle-hole
excitations around the Fermi surface with no cost in kinetic
energy. Here kF (ϕ,θ,g) is the length of the Fermi vector in
the normal phase for interaction strength g and dipole tilting
θ . It depends on the angle ϕ, since the Fermi surface is
deformed by the dipole-dipole interaction forming an elliptical
shape; see Fig. 4. We calculate the deformation using the
variational method based on Hartree-Fock theory described
in [13].

B. Three band theory

To proceed, we reduce the numerical complexity by
truncating the matrix H(k) which is to be diagonalized at each
point in the first Brillouin zone. As shown in the Appendix A,
the condition for the stripe instability obtained from calculating
the density-density response function in the conserving HFA
involves for T = 0 momenta only in the three lowest Brillouin
zones Bn with n = −1,0,1. Thus we include these three
Brillouin zones in our calculations, whereas higher energy
zones are neglected. In this way we recover the instability line
obtained in Ref. [22]. Higher Brillouin zones contribute in the
striped phase or at nonzero temperature, but as long as T � εF

and h (k) � εF their contribution is negligible. We shall
later demonstrate numerically that including the lowest three
zones only is an excellent approximation for the parameters
chosen.

The mean-field Hamiltonian for a given k ∈ B0 is then

H(k) =
⎡
⎣εk−qc

h∗
k−qc

0
hk−qc

εk h∗
k

0 hk εk+qc

⎤
⎦ (9)

and the three quasiparticle energy bands Ek,1 � Ek,2 � Ek,3

are the eigenvalues of the matrix H(k).
The self-consistent equations (6) for the Hartree-Fock

energy and (7) for the order parameter read in terms of the

new single particle eigenstates

ε(k) = k2

2m
+ 1

A

∑
k′∈B0

1∑
n=−1

[V (0) − V (k − k′ − nqc)]

×
3∑

l=1

|U (k′)n+2,l |2f (Ek′,l), (10)

h (k) = 1

A

∑
k′∈B0

{
[V (qc) − V (k − k′ + qc)]

×
3∑

l=1

U (k′)∗1,lU (k′)2,lf (Ek′,l)

+ [V (qc) − V (k − k′)]
3∑

l=1

U (k′)∗2,lU (k′)3,lf (Ek′,l)

}
,

(11)

while the Fourier components of the density read

ρ0 = 1

A

∑
k∈B0

3∑
l=1

f (Ek,l),

(12)

ρ1 = 2

A

∑
k∈B0

3∑
l=1

[U (k)∗1,lU (k)2,l + U (k)∗2,lU (k)3,l]f (Ek,l).

The equations (9)–(12) are solved self-consistently by dis-
cretizing B0 using a rectangular grid including states up to
±1.1kF (ϕ = 0,g,θ ) in the kx direction. B0 is defined as being
infinite in the kx direction, but there is no coupling in the
direction perpendicular to qc, so the states with kx outside the
Fermi surface of the normal phase are not occupied. The grid
is nkx

× nky
= 101 × 161 points with an increased density of

points near the edges. The iteration procedure is as follows:
for each k point the 3 × 3 matrix U(k) and the eigenenergies
Ei(k) are formed by diagonalization of H(k) computed using
the current estimates to h and ε. Then μ is calculated such
that the density is constant and finally the new estimates to
ρ1, h, and ε are calculated from (10) to (12). The iteration is
terminated when the absolute change in ρ1 is less than 10−6,
while the maximum absolute change in any k point for h and
ε is less than 10−3E0

F and 5 × 10−3E0
F , respectively.

IV. RESULTS

We now discuss the main results of our numerical calcula-
tions yielding self-consistent solutions to (9)–(11).

A. Stripe amplitude

Figure 2 shows the amplitude of the density wave ρ1/ρ0,
which we take to be the order parameter of the striped phase,
as a function of the coupling strength and alignment angle
θ . We clearly see the onset of stripe order beyond a critical
coupling strength which depends on the angle. Note that the
transition to the broken symmetry phase is not completely
sharp since the discretization of k space in the numerical
calculations corresponds to finite size effects, which result in
a smooth crossover between the normal and the striped phase.
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FIG. 2. (Color online) Amplitude ρ1/ρ0 of the density wave
as a function of the coupling strength g and tilt angle θ . The
white line is the critical line for stripe formation obtained from
linear response [22], while the shaded region depicts the collapse
region [13,17].

