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Partial long-range order in antiferromagnetic Potts models
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The Potts model plays an essential role in classical statistical mechanics, illustrating many fundamental
phenomena. One example is the existence of partially long-range-ordered states, in which some degrees of
freedom remain disordered. This situation may arise from frustration of the interactions, but also from an
irregular but unfrustrated lattice structure. We study partial long-range order in a range of antiferromagnetic
q-state Potts models on different two-dimensional lattices and for all relevant values of q. We exploit the power
of tensor-based numerical methods to evaluate the partition function of these models and hence to extract the
key thermodynamic properties (entropy, specific heat, magnetization, and susceptibility) giving deep insight into
the phase transitions and ordered states of each system. Our calculations reveal a range of phenomena related to
partial ordering, including different types of entropy-driven phase transition, the role of lattice irregularity, very
large values of the critical qc, and double phase transitions.
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I. INTRODUCTION

The Potts model [1] is a cornerstone of classical statistical
physics. First appearing in Potts’ Ph.D. thesis [2] as a general-
ization of the Ising model, it is a simple but highly nontrivial
model. Indeed, the family of q-state antiferromagnetic (AF)
Potts models displays a rich and complex range of behavior,
providing many examples of different phase transitions,
critical phenomena, ordered states, and universality classes.
Although the q = 2 Potts model is equivalent to the Ising
model, and thus has exact solutions for all planar lattices with
nearest-neighbor interactions [3], including the square [4],
triangular [5], and honeycomb [5] geometries, exact results for
q > 2 are rare. Many other problems in statistical mechanics
are closely related to the Potts model, including vertex
models [6], bond and vertex coloring problems [7], and loop
models [8].

The behavior of the AF Potts model is dictated by the
interplay between q, the number of states per site, and
the lattice geometry. When q is small compared to the average
coordination number z̄ of the lattice, at low temperatures the
limited number of degrees of freedom will in general be fixed,
and ordered, by geometrical and interaction requirements.
However, when q is similar to or greater than z̄, the entropy is
such that the system may not order at any temperature [9].
In addition to the conventional zero-temperature limits of
complete order or disorder, AF Potts models show two further
possibilities. One is that the ground state is genuinely critical,
the result of an arrested “zero-temperature phase transition” to
an ordered state; this type of physics is known in the q = 3 AF
Potts model on the square [10] and kagome [11] lattices and
in the q = 4 AF Potts model on the triangular lattice [12]. The
other is that some, but not all, of the degrees of freedom of the
system may form a state of partial long-range order [13,14];
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partial or complete ordering processes occur at different types
of “finite-temperature phase transition.”

At a conventional phase transition, the order parameter
becomes finite everywhere in the system to minimize the
free energy, and the result is a state of complete order at
zero temperature. In the example of the ferromagnetic Ising
model, all spins are oriented either upwards or downwards in
the ground state. However, in systems with sufficiently many
degrees of freedom (sufficiently large entropy, as in a Potts
model with sufficiently high q), the crossover to a ground
state optimizing the resulting entropic contribution may occur
in a stepwise fashion. The minimization of energy may be
achieved in many different ways, and may involve only some
of the lattice sites. The remaining degeneracy, and the type of
order, is then determined by the maximization of entropy. The
result is an “entropy-driven” transition, usually occurring at a
finite temperature, and to a state of partial order. On cooling
to zero temperature, if the system retains a nonzero “residual”
entropy, then a ground state with order on only a subset of
the lattice sites can be achieved. The best-known example of
the physics of extensive ground-state degeneracy is found in
ice [15].

The majority of prior work on partial order has concerned
frustrated systems, where the energy cannot be minimized
locally, meaning for all bonds simultaneously [16]. The AF
Ising model on the triangular lattice [5] is an archetypal
frustrated system because no spin configuration can minimize
all three bonds on a triangle simultaneously. Frustrated systems
share the same property of highly degenerate ground states,
arising from their frustrated interactions, and the formation of
partially ordered states offers one avenue for partial frustration
relief and partial entropy reduction.

When partial order arises in unfrustrated systems [13], its
origin lies only in configurational entropy effects. In 2008,
Kotecky and coauthors [14] found partial long-range order in
the q = 3 AF Potts model on the diced lattice, performing
both analytical and numerical studies of the accompanying
finite-temperature phase transition. In 2011, we [17] traced
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their result to the extensive zero-temperature entropy (residual
entropy per site) of this lattice, which arises because it is
“irregular” in the sense of having differently coordinated sites
(we defer a discussion of lattice types to Sec. II). From this
insight we demonstrated the existence of finite-temperature
phase transitions and partial order in the q = 4 Potts models
on the union jack and centered diced lattices. Partial order
is the result of a partial symmetry breaking, and we found
that, depending on the Potts model in question, the singularity
associated with this breaking of symmetry may be either
almost as strong as a full symmetry-breaking or may be
remarkably weak and difficult to detect.

Partial order in the ground state is known exactly in a num-
ber of models. In the spin-S AF Ising model on the triangular
lattice, for sufficiently large S the ground state is partially
ordered on two of the hexagonal sublattices but disordered on
the third [18]. Also in two dimensions, the ground states of
the AF Ising model on the union jack lattice [19], kagome
lattice [20], dilute centered square lattice [21], anisotropic
triangular lattice [22], and Villain lattice (anisotropic square
lattice) [23] are all partially ordered. Partial order also exists
for some frustrated systems, such as the q = 3 Potts model on
the Villain lattice [24,25]. Three-dimensional classical models
with partial order are mostly frustrated, including the Ising
model on the accumulated triangular [26] and body-centered-
cubic (bcc) [27] lattices, the classical Heisenberg model on
the bcc lattice [28], models on the simple cubic lattice [29,30],
the q = 4 AF Potts model on the diamond lattice [31], and the
XY model on the checkerboard lattice [32]. Experimentally,
partial order has been observed in the frustrated AF material
Gd2Ti2O7 [33]. Partial order is also predicted for the periodic
Anderson model on the triangular lattice [34,35] and the
Heisenberg model on the bcc lattice [36,37].

