
PHYSICAL REVIEW B 90, 144514 (2014)

Eilenberger and London theories for transverse components of flux line lattice
form factors in uniaxial superconductors
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We theoretically study the magnetic field orientation dependence of longitudinal and transverse flux line lattice
form factors in uniaxial superconductors with anisotropy ratio corresponding to YBa2Cu3O7−δ . We discuss
influences of the anisotropy ratio of coherence length and differences between the s-wave and the dx2−y2 -
wave pairings. The calculations are performed by two methods, the Eilenberger theory and the London theory
comparatively, and we study the cutoff function of the extended London theory, which will be helpful in the
analysis of the small angle neutron scattering in the vortex states.

DOI: 10.1103/PhysRevB.90.144514 PACS number(s): 74.25.Uv, 74.25.Ha, 74.72.−h, 61.05.fg

I. INTRODUCTION

Flux line lattice (FLL) form factors in vortex states of
type-II superconductors are observed by small angle neutron
scattering (SANS) experiments. The behaviors of the form fac-
tors reflect exotic properties of superconductors. For example,
from the temperature (T ) dependence of the form factor we
can examine the existence of nodes in the superconducting
gap function, reflecting the T dependence of the penetration
depth [1]. From the magnetic field (B̄) dependence, we
can know the contribution of Pauli-paramagnetic effects
in superconductors [2–5]. The B̄ dependence of the FLL
deformation reflects the anisotropy of superconductors [6].
In order to extract the valuable information from the SANS
experiments in the vortex states, it is helpful that we perform
theoretical studies on the behavior of the FLL form factors in
the superconductors.

In uniaxial superconductors where the coherence length is
anisotropic between the ab and the c directions, transverse
components appear in the internal fields when the magnetic
field orientation is tilted from the basal plane or the c

axis [7]. While the longitudinal components Bz(h,k) of the
FLL form factor are obtained from the intensity of the
conventional non-spin-flip SANS, the transverse components
Btr(h,k) are estimated from the intensity of the spin-flip SANS.
The observation of the spin-flip SANS was performed in
YBa2Cu3O7−δ [8] and Sr2RuO4 [9].

Theoretically the transverse components of the FLL form
factors were studied by the phenomenological London the-
ory [7]. This method is helpful to understand the overall
qualitative behaviors of the transverse components, since the
FLL form factors are described by simple functions. However,
the quantitative validity is ambiguous for analysis of the
experimental results, because the vortex core contribution is
neglected in the London theory. To fix this problem, we use
the extended London theory [9–12]. There we introduce the
cutoff function to include the vortex core contribution, but the
detailed form and parameters of the cutoff function are not
enough established [11,12].

On the other hand, by the numerical calculation based
on the self-consistent Eilenberger theory [13,14] we can
quantitatively estimate the internal fields and the FLL form
factors, appropriately determining the vortex core structure.
The calculation of the transverse components was done in

the case of chiral p-wave superconductors [15,16]. The
comparison of the results of the Eilenberger theory and
the London theory was studied in the problem of the FLL
morphology [6] and in the internal field distribution [17,18].

In this paper, we investigate the magnetic field orientation
dependence of the transverse and the longitudinal components
of the FLL form factors for the material parameters appropriate
to YBa2Cu3O7−δ [8]. We perform the calculations by two
methods of the Eilenberger theory and the London theory,
comparatively. We study effects of the anisotropy ratio of
coherence length and the differences between the s-wave and
the dx2−y2 -wave pairings. To improve the agreement between
results of the Eilenberger theory and the London theory, we
discuss the cutoff functions expected in the extended London
theory. In previous papers [17,18] the cutoff functions were
studied by the comparison of the internal field distribution
between the Eilenberger theory and the London theory. In
this paper, we estimate the cutoff functions by the study
on the magnetic field orientation dependence of the FLL
form factors, including the transverse components. These are
directly observed in the SANS experiment.

This paper is constructed as follows. After the introduction,
we explain our model for the Fermi surface and the FLL
structure in Sec. II. The field orientation dependence of the
FLL form factors is calculated by the Eilenberger theory in
Sec. III and by the London theory in Sec. IV. From the
comparison of these results, we discuss the cutoff functions
in the extended London theory in Sec. V. The last section is
devoted to summary.