Taking this small effect into account, the critical coupling
strength for the stripe instability obtained here agrees well
with the previous result based on linear response theory [22],
which is indicated by a white line in Fig. 2. This confirms
the consistency of our approach and accuracy of the numerics
of the present paper. We see that the order parameter ρ1/ρ0

quickly increases with increasing coupling strength resulting
in significant density modulations in the striped phase.

For large tilting angles θ of the dipoles, Hartree-Fock
theory predicts that the homogenous state is unstable against
density collapse for strong coupling [13]. This instability is
also predicted using a different theoretical approach obtaining
almost the same critical coupling strength for collapse [21].
Since a broken symmetry in general leads to a gap in the
spectrum thereby making the system less compressible, an
interesting question is whether the striped phase stabilizes the
gas against this collapse. However, we do not find any numer-
ical evidence of such a stabilizing effect. On the contrary, our
numerical calculations do not converge in the region where
a homogeneous phase is predicted to collapse [13,17], which
is depicted by a shaded region on Fig. 2. This indicates that
stripe order does not stabilize the systems against collapse. We
speculate that the reason is that the systems remain gapless in
certain regions of the Fermi surface in the striped phase, as we
shall discuss in detail below.

In Fig. 3, we plot the stripe order parameter ρ1/ρ0 as a
function of g for various tilt angles θ .

These curves correspond to cuts along constant θ in Fig. 2.
They clearly illustrate that apart from finite size effects, the
critical coupling strength for the onset of stripe formation
agrees well with what is obtained from a linear response [22].
An interesting effect is that the stripe amplitude increases
faster for larger angles θ , where the interaction is increas-
ingly anisotropic and the system approaches the collapse
instability. Also, the large value of the stripe order shown
in Fig. 3 means that the stripes should be directly observable
in experiments with high resolution in situ detection, as has
been achieved with optical lattices [33].

g
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θ = 0.2π
θ = 0.3π
θ = 0.325π

FIG. 3. (Color online) ρ1/ρ0 as a function of g for various tilt
angles θ . The critical value for stripe formation [22] for each angle is
marked by a triangle � of the corresponding color.

B. Momentum distribution

The momentum distribution 〈ĉ†kĉk〉 of the system can be
measured in a time-of-flight (TOF) experiment, and we now
analyze how this can be used to detect the striped phase.
In Fig. 4, we plot 〈ĉ†kĉk〉 for g = 1.01 and θ = 0.3π which
corresponds to a fairly large stripe amplitude ρ1/ρ0 = 0.385.
First, we notice that the momentum distribution is strongly
anisotropic in agreement with what is found for the normal
phase [13,30]. We plot in Fig. 4 an elliptical approximation for
the Fermi sea as calculated from a variational Hartree-Fock
theory for the normal phase, as described in [13]. We see
that the Fermi sea for the striped phase has almost the
same underlying elliptical shape. To illustrate the significant

kx/k0
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k
y
/
k

0 F

B1

B0

B−1

qc
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1

FIG. 4. (Color online) Momentum distribution 〈ĉ†kĉk〉 in the
striped phase for g = 1.01, θ = 0.3π , where ρ1/ρ0 = 0.385, plotted
in the three first Brillouin zones B−1, B0, and B1. The elliptical shape
of the underlying Fermi sea (solid green) of the homogenous phase
and the circular Fermi sea (dashed blue) for a noninteracting system
are also shown.
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Fermi surface deformation, we also plot the circular Fermi
sea of a noninteracting system with the same density. In
addition to the elliptical shape of the Fermi sea, the striped
phase is characterized by a smearing out of the momentum
distribution in the regions located around the edge of the
Fermi sea with ϕ � ±π/2, i.e., k � ±qc/2. This is because
the states with momenta k and k ∓ qc are nearly degenerate
in these regions where the Fermi surface is near the edge of
the first Brillouin zones. The resulting strong mixing of the
momentum states means that the quasiparticles do not have a
well-defined momentum. Note that these regions are enlarged
due to the underlying elliptical shape of the Fermi sea creating a
“nesting” effect in analogy with lattice systems. It follows from
this nesting that the stripe order is enhanced by the elliptical
shape of the Fermi sea. In total, Fig. 4 clearly demonstrates
that the striped phase can be detected in a TOF experiment by
the characteristic shape of its Fermi sea.