Although the Potts model is one of the simplest in statistical
physics, its analytical study has been restricted by the limited
number of exactly known results beyond q = 2. Methods
including height mapping [14] have some general utility,
while mappings to related coloring problems [7] are useful in
specific cases. Previous numerical studies of Potts models have
made use of Monte Carlo [38,39] and transfer-matrix [40,41]
techniques. Monte Carlo simulations are accurate, and can
study large but finite lattice sizes, while transfer-matrix
methods are infinite in one spatial dimension but finite in the
other(s), and can be used to study fractional values of q.

In this paper, we introduce (Sec. III) a set of tensor-based
numerical methods, which are quite generally applicable in
classical statistical mechanics. The partition function is written
as the trace over a network of tensors representing the states
of the system on an infinite lattice, and in its evaluation the
truncation is performed systematically in the tensor dimension.
Because it evaluates the partition function, this calculational
approach gives access in principle to all thermodynamic
quantities, and is not very resource-intensive in comparison
with other numerical techniques.

We apply the tensor-network approach to perform a detailed
analysis of partial order in AF Potts models [42]. We
consider a number of irregular lattices in two dimensions,
and calculate thermodynamic quantities including the entropy,
specific heat, magnetization, and magnetic susceptibility. We
use these qualitatively to investigate the partial order or partial

breaking of symmetry, which is shown by all the models, and
quantitatively to characterize the phase transitions and partially
ordered states. We find lower bounds for the critical values of q

on each lattice and illustrate the phenomenon of double phase
transitions in particular models. Our results show the power of
tensor-based numerical methods for gaining fresh insight into
long-standing problems in classical statistical mechanics.

The structure of this paper is as follows. In Sec. II, we
review the Potts model, the classes of lattice we consider
in two dimensions, and some known results concerning q,
regular geometries, and phase transitions. Section III describes
in detail the tensor-based numerical techniques we employ to
compute the partition function and thermodynamics of each
model. In Sec. IV, we focus on the entropy-driven phase
transition, using the entropy and specific heat to compare
and contrast its form on a number of Laves lattices. We
calculate in Sec. V the magnetization of the models studied in
Sec. IV, in order to characterize the partial order through its
order parameter and susceptibility. In Sec. VI, we expand our
discussion to models showing two successive phase transitions
with an intermediate state of partial order occurring for
entropic reasons. For completeness, in Sec. VII we examine
Potts models on two lattices, which have a high ground-
state degeneracy and do display partial order, but where the
entropy is subextensive, i.e., the residual entropy per site is 0.
Section VIII contains a brief summary and conclusion.

II. MODELS

A. Potts model

In a q-state Potts model, the local variable at site i may take
one of q different states, which we label as σi = 0,1, . . . ,q −
1. The Hamiltonian

H = J
∑
〈i,j〉

δσiσj
− H

∑
i∈L

δσi ,0 (1)

consists of two terms, one for interactions between nearest-
neighbor local variables for every bond of the lattice, and one
for an external field H coupled to one of the q states and for
one sublattice L. In the ferromagnetic Potts model, J < 0, a
negative energy contribution is obtained if the neighboring
sites are in the same state, while in the AF case, J > 0,
neighboring sites tend to occupy different states.

In the case J < 0, long-range order is favored and the
ground state always has ferromagnetic order. It has been proven
in two dimensions that the finite-temperature phase transition
to a disordered state is continuous if q � 4 and is first order
if q > 4 [43]. Although there is no exact solution in three
dimensions, numerical results [44,45] indicate that a first-order
phase transition occurs for q � 3.

The AF case is far richer and more complex. If the
different local states are denoted by different colors, at zero
temperature the neighboring sites should not have the same
color. Thus, the AF Potts model at T = 0 is equivalent to a
vertex coloring problem. By using the Dobrushin Uniqueness
Theorem [46,47], Salas and Sokal [9] proved that for suffi-
ciently large q the correlation function exhibits exponential
decay at all temperatures, including T = 0. The model is
therefore disordered even in the ground state, and no phase
transition occurs. For small q, by contrast, an ordered (or, from
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TABLE I. Values qc at which the q-state AF Potts model is
critical at zero temperature for different two-dimensional lattices.
For regular lattices, z̄ denotes the coordination number, while it
represents the average coordination for irregular lattices. For the
square, kagome, and triangular lattices, the value of qc is exact, while
for the honeycomb lattice it is derived by conjecture. All other values
are deduced from our calculations. The dilute centered diced lattices
are introduced in Sec. VII.

Lattice z̄ qc

Decorated honeycomb [50] 2.4 <3
Decorated square [50] 2.667 <3
Honeycomb [49] 3 2.618
Square [48] 4 3
Kagome [11] 4 3
Diced 4 >3
Triangular [12] 6 4
Union jack 6 >4
Centered diced 6 >5
Generalized decorated square [51] 5.333 �4
Dilute centered diced IA 5 >4
Dilute centered diced IIA 5 >4

above, partially ordered) ground state is likely. Based on this
insight, it is thought that for every lattice there exists a value
qc for which the system is disordered at all temperatures if
q > qc. For q = qc, the system is critical at zero temperature, a
situation we discuss below. Any behavior is possible if q < qc,
and typically one expects a phase transition of first or second
order to a type of long-range-ordered state [10].