II. ANISOTROPY RATIO AND FLUX LINE LATTICE

As a model of the Fermi surface, we use a
quasi-two-dimensional Fermi surface with rippled cylinder
shape, assuming the Fermi velocity v = (va,vb,vc) ∝
(cos φ, sin φ,ṽz sin pc) at p = (pa,pb,pc) ∝ (pF cos φ,

pF sin φ,pc) on the Fermi surface [19]. We consider a case
ṽz = 1/γ to produce the anisotropy ratio of coherence length
γ ∼ 〈v2

c 〉1/2
p /〈v2

b〉1/2
p ∼ ξc/ξb, where 〈· · · 〉p indicates an

average over the Fermi surface. The magnetic field orientation
is tilted by θ from the c axis toward the b axis. Since we set the
z axis to be parallel to the flux lines, the coordinate r = (x,y,z)
for the flux line structure is related to the crystal coordinate
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FIG. 1. (Color online) (a) FLL structure in the (x,y) plane of the real space. Circles indicate flux line centers. u1 and u2 are unit vectors of
the FLL. (b) θ dependence of the anisotropy ratio �θ for γ = 4, 6, and 8. (c) Circles indicate spots of the FLL form factors in the reciprocal space.
q1 and q2 are unit vectors. Ellipse connecting spots (1,1), (1,0), and the equivalent ones is given by q2

eff = q2
x + (qy/�θ )2. (d) θ dependence of

q2
eff for γ = 4, 6, and 8.

(a,b,c) as (x,y,z) = (a,b cos θ + c sin θ,c cos θ − b sin θ ).
We set unit vectors of the FLL as u1 = c(α/2, − √

3/2,0)
and u2 = c(α/2,

√
3/2,0) with c2 = 2φ0/(

√
3αB̄) and

α = 3�θ [19], as shown in Fig. 1(a). φ0 is the flux quantum,
and B̄ is the flux density. We use the anisotropy ratio �θ ≡
ξy/ξx ∼ 〈v2

y〉1/2
p /〈v2

x〉1/2
p ∼ (cos2 θ + γ −2 sin2 θ )−

1
2 . Sup-

posing the case of YBa2Cu3O7−δ [8], we consider the cases
of the anisotropy ratio γ = 4, 6, and 8. The θ dependence of
�θ for these cases is presented in Fig. 1(b). For small θ , �θ is
near 1. On approaching θ → 90◦, �θ rapidly increases toward
γ .

The FLL form factors B(q(h,k)) = (Bx(h,k),By(h,k),Bz(h,k))
are obtained by Fourier transformation of the internal field
distribution B(r) as

B(r) =
∑
h,k

B(q(h,k))e
iq(h,k)·r (1)

with wave vector q(h,k) = hq1 + kq2. h and k are inte-
gers. Unit vectors in the reciprocal space are given by
q1 = (2π/c)(1/α, − 1/

√
3) and q2 = (2π/c)(1/α,1/

√
3). As

presented in Fig. 1(c), the main spots (h,k) = (1,1), (1,0)
and the equivalent ones are on the ellipse given by q2

eff =
q2

x + (qy/�θ )2. At the spot (1,1), qy = 0. At the spot (1,0),
qy/�θ = √

3qx . The θ dependence of q2
eff is shown in Fig. 1(d)

for the cases γ = 4, 6, and 8.
The z components |Bz(h,k)|2 from Bz(r) give the intensity of

conventional non-spin-flip SANS. The transverse components,

|Btr(h,k)|2 ≡ |Bx(h,k)|2 + |By(h,k)|2, are accessible by spin-flip
SANS experiments [8,9]. Using the same parameters, we
calculate the form factors by the Eilenberger theory and by
the London theory, as explained in the following sections.

III. EILENBERGER THEORY

Quasiclassical Green’s functions f (ωn,p,r), f †(ωn,p,r),
g(ωn,p,r) are calculated in the FLL states by solving the
Riccati equation, which is derived from the Eilenberger
equation

{ωn + v̂ · (∇ + iA(r))}f = �(r)ϕ(p)g,
(2){ωn − v̂ · (∇ − iA(r))}f † = �∗(r)ϕ∗(p)g

in the clean limit, with v̂ · ∇g = �∗(r)ϕ∗(p)f − �(r)ϕ(p)f †,
g = (1 − ff †)1/2 and Matsubara frequency ωn [5,13–
16,19,20]. That is, we accurately calculate the spatial structure
of g without using Pesch’s approximation [21]. We consider
the cases of isotropic s-wave pairing ϕ(p) = 1 and anisotropic
dx2−y2 -wave pairing ϕ(p) = √