Finally, Fig. 4 shows that the population in the Brillouin
zones Bn with n = ±1 is very small. This confirms that the
three band approximation is accurate in the striped phase for
the parameters used.

C. Quasiparticle energies

As we discussed, stripe order mixes states with momenta
differing by qc giving rise to large effects in the regions around
k � ±qc/2. To examine this effect further, we plot in Fig. 5
the quasiparticle energies for the lowest two bands obtained
from diagonalizing the matrix H(k) for g = 1.01, θ = 0.3π

giving ρ1/ρ0 = 0.385. As expected, we see that the stripe
order gives rise to a gap opening up at the Fermi surface in
the regions around k � ±qc/2. The system however remains
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1E0
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2E0
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3E0
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4E0
F

FIG. 5. (Color online) Two lowest energy bands for g = 1.01 and
θ = 0.3π . Energies below the chemical potential are colored red;
energies above the chemical potential are colored green going to blue.
The white lines indicate the cuts along kx = 0 and ky = 0 which are
shown in Fig. 6.
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0
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FIG. 6. (Color online) Two lowest energy bands and the lower
part of the third band along ky = 0 (top) and kx = 0 (bottom) in the
first Brillouin zone. Occupied states in the lowest band are indicated
by red dots, the chemical potential is indicated by a dashed line, while
unoccupied states in the first, second, and third bands are indicated
by green, blue, and black dots, respectively.

gapless in the other regions of the Fermi surface where the
quasiparticle energies are perturbed only slightly from their
normal phase values. This is illustrated further in Fig. 6 where
we plot the quasiparticle energies along cuts defined by kx = 0
and ky = 0. One clearly sees the gap at the Fermi surface for
kx = 0, whereas there is no gap for ky = 0. This explains
why the system remains compressible and the stripe order
does not stabilize the system significantly against collapse. It
furthermore opens up the intriguing possibility of forming
stripe and superfluid order simultaneously: while Cooper
pairing is suppressed in the gapped regions around k � ±qc/2,
particles around the gapless regions Fermi surface can still
form Cooper pairs. Such a phase with both superfluid and
density order is a supersolid, and its experimental realization
would be a major result, since it has not been unambiguously
observed despite decades of intense research [34–39]. It also
demonstrates that it is very promising to use dipolar gases to
investigate the interplay between quantum liquid crystal phases
such a stripes, and superfluid pairing, which is a central topic
in the physics of strongly correlated systems including cuprate
and pnictide superconductors [26,27].

D. Momentum correlations

TOF experiments can also be used to measure correlation
functions in quantum gases. Indeed, pair correlations [40],
bosonic bunching [41], fermionic antibunching [42], and the
Mott superfluid [43] have been measured with this technique.
We now demonstrate how TOF experiments can be used to
detect the formation of stripes.

In TOF experiments, the density-density correlation func-
tion 〈ρ(r)ρ(r′)〉 at points r and r′ can be measured after the
trap has been switched off and the gas has been allowed to
expand for a time t . Assuming free expansion, this corresponds
to measuring the momentum correlation function 〈nknk′ 〉
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before expansion with k = mr/t . We therefore analyze the
correlation function

C(k,k′) = 〈nknk′ 〉 − 〈nk〉〈nk′ 〉 = −〈ĉ†kĉk′ 〉〈ĉ†k′ ĉk〉, (13)

where we have used mean-field theory in the second equality
and assumed k 
= k′. C(k,k′) is nonzero in the striped phase
for k′ = k ± qc, and taking k′ = k + qc we obtain

C(k,k + qc) =

⎧⎪⎪⎨
⎪⎪⎩

0 for k ∈ B1,

−∣∣ ∑3
l=1 U (k)∗1,lU (k)2,lf (Ek,l)

∣∣2
for k ∈ B0,

−∣∣ ∑3
l=1 U (k + qc)∗2,lU (k + qc)3,lf (Ek+qc,l)

∣∣2
for k ∈ B−1.

(14)

In Fig. 7, we plot C(k,k + qc) as a function of k for g = 1.01,
θ = 0.3π .

We clearly see a peak around k = −qc/2, where the nearly
degenerate states on opposite sites of the Fermi ellipse strongly
mix. Right at the Fermi surface for kx = 0, the states are
fully mixed giving the maximum value |C(k,k + qc)|2 = 1/4.
Note that C(k,k − qc) is the same as (14) mirrored around
the kx axis. We conclude that stripe order can be detected
by the presence of characteristic peaks in the density-density
correlation function measured in a TOF experiment.