In Table I, we use qc to organize a number of lattices in two
dimensions (Sec. II B), including all of those to be discussed
in the remainder of this paper. The results for the qc = 3 on
the square [10] and kagome lattices [11], and qc = 4 for the
triangular lattice [12] are obtained from exact solutions at
zero temperature, in which they are proved to be critical at
these values of q. On the honeycomb lattice, the fractional
value of the critical q is determined by conjecture [49]. The
results for the decorated square and honeycomb lattices are
obtained by mapping the AF model to a ferromagnetic model
whose critical value of q is known [50]. Results for all other
lattices are based on our calculations. Table I shows a very
close relationship between the lattice coordination number
and qc, with larger values of z̄ requiring larger qc. Beyond this
coordination number, however, it is clear that site equivalence
also plays a key role. Although the diced lattice has the
same average coordination number as the square and kagome
lattices, it shows a finite-temperature transition to a partially
ordered ground state [14], and therefore qc > 3. The crucial
difference is that, while all sites in the regular square and
kagome lattices are equivalent, the diced lattice is irregular,
being composed of two inequivalent sublattices of threefold-
and sixfold-coordinated sites.

B. Archimedean and Laves lattices

Lattices in which all sites are equivalent are known
as Archimedean. This category includes the honeycomb,
square, kagome, and triangular lattices. There are 11 planar

FIG. 1. (Color online) The 11 planar Archimedean lattices. The
index gives the lattice name in the terminology explained in the text.

Archimedean lattices, all of which are shown in Fig. 1. On
an Archimedean lattice, the coordination number is the same
for every site. The planar lattice is equivalent to a tiling of
polygons, each site belonging to different polygons, but with
the number and type of polygons to which each site belongs
being the same. If the coordination number of the Archimedean
lattice is z, the lattice is said to be “n colorable” for any n � z;
although this creates an AF intersite color condition, there is
no known relation between n and qc.

The Archimedean lattices have systematic names. For any
given vertex, the attached polygons are listed (for example in
clockwise order) by their number of edges. While this process
generates multiple names for several lattices, depending on
the starting polygon, the convention is to choose the lexico-
graphically shortest name by using exponents to abbreviate
two or more consecutive entries. Thus, the square lattice is
also known as (4,4,4,4), or (44), and this notation is used in
Fig. 1.

The dual transformation of a planar lattice is defined by
adding one site at the center of each polygon and connecting
these new sites to those of all neighboring polygons. This is
a vertex-to-face, face-to-vertex, edge-to-edge transformation,
and is reversible. The square lattice is manifestly self-dual
and the honeycomb and triangular lattices are mutually dual.
However, the dual lattices of the remaining eight Archimedean
lattices are not Archimedean; clearly, the centering sites of
the different polygons in these eight lattices have different
connectivity. These are known as the Laves lattices, and
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FIG. 2. (Color online) The set of Laves lattices, irregular planar
lattices obtained as the non-Archimedean duals of the Archimedean
lattices. The label gives the terminology for the dual Archimedean
lattice.

they are shown in Fig. 2. The Laves lattices with integer
average coordination number z̄ play an important role in our
considerations, and here we will study in detail the diced lattice
[D(3,6,3,6),z̄ = 4], the union jack lattice [D(4,82),z̄ = 6],
and the centered diced lattice [D(4,6,12),z̄ = 8]. According
to the four-color theorem [52,53], a planar lattice may only
be bipartite (such as the diced lattice), tripartite (such as the
union jack lattice), or quadripartite. The lattices we investigate
in this paper are either bipartite or tripartite.

A bipartite lattice contains only two sublattices of un-
connected sites, and can be generated in one of two ways.
One type is a lattice formed only by polygons with an even
number of edges {square, honeycomb, (4,82), (4,6,12), also
the diced lattice [D(3,6,3,6)]}. On these lattices, each site
A is connected only to sites of type B, and vice versa, and
each polygon is composed alternately of A and B sites. The
second type is the decorated lattice, formed by adding a site
to each edge of a starting lattice. The original lattice sites
and the decorating sites belong to different sublattices, and by
taking a partial trace over the Potts variables on the decorating
sites, the q-state AF Potts model on a decorated lattice can
always be mapped onto a ferromagnetic Potts model with
the same q on the original lattice [50]. The q = 2 AF Potts
(Ising) model on the bipartite lattice is always ordered at
low temperature and disordered at high temperatures, with
a finite-temperature phase transition. The q = 3 AF Potts
model on a bipartite lattice is more complicated, and its ground
state can be disordered, critical, or ordered. Typical examples
of these cases are, respectively, the honeycomb, square, and
diced lattices. There is in general no finite-temperature phase
transition for the q = 4 AF Potts model on bipartite lattices.

Most of the planar lattices in Figs. 1 and 2 are tripartite.
A tripartite lattice must contain some polygons with odd edge

numbers (such as triangles or pentagons). The sublattices of
a tripartite lattice may be determined uniquely if the lattice is
formed purely by triangles [triangular, union jack {D(4,82)],
centered-diced [D(4,6,12)]}. The q = 3 Potts models on these
lattices have complete AF long-range order in the ground
state, with one of the three states on each sublattice. This
order can be melted by thermal fluctuations, leading to a
finite-temperature phase transition; if the lattice contains two
inequivalent sublattices with unequal coordination numbers,
two finite-temperature phase transitions are possible (Sec. VI).
The sublattices for most tripartite lattices [kagome (3,6,3,6),
square-kagome (4,82), (3,4,3,6), the dilute centered-diced
lattices introduced in Sec. VII] are not unique, and q = 2
and 3 AF Potts models may again have ordered, critical,
or disordered ground states on these lattices. For the q = 2
AF Potts model, any order in the ground state will be partial
because the model is frustrated on a tripartite lattice.