2 cos 2φ. Normalized Fermi
velocity is v̂ = v/vF with vF = 〈v2〉1/2

p . We have scaled length,
temperature, magnetic field, and energies in units of ξ0,
Tc, B0, and πkBTc, respectively, where ξ0 = �vF/2πkBTc

and B0 = φ0/2πξ 2
0 . The vector potential A(r) = 1

2 B̄ × r +
a(r) is related to the internal field as B(r) = ∇ × A(r) =
(Bx(r),By(r),Bz(r)) with B̄ = (0,0,B̄), Bz(r) = B̄ + bz(r) and
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(Bx,By,bz) = ∇ × a(r). The spatial averages of Bx , By , and
bz are zero [9].

The pair potential �(r) is calculated by the gap equation

�(r) = g0N0T
∑

0�ωn�ωcut

〈ϕ∗(p)(f + f †∗)〉p, (3)

where g0 is the pairing interaction in the low-energy band
|ωn| � ωc, and N0 is the density of states at the Fermi energy
in the normal state. g0 is defined by the cutoff energy ωc as
(g0N0)−1 = ln T + 2 T

∑ωc
ωn>0 ω−1

n . We carry out calculations
using ωc = 20kBTc. Current distribution to obtain a(r) is
calculated by

js(r) ≡ ∇ × ∇ × a(r) = −2T

κ2

∑
0�ωn

〈v̂Im{g}〉p. (4)

The Ginzburg-Landau (GL) parameter κ = B0/πkBTc
√

8πN0

is the ratio of the penetration depth ξ0 to coherence length
λ0 for B̄ ‖ c. In our unit ξ0 = 1, κ is treated as λ0.
In our calculations, we use κ = 100 as a typical type-II
superconductor.

In our study, calculations by Eqs. (2)–(4) are iterated at T =
0.5Tc, until we obtain self-consistent solutions of �(r), A(r),
and quasiclassical Green’s functions. By the self-consistent
calculations, we can correctly estimate the vortex core size
and the core contribution to the internal field distribution

B(r) = ∇ × A(r). From B(r), we obtain the FLL form
factors.

In Fig. 2, we present the form factors as a function of the
magnetic field orientation θ . Figure 2(a) shows the transverse
component |Btr(1,1)|2 at the main spot (1,1) in the cases of
anisotropy γ = 4, 6, 8 for the s-wave and the dx2−y2 -wave
pairing symmetries. |Btr(1,1)|2 has a peak at θ ∼ 68◦ (γ = 4),
72◦ (γ = 6), and 76◦ (γ = 8). The transverse component
reduces toward zero at both ends of θ = 0 and θ = 90◦.
The amplitude of |Btr(1,1)|2 becomes larger with increasing
γ . At the other spot (1,0), |Btr(1,0)|2 in Fig. 2(b) is about
0.1 times smaller than |Btr(1,1)|2 in Fig. 2(a), and the peak
position shifts to angle near θ ∼ 50◦. The changes by an
increase of γ become smaller in Fig. 2(b). The longitudinal
component |Bz(1,1)|2 in Fig. 2(c) is maximum at θ = 0 and
monotonically decreases toward the minimum at θ = 90◦.
|Bz(1,1)|2 has similar amplitude for all cases γ = 4, 6, 8 at
smaller angles θ � 60◦, but it shows differences among the
cases of γ at higher angle 60◦ < θ � 90◦, as shown in the
right panel of Fig. 2(c). These behaviors resemble the θ