It should be noted that the dipolar interaction is long
ranged compared to the usual atom-atom interaction, and it
is therefore not obvious that it can be neglected during free
expansion. However, we expect that the smoking gun features
of the striped phase are robust toward interaction effects
during TOF. In particular, the peak in the correlation function
shown in Fig. 7 will survive interaction effects, since it is
an inherent feature of the density wave. It might be distorted
during expansion due to interactions, but it will not disappear.
Also, it was found in Ref. [44] that for pancake shaped traps,
which is the geometry we consider, dipolar interactions only
have a small effect on the momentum distribution in TOF
experiments. Even though they only analyzed the case when
the dipoles are perpendicular to the pancake, this indicates
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FIG. 7. (Color online) Correlation function C(k,k + qc) for g =
1.01, θ = 0.3π in the first three Brillouin zones. It has a peak value of
1/4 at k = −qc/2. Also shown is the Fermi surface for a homogenous
phase with same tilting angle and interaction strength.

that interaction effects are small under TOF experiments for
the system we consider.

V. DISCUSSION

Since stripe formation occurs for fairly strong coupling,
one cannot expect in general the mean-field approach used in
this paper to be quantitatively accurate. From the 1D character
of the stripes, we do indeed expect fluctuations away from
the mean-field result to be significant. These fluctuations
will suppress stripe order and therefore increase the critical
coupling strength for stripe formation. It is difficult to give a
precise estimate of the accuracy of the mean-field approach.
From the Ginzburg or Brout criterion, we expect the size of
fluctuations to be determined by h(k)/εF .

One can also compare our prediction for the critical cou-
pling strength with those obtained using different theoretical
approaches. Calculations of the divergence of the density-
density response function using the RPA give a critical cou-
pling strength of g � 0.26 for dipoles oriented perpendicular
to the plane, θ = 0 [16,17]. Including exchange correlations to
form a conserving Hartree-Fock approximation increases the
critical coupling strength to about g = 0.57 [20,22,31], which
is equivalent to the approach in the present paper. When the
response function is calculated introducing a local field factor
using the so called STLS scheme, one obtains g = 2.6 for the
critical coupling strength [21]. This approach does include
correlations beyond Hartree Fock, but at the same time it
neglects the nonlocal nature of the correlations. For the special
case of the dipoles perpendicular to the plane, fixed-node
Monte Carlo calculations indicate that the striped phase is
preceded by a triangular Wigner crystal at g = 10.6 ± 1.3 [45].
However, these calculations use variational wave functions
both for the normal and the striped phase with less than
100 particles, and the resulting energies of the two phases
differ by less than 1%. Thus it is not clear how robust these
results are to finite size effects and to improvements in the
wave functions. Finally, a variational method based on wave
functions for the 2D electron gas yields g = 11.9 ± 1.7 for
the critical coupling strength of the Wigner crystal [46],
which is close to the diffusion Monte Carlo result, but to
our knowledge this method has not been used to look for
the density wave instability. In total, the large discrepancies
between the different theoretical predictions show that the
striped phase is a strongly correlated phenomenon. It is
unfortunately not straightforward to rank the accuracy of the
different results approaches, and the problem therefore calls
for an experimental investigation. We emphasize that contrary
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to the other works mentioned above, our mean-field approach
is able to calculate the properties of the broken symmetry
striped phase. Also, the mean-field results presented here,
such as the smoking gun features of the striped phase in the
momentum distribution, must be expected to be qualitatively
correct.

The striped phase spontaneously breaks translational sym-
metry, and it is therefore a quantum analog of the classical
smectic phases [32]. Quantum nematic and smectic phases
play a significant role for many interesting electronic ma-
terials which have been discovered in the past couple of
decades [26,27]. Contrary to the electron systems, which
are plagued by impurities, intricate band structures, lattice
defects, and distortions, that complicate a systematic analysis,
ultracold dipolar gases are extremely clean and in addition
experimentally very flexible. They therefore provide a great
opportunity to investigate the formation of a smectic phase
in a controlled and pure setting. In this paper, we approach
these phases from the weak-coupling perspective, where the
phases arise from the successive breaking of symmetries of an
underlying Fermi surface [47].