III. TENSOR-BASED NUMERICAL METHODS

The development of numerical methods for condensed
matter and lattice systems based on tensor-network repre-
sentations [54] is motivated by developments in quantum
information theory, and a great deal of progress has taken
place in the last five years. Tensor-based numerical methods
have already been used to study spin [55–60], bosonic [61], and
fermionic models [62,63], and to deal with quantum critical
systems [64] and topological quantum phase transitions [65].
They have been combined with Monte Carlo techniques [66]
to take advantage of the best features of both methods and
they have been extended to deal with classical systems such as
classical XY models [67].

When dealing with models in classical statistical mechan-
ics, the quantity expressed as the contraction of a tensor
network is the partition function. In one dimension, this
quantity is a product of matrices, which is easy to evaluate.
In higher dimensions, the appropriate representation is by
a network of tensors whose rank matches the coordination
number of the lattice; in this situation, the dimension of
the tensors obtained after each contraction step increases
if the same amount of information is to be stored, and
so a truncation is required to keep the contraction under
control. A large number of methods has been developed to
perform this truncation, including the tensor renormalization
group (TRG) [68], second renormalization group [57,58],
infinite time-evolving block decimation (iTEBD) [69,70],
corner transfer matrix [71,72], plaquette renormalization
group [73], and a renormalization-group method based on
higher-order singular value decomposition (HOSVD) [74].
Here, we summarize three of these methods for pedagogical
purposes, and during our analysis of AF q-state Potts models
we considered a number of approaches in the process of
optimizing our calculations, but at the end all of the numerical
results presented in Secs. IV–VII were obtained using iTEBD.

A. Partition function and thermodynamics

It is always possible to find a tensor-network representation
for the partition function of a classical model [58,67]. In the
example of the q-state Potts model on a square lattice, one may
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FIG. 3. (Color online) Schematic representation of the expres-
sion of the partition function of the q-state Potts model as a tensor
network. (a) Eigenvalue decomposition of the Boltzmann factor Sij

for a bond. (b) Construction of the local tensor T by contraction
of four U matrices and renormalization by the square root of the
eigenvalues �.

define the Boltzmann factor associated with each bond 〈ij 〉 as

Sij = exp(−βJδσiσj
), (2)

where σi denotes the Potts variable on site i. As represented
schematically in Fig. 3, an eigenvalue decomposition for S

yields

Sij =
∑

α

Uiα�αUjα, (3)

where Uiα is a unitary matrix and α = 0,1, . . . ,q − 1 because
Sij is a q × q matrix for the q-state Potts model. Now, the
partition function can be expressed as

Z =
∑
{σ }

∏
〈ij〉

Sij =
∑
{α}

TαβγηTαεζθ . . . , (4)

where

Tαβγη =
∑

i

UiαUiβUiγ Uiη(�α�β�γ �η)1/2, (5)

i.e., as a network of tensors T constructed from the bond
eigenvalues and eigenvectors. The rank of T is determined
from the number of bonds per site of the tensor lattice, which
is often the coordination number z of Sec. II. From above,
the bond dimension of each index is q. There are many
ways to contract this tensor network and in this section we
review the TRG/SRG and iTEBD methods, which represent,
respectively, the two primary classes of technique, namely,
variational, renormalization-group approaches that converge
to infinite size and power or projection approaches that are
already (by translational invariance) in this limit.

B. TRG/SRG

The tensor renormalization group (TRG) [68] is a real-space
coarse-graining method proposed by Levin and Nave in 2007.
After each coarse-graining step, both the topology of the lattice
and the rank and dimension of the tensor remain the same, but
the size of the lattice is only half (in general) of its original
size. The method proceeds by first decomposing the tensor and
then recombining new tensors, but the details depend on the
lattice topology and are best illustrated by example.

FIG. 4. (Color online) Two TRG steps on the square lattice.
(a) The original tensor network on the square lattice representing
the partition function as in Eq. (4). (b) After a SVD of the local tensor
following alternating “stretching” directions on the two different
sublattices, the square-lattice tensor network is transformed to one
on the Archimedean (4, 82) lattice (Fig. 1). (c) Groups of four rank-3
tensors are then contracted to form one new rank-4 tensor on a lattice
with half the number of sites of the original square lattice. (d) SVD
of a local tensor, defined by Eq. (6). (e) Contraction of four rank-3
tensors into a rank-4 tensor, as defined by Eq. (7).

On the square lattice (Fig. 4), each iteration requires two
steps. First, the rank-4 site tensor is decomposed into two
rank-3 auxiliary tensors, with a choice of indices following
alternating “stretching” directions on the two different sublat-
tices. Specifically, by combining two indices the rank-4 tensor
becomes a matrix (rank-2 tensor) whose SVD yields a set of
singular values, which are absorbed into the two unitary bond
matrices. By expanding the combined index, one obtains two
rank-3 tensors

Tijkl =
∑
m

Uij,mλmVkl,m,

S1
ijm = Uij,m

√
λm, (6)

S2
klm = Vkl,m

√
λm,

where U and V are unitary matrices, and λ is a diagonal
singular-value matrix. The partition function is represented as
a tensor network defined on the Archimedean (4,82) lattice
(Fig. 1). If the dimension of the bond index for the tensor
T is d, the dimension of index m is d2 [Eq. (6)]. This bond
dimension grows during the renormalization process and when
d = D, the maximum bond dimension we can retain due to
the limits set by our computational resources, a truncation is
required to prevent divergence on repeated iteration. Here, the
natural approach is to cut the dimension of m according to the
relative sizes of the singular values and to keep the D largest
ones. The second step of the iteration is to contract the four
rank-3 tensors on the (4,82) squares into a new rank-4 tensor

T ′
mnpq =

∑
ijkl

S1
ijmS4

jknS
2
klpS3

liq , (7)
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as a result of which both the topology of the tensor network and
the dimension of the local tensor are unchanged. Thus, each
iteration step forms a new square lattice whose tensor-network
representation contains only half as many sites. If the iteration
is repeated n times, the size of the tensor network shrinks to
2−n of the original, giving easy access to the thermodynamic
limit by renormalization methods.