dependence of q2
eff in Fig. 1(d). Also at the other spot (1,0),

|Bz(1,0)|2 in Fig. 2(d) has similar amplitude and θ dependence
to those of |Bz(1,1)|2 in Fig. 2(c). In all cases of Fig. 2, the
θ dependencies of the s-wave and the dx2−y2 -wave pairing
cases show similar behaviors [8], but the amplitudes of the
s-wave case are about twice as large as those of the dx2−y2 -wave
pairing.
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FIG. 2. (Color online) Field orientation dependence of the form factors by the Eilenberger theory for γ = 4, 6, 8 in the s-wave pairing
(solid lines) and the dx2−y2 -wave pairing (dashed lines). T = 0.5Tc and B̄ = 0.1B0. As a function of θ , we plot the transverse components
(a) |Btr(1,1)|2 for the (1,1) spot, (b) |Btr(1,0)|2 for the (1,0) spot, and the longitudinal components (c) |Bz(1,1)|2 for the (1,1) spot, (d) |Bz(1,0)|2 for
the (1,0) spot. In (c) and (d), the right panel presents focused range 70◦ � θ � 90◦.
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FIG. 3. (Color online) The ratio of the spin-flip SANS intensity and the non-spin-flip one as a function of θ for γ = 4, 6, and 8. (a) R(1,1) =
|Btr(1,1)|2/|Bz(1,1)|2. (b) R(1,0) = |Btr(1,0)|2/|Bz(1,0)|2. Results of the Eilenberger theory are plotted by circles for the s-wave pairing and square
points for the dx2−y2 -wave pairing. The lines are results by the London theory in Eq. (12). T = 0.5Tc and B̄ = 0.1B0.

The ratio R(h,k) ≡ |Btr(h,k)|2/|Bz(h,k)|2 is presented in Fig. 3
by circles as a function of θ for spots (h,k) = (1,1) and (1,0).
This corresponds to the ratio of the spin-flip SANS intensity
to the non-spin-flip SANS intensity. In Fig. 3, the ratio in the
s-wave pairing (circles) and the dx2−y2 -wave pairing (square
points) appears on the same line. With increasing γ , the peak
of R(1,1) as a function of θ becomes sharp, increasing the
peak height rapidly. The peak position is θ = 76◦ (γ = 4),
80◦ (γ = 6), and 83◦ (γ = 8). On the other hand, R(1,0) is very
small compared to R(1,1), and the peak shape of R(1,0) is not so
sharp. The peak positions are located at smaller θ , as θ = 64◦
(γ = 4), 70◦ (γ = 6), and 72◦ (γ = 8).

IV. LONDON THEORY

The FLL form factors for uniaxial superconductors were
studied in Ref. [7] on the basis of the London theory. Fol-
lowing the method, we evaluate the magnetic field orientation
dependence of the form factors for the same parameters as
in the previous section. The relation of current and vector
potential in the reciprocal space is given as

js(q) = iq × B(q) = − 1

κ2
Q̂a(q) (5)

in the London theory [6,22], where (i,j ) component of the
tensor Q̂ is given by

Qi,j = 2T
∑
0�ωn

〈
v̂i v̂j

|�ϕ(p)|2
β3

〉
p

(6)

with β = (ω2
n + |�ϕ(p)|2)1/2, and i,j = x,y,z. Here, small

nonlocal correction terms are neglected. � is determined by
the gap equation (3) in the uniform state without vortices. In the
uniaxial superconductors, components of the inverse matrix
m̂ = Q̂−1 are zero except for mxx = ma , myy = mb cos2 θ +
mc sin2 θ , myy = mb sin2 θ + mc cos2 θ , myz = mzy = (mb −
mc) sin θ cos θ , where

m−1
α = 2T

∑
0�ωn

〈
v̂2

α

|�ϕ(p)|2
β3

〉
p

(7)

for α = a,b,c. m−1
b = m−1

a . The values of m−1
a and m−1

c are
listed in Table I. Since γ ∼ (m−1

a /m−1
c )1/2, m−1

c decreases
with increasing γ . The T dependence of m−1

α corresponds
to that of the superfluid density. In the limit T → 0, m−1

α =

〈v̂2
α〉p, so that m−1

α are independent from the pairing function
ϕ(p) at T = 0. At finite temperatures, m−1

α in the dx2−y2 -wave
pairing is smaller than that of the s-wave pairing, because the
T dependence of the superfluid density is different depending
on the pairing function.

In order to obtain B(q), we substitute a(q) = iκ2m̂q × B(q)
from Eq. (5) to the relation B(q) − q × a(q) = B̄ez, and use
q · B(q) = 0, where ez is the unit vector along the z direction.
Thus, finally B(q) is written as

Bx(q) = −κ2myzqxqy

d
B̄, (8)

By(q) = κ2myzq
2
x

d
B̄, (9)

Bz(q) = 1 + κ2mzzq
2

d
B̄ (10)

with

d = {
1 + κ2(mxxq

2
y + myyq

2
x

)}
(1 + κ2mzzq

2)

− κ4m2
yzq

2q2
x (11)

and q2 = q2
x + q2

y . Compared to Ref. [7], x and y axes are
exchanged in our definition.