VI. EXPERIMENTAL CONSIDERATIONS

The interaction strength depends strongly on the type
of molecule used in an experiment, since it scales with
g ∝ mp2√n2D. As an example, consider the chemically stable
23Na40K. To give a conservative estimate of experimentally
realistic values, we refer to Refs. [3,11], where the JILA
group reports a maximum value of the induced dipole moment
p/p0 of about 0.4 for the chemically unstable 40K87Rb, and a
maximum density of 3.4 × 107cm−2 in a pancake geometry.
If the same values are used for 23Na40K, it corresponds to
g � 1.0 which is well within the striped phase as calculated in
mean-field theory presented here. Similar parameters for the
other chemically stable molecule 40K133Cs gives g = 1.3, and
taking p = p0 yields g = 8.4. Provided one can overcome
difficulties related to the fact that 6Li133Cs is chemically
reactive by using the 2D geometry, the large permanent dipole
moment p0 = 5.5 D of this molecule means that one can even
achieve the very high coupling strength g � 55 for the same
density. These very different values illustrate the quadratic
dependence of the coupling strength on the dipole moment,
which means that experiments likely will be able to probe
a large region of the phase diagram. One should therefore
be able to investigate the critical value for stripe formation,
which is presently not settled theoretically as discussed
above.

An interesting consideration is the effects of temperature.
A finite and small temperature broadens the momentum
distribution leading to less sharp signatures. In the strict 2D
limit, no true long range order exists at nonzero temperature,
and the phase transition to the homogenous phase is of
the Berezinskii-Kosterlitz-Thouless (BKT) type [48,49]. For
increasing temperatures, defects in the form of insertion and
disappearance of stripes will proliferate eventually melting
the stripes. In the strongly interacting limit we expect the BKT
temperature to be proportional to the density; however, the
constant of proportionality has yet to be calculated. This will
be explored in future work.

VII. CONCLUSIONS

We studied the T = 0 properties of the striped phase of a
2D system of fermionic dipoles aligned by an external field.
A Hartree-Fock theory was developed, which was shown to
recover previous results for the critical coupling strength for
stripe formation. The amplitude of the stripes was calculated
as a function of the dipole moment and orientation, and the
quasiparticle spectrum of the striped phase was shown to
exhibit a 1D Brillouin zone structure with gapped as well as
gapless regions around the Fermi surface. The system therefore
remains compressible in the striped phase, and it collapses for
essentially the same dipole strength as in the normal phase.
We showed that the striped phase has clear signatures in the
momentum distribution and in the momentum correlations,
which can both be measured in TOF experiments. We also
demonstrated that the stripe amplitude is so high, that they can
be detected directly using a high resolution in situ detection
scheme. Finally, we discussed how the striped phase can be
realized with experimentally relevant molecules.

ACKNOWLEDGMENTS

We are grateful to Zhigang Wu and Nikolaj Zinner for dis-
cussions and to the Centre for Scientific Computing in Aarhus
for computation time. G.M.B. would like to acknowledge the
support of the Carlsberg Foundation via Grant No.2011 01
0264 and the Villum Foundation via Grant No. VKR023163.

APPENDIX: k SPACE IN THE CONSERVING
HARTREE-FOCK APPROXIMATION

To argue for the truncation of k space, we examine the
calculation of the static density-density response function
χ . The divergence of χ (q,ω = 0) signifies the instability of
the system towards forming density waves with wave vector
q [16,17] and thus marks the boundary of the DW phase. The
self-consistent mean-field theory employed in this study is an
extension of the conserving [28] HFA to the density-density
response function as calculated in [20,22,31]. So examining
the latter approach gives an indication of which k states are
relevant in the vicinity of the phase transition. As shown
in [22], the internal Matsubara frequencies in the exchange
plus direct interaction approximation to χ only appear in
the particle-hole propagator 
(k,q) = G(k + q)G(k), where
k = (k,ikn) is the 2 + 1 momentum and G is the fully dressed
single particle Green’s function. The Matsubara frequency sum
is trivial so∑

k


(k,q) =
∑

k

fk − fk+q

iqn + εk − εk+q
(A1)

=
∑

k

(
fk

iqn + εk − εk+q
+ fk

−iqn + εk − εk−q

)
,

(A2)

where εk is the Hartree-Fock single particle energy as given
by (6). Here we can see that the particle-hole propagator is
given exactly by the coupling between the occupied states of
the lowest band εk to the two bands εk±q which is captured by
the three band model described in Sec. III B.
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