However, in the TRG approach the tensor is truncated
according to its singular values, which is in essence a local
approximation. In fact, the same pair of sites is connected
by (many) other paths in the lattice and a more consistent
approach is to consider the effect of this “environment” in
order to perform the truncation globally, which is the concept
of the second renormalization group (SRG) method [57].

The partition function can be expressed as

Z = Tr
[
TiT

e
i

]
(8)

where T e
i is the environment contribution, meaning that

from all lattice sites other than i. It is not possible to deduce
this environment tensor rigorously (as otherwise one would
have a rigorous expression of the partition function, which
is not available for most models), but its effect can be
included optimally by truncating the local tensor Ti in order
to minimize the truncation error of Z. Specifically, a SVD of
the environment tensor yields

T e
ij,kl =

∑
n

Ue
ij,n�

e
nV

e
kl,n (9)

and thus the partition function becomes

Z = Tr[T Ue�eV e]

= Tr[V eT Ue�e]

= Tr[(�e)1/2V eT Ue(�e)1/2]. (10)

If one defines

T̃n1n2 = (�e)1/2
n1

V e
kl,n1

Tij,klU
e
ij,n2

(�e)1/2
n2

, (11)

then the partition function is

Z = TrT̃ (12)

and the minimization of its error is the same as minimizing
that of T̃ . By a further SVD,

T̃ = Ũ�̃Ṽ (13)

and the truncation may be performed according to �̃. By
substituting the truncated T̃ back into Eq. (11) one obtains

T = V e(�e)−1/2T̃ (�e)−1/2Ue (14)

and thus the two new rank-3 tensors appearing at the first
TRG iteration step are given in a fully consistent approach by

S1 = V e(�e)−1/2Ũ (�̃)1/2, (15)

S2 = (�̃)1/2Ṽ (�e)−1/2Ue. (16)

Once the environment tensor has been obtained, one may
then deduce and truncate the local tensor Ti , then follow
the steps of TRG to update the tensors in the renormalized
lattice and thus complete a full cycle of SRG iteration.
Repeating this procedure leads finally to the partition function
in the thermodynamic limit, from which full thermodynamic

FIG. 5. (Color online) Schematic representation of iTEBD.
(a) Tensor network on the square lattice expressed as an infinite
product of transfer matrices in the vertical direction, with each
block a transfer matrix. (b) Definition of the transfer matrix and
corresponding matrix-product state. (c) Local action of a transfer
matrix on a matrix-product state as shown in Eq. (17).

information may be obtained (Secs. IV and V). The SRG
method was found to improve the precision of the free energy
for the two-dimensional Ising model by two to five orders of
magnitude over the TRG result [57]. Further details of the SRG
technique may be found in Refs. [57,58].

C. iTEBD

A tensor network may be regarded as an infinite product
of operators, or transfer matrices. Thus, to contract the tensor
network, one need only know the dominant eigenvector of the
transfer matrix, and thus the power method can be used in
the same way as in matrix algebra. This concept is the same
as using a projection method to obtain the ground state of
a quantum system. Let the local tensor (generalized transfer
matrix) Tpkmn be applied to the random but translationally
invariant matrix-product state (MPS) Am

ij , as represented in
Fig. 5(a), then one obtains a new MPS [Fig. 5(c)]

∑
m

TpkmnA
m
ij = B

p

(ki),(nj ) = Bm′
i ′j ′ . (17)

The dimension of the local matrix B for the new MPS is
qD, whereas in the TRG/SRG case (Sec. III B), D is the
maximum bond dimension that can be retained for the MPS
and a truncation is required to keep the process under control.
A unitary transformation of the new MPS places it in the
canonical form [75], which for an MPS with open boundary
conditions is the form satisfying the conditions

(i)
∑

mi Ami Ami† = I ∀ 1 � i � L;

(ii)
∑

mi Ami†�i−1Ami = �i ∀ 1 � i � L;
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FIG. 6. (Color online) (a) Diced lattice. A sites (red) have zA = 6,
while B sites (blue) have zB = 3. (b) Definition of tensors for each
unit cell of the diced lattice. (c) By introducing one tensor in each
rhombus of the original diced lattice, as represented in panel (b), the
partition function on the diced lattice (dashed lines) may be expressed
as the contraction of a network of tensors defined on the sites of the
kagome lattice (solid lines).

(iii) �0 = �L = 1, with all other �i being Di × Di

diagonal matrices, which are positive, full rank, and have
T r�i = 1.

Here, Ami is the local matrix on site i. The dimensions of the
first and last matrices are, respectively, 1 × D1 and DL × 1. If
the index m of the local matrix Am

ij is taken as the index of the
local basis for a quantum system, then the MPS represents the
quantum state of a one-dimensional system

|ϕ〉 =
∑
{m}

Tr

(∏
i

Ami

)
|m1,m2, . . . mL〉. (18)

It can be proved that if the one-dimensional chain is cut
between sites i and i + 1, the eigenvalue of the corresponding
reduced density matrix is �i+1.

The values of � in the canonical form specify the truncation
of the local matrix, which means retaining only the index
corresponding to the D largest � matrices. This process is
repeated, meaning repeated application of the operator Tpkmn,
until the MPS has converged. The converged MPS is the
approximate dominant eigenvector of the transfer matrix.
The tensor network may thus be written as the contraction
of an infinite product of these matrices and in this case
the thermodynamic quantities can be obtained directly by
diagonalizing the local matrix [69,70].