The form factors by Eqs. (8)–(10) are presented in Fig. 4 as
a function of θ . The overall behaviors of the θ dependence
by the London theory resemble those by the Eilenberger
theory in Fig. 2. The amplitude of the transverse components

TABLE I. m−1
a and m−1

c at T = 0 and 0.5Tc in the s-wave and the
dx2−y2 -wave pairings for γ = 4, 6, 8. The values at T = 0 are same
for the s-wave and the dx2−y2 -wave pairings.

T = 0.5Tc

T = 0 s-wave d-wave

γ = 4 m−1
a 4.85 × 10−1 4.03 × 10−1 2.94 × 10−1

m−1
c 3.01 × 10−2 2.50 × 10−2 1.83 × 10−2

γ = 6 m−1
a 4.93 × 10−1 4.10 × 10−1 2.99 × 10−1

m−1
c 1.37 × 10−2 1.14 × 10−2 8.32 × 10−3

γ = 8 m−1
a 4.96 × 10−1 4.12 × 10−1 3.01 × 10−1

m−1
c 7.74 × 10−3 6.43 × 10−3 4.70 × 10−3
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FIG. 4. (Color online) Field orientation dependence of the form factors by the London theory for γ = 4, 6, 8 in the s-wave pairing (solid
lines) and the dx2−y2 -wave pairing (dashed lines). T = 0.5Tc and B̄ = 0.1B0. As a function of θ , we plot the transverse components (a) |Btr(1,1)|2
for the (1,1) spot, (b) |Btr(1,0)|2 for the (1,0) spot, and the longitudinal components (c) |Bz(1,1)|2 for the (1,1) spot, (d) |Bz(1,0)|2 for the (1,0) spot.
In (c) and (d), the right panel presents focused range 70◦ � θ � 90◦.

0 30 60 90θ

0.4

0.6

|F
tr(

1,
1)

|2

8
6

4

0 30 60 90θ

0.4

0.6

|F
z(

1,
1)

|2

8
6

4

)c()a(

0 30 60 90θ

0.4

0.6

|F
tr(

1,
0)

|2

8

6

4

0 30 60 90θ

0.4

0.6

|F
z(

1,
0)

|2

8
6
4

d
S

)d()b(

FIG. 5. (Color online) θ dependence of the cutoff functions defined in Eq. (16) for γ = 4 (solid line), 6 (dashed line), and 8 (dashed-dotted
line) in the s-wave pairing. We also show the dx2−y2 -wave pairing case for γ = 4 (◦), 6 (•), and 8(�). (a) |Ftr(1,1)|2. (b) |Ftr(1,0)|2. (c) |Fz(1,1)|2.
(d) |Fz(1,0)|2. T = 0.5Tc and B̄ = 0.1B0.
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FIG. 6. (Color online) q2
eff dependence of the cutoff functions defined in Eq. (16) for γ = 4 (a), 6 (b), 8 (c) in the s-wave pairing (upper

panels) and the dx2−y2 -wave pairing (lower panels). The vertical axis is a logarithmic scale. T = 0.5Tc and B̄ = 0.1B0. Bold solid lines are for
|Ftr(1,1)|2 and |Ftr(1,0)|2. Bold dashed lines are for |Fz(1,1)|2 and |Fz(1,0)|2. In the s-wave pairing, |Ftr(1,1)|2 ∼ |Fz(1,0)|2. The dashed-dotted lines
(i) present fitting lines of Eq. (17) for |Ftr(1,1)|2. In the dx2−y2 -wave pairing, we also show fitting lines for |Fz(1,0)|2 by dashed-dotted lines (ii).
The fitting parameters are presented in Table II.

is enhanced with increasing γ . |Btr(1,1)|2 is 10 times larger
than |Btr(1,0)|2. In the longitudinal components, |Bz(1,1)|2
and |Bz(1,0)|2 are almost the same amplitude. Quantitative
comparison of the θ dependence between the Eilenberger
theory and the London theory is discussed in the next section.
In all cases of Fig. 4, values of the s-wave pairing case are about
twice as large as those of the dx2−y2 -wave pairing case. These
dependencies on the pairing symmetry in the London theory
qualitatively accord with those in the Eilenberger theory. And
the dependencies come from the fact that m−1

a and m−1
c are

smaller in the dx2−y2 -wave pairing case, as shown in Table I.
The ratio of the spin-flip SANS intensity to the non-spin-flip