For all of the models we study in this work (Secs. IV–VII),
the final tensor network for the partition function is defined on
the square lattice. Although every tensor network is uniform,
meaning the local tensor is the same on each site, we use a two-
sublattice MPS in all our calculations on this lattice in order
to capture any possible spontaneous breaking of symmetry.

IV. ENTROPY-DRIVEN PHASE TRANSITIONS

A. Diced lattice with q = 3

The AF q = 3 Potts model on the diced lattice provides an
excellent example of an entropy-driven phase transition to a
state of partial order, by which is meant order on a subset of
the lattice sites. Thus, we begin the presentation of both the
physical ideas and our numerical results by considering this
case. The diced lattice [Fig. 6(a)] is dual to the kagome lattice,
and is composed of a triangular lattice of sites of one sublattice
(A) decorated by centering sites (centered in each triangle) of

the other sublattice (B). On this bipartite lattice, sites A are
sixfold coordinated by sites B (zA = 6) but sites B are only
threefold-coordinated by sites A (zB = 3), whence the average
coordination number is z̄ = 4 and there are twice as many B
sites as A sites (NA = NB/2 = N/3).

With AF interactions, neighboring sites favor different
Potts states σi (1). A three-state model on a bipartite lattice
has redundant degrees of freedom with which to ensure that
every bond is satisfied and the ground state will be highly
degenerate. The two most obvious possibilities for partially
ordered configurations minimizing the bond energy are as
follows. One is that the A sites [red in Fig. 6(a)] order,
choosing for example σi(i ∈ A) = 0, leaving the B sites (blue)
to choose σi(i ∈ B) = 1 or σi(i ∈ B) = 2 at random. The other
is that the B sites order with the same σi and the A sites are
random. In both cases, ordering occurs only on a subset of
the lattice sites, but every bond in the system can achieve its
lowest energy, which is 0. We comment that the combined
set of all these ordered configurations does not exhaust the
total possible ground-state configurations. However, these two
types of partially ordered state contribute to a very large
residual entropy in the ground state. At this point, simple
physical intuition suggests that, on lowering the temperature,
the A sublattice will order, not because these are the highly
coordinated sites but because the number of states with the B
sublattice disordered is much greater and therefore the entropy
is maximized.

Of course, this is the correct answer, and both the qualitative
and quantitative details are well known in the literature. It was
proven by Kotecky et al. [14] that there is a finite-temperature
phase transition in this model, and by calculating the sublattice
magnetization using the Wang-Swendsen-Kotecky cluster
algorithm, these authors confirmed the existence of long-range
partial order on the A sublattice at low temperatures.

This well-understood model for partial order provides an
excellent example to benchmark our methods. Figure 6(b)
illustrates the definition of the local tensor for this model.
We first define the variable dual to σi in each rhombus as

α = σ2 − σ1 (mod q),

β = σ3 − σ2 (mod q),
(19)

γ = σ3 − σ4 (mod q),

η = σ4 − σ1 (mod q),

noting that these four dual variables are not independent, but
are related by the constraint

α + β − γ − η = 0 (mod q). (20)

The local tensor on the dual lattice is

Tαβγη = exp

[
−β

2
(δα,0 + δβ,0 + δγ,0 + δη,0)

]
(21)

and defines a tensor network on the kagome lattice. This can
be reconnected to a square-lattice tensor network by SVD [58]
and the iTEBD method is used to contract the network.

The quantities required for a basic characterization of the
thermodynamic response of a system are the free energy

F = −kBT ln Z, (22)
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FIG. 7. (Color online) Entropy and specific heat for the q = 3
antiferromagnetic Potts model on the diced lattice. The results are
obtained by iTEBD with D = 40. The entropy is shown in blue,
with the green dashed line denoting its low- and high-temperature
limits. The specific heat, shown in red, has a divergence at the phase
transition. The purple dashed line denotes the critical point obtained
by Monte Carlo simulations [14].

the entropy

S(T ) = −∂F

∂T
, (23)

and the specific heat

C(T ) = −T
∂2F

∂T 2
. (24)

We have calculated these quantities, either from Z by RG
methods (TRG/SRG, Sec. III A) or directly by projection
methods (iTEBD, Sec. III B); Fig. 7 shows our results for the
entropy and the specific heat, which were published previously
in Ref. [17]. The strong divergence of the specific-heat curve
indicates the occurrence of a second-order phase transition.
By analyzing the thermodynamic quantites alone, we obtained
a transition temperature Tc/J = 0.508(1); however, a detailed
consideration of the structure of the local tensor can be used
to obtain a very much more accurate estimate of Tc [45]. The
Monte Carlo result is Tc/J = 0.507 510(8) [14], a value lying
within the error bar of the thermodynamic tensor-network
result and therefore validating the method.

The entropy provides some straightforward insight into
the nature of the low-temperature phase. If the minority
(A-sublattice) sites are ordered but the majority (B-sublattice)
sites are disordered with a choice of the two remaining Potts
states, the total number of states in the ground manifold is
2NB , where NB = 2N/3 for a system of N sites. The entropy
per site would therefore be SA

d (0) = (2/3) ln 2 = 0.462 098.
In contrast, if the B sublattice is ordered, the entropy per
site is only SB

d (0) = ( 1
3 ) ln 2 = SA

d (0)/2. We indeed conclude
that a state of A-sublattice order will be selected. The zero-
temperature limit of the entropy we calculate is Sd,q=3(0) =
0.473 839, which is slightly larger than the ideal value SA

d (0),
indicating an additional minor contribution from further spin
configurations in the ground manifold where the A sites
continue to fluctuate. The “ideal” low- and high-temperature
limits SA

d (0) = (2/3) ln 2 and Sd(∞) = ln 3 are shown by the
green dashed lines in Fig. 7.

FIG. 8. (Color online) (a) Union jack lattice. Sites in sublattices
A (red circles) and B (blue) have coordination numbers zA = zB = 8,
while those in sublattice C (yellow) have zC = 4. (b) Definition of
tensors for each unit cell of the union jack lattice; the center site
(yellow) is denoted σ5 in the text. (c) By introducing one tensor in
each unit cell of the original union jack lattice, as represented in panel
(b), the partition function of the union jack lattice (dashed lines) is
expressed after summation over the center sites [(b) and Eq. (26)] as
the contraction of tensors defined on the sites of the square lattice
(solid lines).

B. Union jack lattice with q = 4

A considerably more challenging case of partial ordering
is found in the union jack lattice. This is a square lattice with
additional center sites in each square, shown in Fig. 8(a). Sites
in the two sublattices of the square lattice are each eightfold
coordinated, zA = zB = 8, while those on the centers have
zC = 4; because there are twice as many C sites as A or B
sites, NA = NB = NC/2 = N/4, the system has an integral
average coordination z̄ = 6. One may therefore expect some
comparison with the triangular lattice, where z = 6 and qc = 4,
making (Sec. II) the four-state Potts model on the triangular
lattice critical at T = 0.

To consider the possibility of partially ordered states
minimizing the bond energy, we begin with one square unit
cell. After assigning a Potts state σi to the center site, there are
three other states for the four corner sites, and thus at least one
of the diagonal pairs must be in the same state. This motivates
the possibility of long-range order on just one of the A or B
sublattices, which could also be anticipated from the previous
subsection.

To determine the local tensor in a tensor-network formula-
tion, we first define the variable dual to σi in the same way for
the diced lattice in Eq. (19). The most straightforward way to
proceed is to trace out the Potts variable σ5 in the middle of
the square by introducing a temporary variable

θ = σ1 − σ5 (mod q), (25)

in terms of which the local tensor is

Tαβγη = e− β

2 (δα,0+δβ,0+δγ,0+δη,0)

×
∑

θ

e−β(δθ,0+δθ+α,0+δθ+α+β,0+δθ+η,0). (26)

The resulting square-lattice tensor network is then handled
optimally by the iTEBD method.

The presence of partial order is indicated by a phase
transition. The entropy and especially the specific-heat curves
illustrated in Fig. 9(a) show no apparent discontinuities, and
could on cursory inspection be taken as a sign that the model
is at best critical, with qc = 4. However, a sufficiently detailed
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FIG. 9. (Color online) (a) Entropy (blue) and specific heat (red)
of the AF q = 4 Potts model on the union jack lattice. The dashed
green line is the entropy derived from the q = 3 Potts model on the
decorated square lattice, which is relevant (see text) if either the A or
the B sublattice is ordered. (b) Detail of the specific heat, showing a
subtle discontinuity at the transition to partial order. Inset: scaling of
the specific-heat discontinuity as a function of tensor dimension D.

investigation of the specific heat, shown in Fig. 9(b), reveals
that it is in fact discontinuous, and this was one of the key
results of Ref. [17]. Very sophisticated calculations were
required, by two different tensor-based approaches (Sec. III)
and using a systematic increase in the tensor dimension, which
in Fig. 9(b) we also denote by D, to extract the behavior of this
feature. We were able to conclude that the discontinuity does
remain finite on extrapolating D → ∞, and that the partial
ordering transition occurs at a temperature Tc/J = 0.339(1).
The immediate question is why this transition should be so
weak while that in the diced lattice is so strong. The immediate
answer is that this should be evidence of a strong competition
between candidate partially ordered states, for example, those
with only A-sublattice order and those with only B-sublattice
order, and that this competition almost prevents the system
from ordering at all.

To examine the partially ordered ground state in more detail,
we begin by considering the entropy. For simultaneous order
on both A and B sublattices, for example, σi = 0 on A and σi =
1 on B, sites on sublattice C may choose σi = 2 or 3 at random
to satisfy every bond. Because there are 2N/2 such states,
one would expect to find SAB(0) = ( 1

2 ) ln 2 = 0.346 573. Our
numerical result for the zero-temperature entropy is very much
larger, SUJ(0) = 0.430 973 59, indicating that configurations
with both A- and B-sublattice order do not play a significant
role in the ground state. If only A-sublattice sites are ordered

in one state, then the B and C sites form a decorated square
lattice with three remaining degrees of freedom. These sites are
clearly highly energetically correlated, but if this hypothesis
for the ground state is relevant, then their behavior should be
given by that of the AF q = 3 Potts model on the decorated
square lattice. If the zero-temperature entropy of this model is
expressed as SDS,q=3(0) = ln ζ , the requirement for the ground
state to be dominated by configurations with partial order only
on a single sublattice is that ζ 3N/4 > 2N/2, or ln ζ > ( 2

3 ) ln 2 =
0.462 098. Our tensor-network calculation [17] gives the result
SDS,q=3(0) = 0.561 069 36 and thus the condition is clearly
satisfied, meaning that partial order appears only on one of
the sublattices (A or B). Continuing with the approximation
of a decorated square lattice, one would expect to find that
SUJ(0) = 3SDS,q=3(0)/4 = 0.420 802. The deviation between
this value and the exact numerical result above quantifies the
contributions to the ground manifold of configurations where
neither sublattice A nor B is ordered.