SANS intensity is given by

R(h,k) ≡ |Btr(h,k)|2
|Bz(h,k)|2 = κ4m2

yzq
2q2

x

(1 + κ2mzzq2)2
. (12)

Therefore, in the type-II limit κ  1,

R(1,1) = m2
yz

m2
zz

=
(

(1 − γ 2) sin θ cos θ

sin2 θ + γ 2 cos2 θ

)2

(13)

at the spot (1,1) where qy = 0, and

R(1,0) = m2
yzq

2
x

m2
zzq

2
= R(1,1)

1 + 3�2
θ

(14)

at the spot (1,0). The θ dependencies of R(h,k) in Eq. (12) are
presented by lines in Fig. 3 for (h,k) = (1,1) and (1,0). The
θ dependencies and the γ dependencies of R(1,1) and R(1,0)

by the London theory (lines) give a nice fitting to the results
of the Eilenberger theory (circles and squares). There we find
only a small deviation near the peaks in the θ dependence of
R(1,1), and R(1,0) is slightly small (large) at larger (smaller)
θ , compared to the results of the Eilenberger theory. The θ

dependence of R(1,0) in Fig. 3(b) seems to correspond to the
results reported in Ref. [8].

V. EXTENDED LONDON THEORY

In this section, we study a quantitative comparison of the
form factors between the Eilenberger theory and the London
theory, and we discuss cutoff functions in the extended London
theory. In the extended London theory, the form factors are
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given by

|Btr(h,k)|2 = ∣∣Ftr(h,k)B
(L)
tr(h,k)

∣∣2
,

(15)
|Bz(h,k)|2 = ∣∣Fz(h,k)B

(L)
z(h,k)

∣∣2
,

introducing cutoff functions Ftr(h,k) and Fz(h,k) in order to
consider the vortex core contributions. |B(L)

tr(h,k)|2 and |B(L)
z(h,k)|2

are the form factors in Fig. 4 obtained by the London theory.
Since the form factors calculated by the Eilenberger theory

are quantitatively reliable, we substitute them to Bz(h,k) and
Btr(h,k) in Eq. (15). Thus, we estimate the cutoff functions as

|Ftr(h,k)|2 = ∣∣B(E)
tr(h,k)

∣∣2/∣∣B(L)
tr(h,k)

∣∣2
,

(16)
|Fz(h,k)|2 = ∣∣B(E)

z(h,k)

∣∣2/∣∣B(L)
z(h,k)

∣∣2
,

where |B(E)
tr(h,k)|2 and |B(E)

z(h,k)|2 are the form factors in Fig. 2
obtained by the Eilenberger theory.

Figure 5 presents the θ dependence of the cutoff functions
|Ftr(h,k)|2 and |Fz(h,k)|2 for the spots (h,k) = (1,1) and (1,0).
These are increasing functions as a function of θ , except for
|Ftr(1,0)|2 near θ = 90◦. The changes by an increase of γ appear
at θ > 60◦, where the cutoff functions become larger for larger
γ . At the spot (1,1), the s-wave and the dx2−y2 -wave pairing
cases have similar values for |Ftr(1,1)|2 (a) and |Fz(1,1)|2 (c).
At the spot (1,0), the dx2−y2 -wave pairing cases have smaller
values for |Ftr(1,0)|2 (b) and |Fz(1,0)|2 (d), compared to the s-
wave pairing case.

We assume the cutoff functions in the form

|Ftr(h,k)|2,|Fz(h,k)|2 = exp
( − c1qeff − c2q

2
eff

)
. (17)

For the fitting, we plot |Ftr(h,k)|2 and |Fz(h,k)|2 for (h,k) = (1,1)
and (1,0) as a function of q2

eff in Fig. 6, where the vertical axis

TABLE II. Fitting values of parameters c1 and c2 in Eq. (17) for
each case of Fig. 6.

|Ftr(1,1)|2 |Fz(1,0)|2

s-wave d-wave d-wave

(a) γ = 4 c1 = 0.861 c1 = 0.974 c1 = 0.873
c2 = 0.610 c2 = 0.410 c2 = 0.883

(b) γ = 6 c1 = 0.831 c1 = 0.963 c1 = 0.924
c2 = 0.690 c2 = 0.469 c2 = 0.843

(c) γ = 8 c1 = 0.807 c1 = 0.949 c1 = 0.936
c2 = 0.735 c2 = 0.505 c2 = 0.836

is a logarithmic scale. Usually the Gaussian form (c1 = 0) is
used as a conventional cutoff function [9–12]. If the Gaussian
function is used, the fitting lines in Fig. 6 become straight lines.
However, we include a term −c1qeff in the exponent to satisfy
the condition limqeff→0 |Fz(h,k)|2 = 1, so that limqeff→0 Bz(h,k) =
Bz(0,0) = B̄. As shown in Fig. 6, |Ftr(1,1)|2 is well fitted by the
function in Eq. (17). The fitting parameters c1 and c2 for each
panel of Fig. 6 are listed in Table II. In the s-wave pairing,
|Fz(1,0)|2 ∼ |Ftr(1,1)|2. While |Fz(1,1)|2 and |Ftr(1,0)|2 are also
near the fitting line, they show small deviations for smaller
q2

eff . In the dx2−y2 -wave pairing, we also show the fitting curve
for |Fz(1,0)|2, since the fitting functions for the (1,1) spot and
for the (1,0) spot have different slopes in Fig. 6. This indicates
that the anisotropy ratio of the vortex core shape is slightly
deviated from �θ in this range of T and B̄, due to the node
structure of the dx2−y2 -wave pairing. That is, the dependence
of the fitting function is changed from q2

eff = q2
x + (qy/�θ )2

to q2
x + cy(qy/�θ )2. The factor cy( �= 1) reflects the different

cutoff of the vortex core size between the x and the y directions.
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FIG. 7. (Color online) θ dependence of the form factors by the Eilenberger theory (circles) and the extended London theory (lines) for
γ = 8 in the s-wave and the dx2−y2 -wave pairings. (a) |Btr(1,1)|2. (b) |Btr(1,0)|2. (c) |Bz(1,1)|2. (d) |Bz(1,0)|2. T = 0.5Tc and B̄ = 0.1B0. For solid
lines, we use values of c1 and c2 for the fitting to |Ftr(1,1)|2 in Table II. For the dx2−y2 -wave pairing, we also show the cases of c1 and c2 for the
fitting to |Fz(1,0)|2 by dashed lines in (b) and (d).
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Since qy = 0 at the (1,1) spot, only the spot (1,0) includes the
influence of cy . Also the deviations of |Ftr(1,0)|2 at smaller
q2

eff indicate that |Ftr(1,0)|2 depends on the variable such as
q2

x + cy(qy/�θ )2, and the factor cy has the θ dependence near
θ = 90◦ to cancel the rapid change of �θ .

Finally, for the comparison to the results by the Eilenberger
theory, in Fig. 7 we show the θ dependence of the form factors
of Eqs. (15) and (17) by the extended London theory for γ = 8.
There we use the fitting parameters in Table II. In the s-wave
pairing, all of four form factors in Fig. 7 by the Eilenberger
theory are well fitted by the extended London theory using the
same fitting parameters c1 and c2. In the dx2−y2 -wave pairing,
we also see the nice fitting by the extended London theory,
while we have to change parameters c1 and c2 for the (1,0) spot
(dashed lines) from those for the (1,1)-spot (solid lines). These
fittings suggest the importance of vortex core contribution in
the estimate of the cutoff function in the extended London
theory.

VI. SUMMARY

In summary, we studied the magnetic field orientation
dependence of the transverse and longitudinal FLL form
factors, and clarified changes by anisotropy ratio of uniaxial su-
perconductors. We also evaluated contributions of the pairing
symmetry, considering s-wave and dx2−y2 -wave pairings. The

dx2−y2 -wave pairing case has smaller form factors than those of
the s-wave pairing case, reflecting the different T dependence
of the superfluid density. These evaluations were performed
by two methods; Eilenberger theory and London theory. The
former is quantitatively reliable, and the latter is a simple
formulation. Comparing results of the two theories, we found
that the cutoff function is necessary to modify the London
theory for quantitative analysis of spin-flip and non-spin-flip
SANS experiments.

The cutoff function reflects the contribution of the vortex
core in the internal magnetic field. In future studies, we
have to estimate the cutoff functions at other B̄ and T

ranges, and examine the B̄- and T -dependences of the vortex
core contributions. Also in the SANS experiments, if the
experimental data of the form factors are substituted in
Eq. (15), the behaviors of the cutoff functions are evaluated
experimentally. From these future studies, we hope to clarify
the vortex core contributions in the longitudinal and transverse
internal field distributions, including the dependencies on the
pairing symmetry.
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