The qualitative knowledge that a highly degenerate ordered
state exists for the q = 4 Potts model on the union jack lattice
has immediate connections to a number of other problems in
statistical physics. Because the fundamental unit of the union
jack lattice is a triangle, there is a mapping between the four-
state Potts model on this lattice and the three-bond coloring
problem on its dual lattice [12], which is the 4–8 lattice
[marked as (4,82) in Fig. 1]. If the four states σi = 0,1,2,3
are represented by the vertices of a tetrahedron, then three
different colors are required to mark the inequivalent pairs of
edges. At zero temperature, every triangle of the union jack
lattice must take one of the configurations of the faces of this
tetrahedron, with no two bonds of the same color touching.
After the dual transformation, the bonds sharing the same
vertex on the 4–8 lattice are always of different colors, and
the manifold of solutions to the three-bond coloring problem
is established. The total number of configurations for the
ground state on the 4–8 lattice W

N4−8
4−8 has been calculated

exactly by mapping the bond coloring problem further to
a solved model on the square lattice [76]. The result is
W4−8 = 1.240 48, and because N4−8 = 2NUJ, one may deduce
that SUJ(0) = 2 ln W4−8 = 0.430 997, which coincides to two
parts in 10−5 with the result we obtain numerically.

Further, the bond-coloring problem on the 4–8 lattice is
equivalent to the fully packed loop (FPL) model on the same
lattice. FPL models consider all configurations of noncrossing
closed loops that may be drawn along the edges of the lattice,
with every vertex visited by one loop. A loop covering on
the 4–8 lattice may be derived from a three-bond (red, blue,
green) coloring by drawing loops on those edges which are
red or blue, but not on green edges. Thus, every vertex will
be visited by a loop, no loops may touch, and because each
vertex has two red or blue edges then all loops are closed. The
correspondence on the 4–8 lattice between fully packed-loop
and three-bond-coloring models is well established [76]. The
partition function of a FPL model is

Z =
∑
G

nNL, (27)

where the fugacity n is the weight of every loop, NL is the
number of loops, and the sum is over all configurations G of
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FIG. 10. (Color online) (a) Centered diced lattice: zA = 12 (red),
zB = 6 (blue), and zC = 4 (yellow). (b) Definition of tensors for each
unit cell of the centered diced lattice. (c) By introducing one tensor in
each unit cell of the original centered diced lattice, as represented in
panel (b), the partition function on the centered diced lattice (dashed
lines) may be expressed as the contraction of tensors defined on each
site of the kagome lattice (solid lines).

loops. Because the edges of each loop may be “red-blue-red-
blue” or “blue-red-blue-red,” the fugacity is n = 2. The n = 2
FPL model is known [8] to be critical on both the square and
the honeycomb lattices, but not on the 4–8 lattice, which is
completely consistent with the existence of partial order on
the 4–8 lattice.

Finally, if a vertex is placed at the midpoint of every edge
of the 4–8 lattice, and all vertices on neighboring bonds are
connected, one obtains the square-kagome lattice [12], a non-
Laves lattice composed of triangles, squares, and octagons.
This is a bond-to-site transformation, and so the three-bond
coloring model on the 4–8 lattice is equivalent to the three-
vertex coloring model on the square-kagome lattice. Thus, at
zero temperature the AF q = 3 Potts model on the square-
kagome lattice is equivalent to the AF q = 4 Potts model on
the union jack lattice.

C. Centered diced lattice with q = 4 and 5

If an extra site is added to the center of each rhombus
in the diced lattice and is connected to all its neighbors,
one obtains the centered diced lattice, also known as the
bisected-hexagonal or D(4,6,12) lattice [Fig. 10(a)]. Like the
union jack lattice, the centered diced lattice is tripartite, is
composed entirely of triangles, and has z̄ = 6, with sublattice
site coordinations zA = 12, zB = 6, and zC = 4 and site
numbers NA = NB/2 = NC/3 = N/6.

From the intuition developed for irregular lattices in the
preceding subsections, one expects that a q = 4 Potts model
on this lattice will show an ordering transition to a state
of partial order on the highly coordinated A sublattice. The
lack of competition between different ordering configurations
suggests that the transition should be rather robust, more
similar to that in the diced lattice than to the union jack case.
Indeed, we presented these considerations as predictions in
Ref. [17] and we provide the complete quantitative details
here.

By working with a centered four-site unit cell, the local
tensor for the centered diced lattice is the same on the union
jack lattice (26), with the difference appearing only in the
topology of the tensor network. By an SVD transformation
of the same type as that made in our treatment of the diced

FIG. 11. (Color online) Entropy and specific heat of the isotropic
AF Potts model on the centered diced lattice. The results are obtained
by iTEBD with D = 40. (a) q = 4. (b) q = 5.

lattice [58], we obtain a square-lattice tensor network and
compute the thermodynamic quantities by the iTEBD method.

The entropy and specific heat of the q = 4 case are
shown in Fig. 11(a). Indeed, the specific heat demonstrates
the presence of a very robust transition at Tc/J = 0.56(1).
Here and henceforth we quote transition temperatures with an
accuracy of 0.01J because our primary focus is the qualitative
presence and nature of the transition, but we stress that our
tensor-based methods allow the value of Tc to be computed
to very high accuracy if required [45]. As above, the nature
of the partially ordered state on the centered diced lattice
may also be inferred from the low-temperature limit of the
entropy. If indeed only the A sublattice is ordered, the sites
of sublattices B and C form a q = 3 decorated honeycomb
lattice and the zero-temperature entropies would be given by
Scd,q=4(0) = 5Sdh,q=3(0)/6. Our calculations give Scd,q=4(0) =
0.510 380 and 5Scd,q=3(0)/6 = 0.510 128, demonstrating that
partial order only on the A sublattice is in fact realized very
accurately for the q = 4 model.

As in the case of the union jack lattice, the q = 4 Potts
model on the centered diced lattice is also related to a
number of other statistical problems. At zero temperature, it
may be mapped to the three-bond coloring problem on the
Archimedean 4–6–12 lattice (Fig. 1), and to an n = 2 FPL
model on this lattice. By similar manipulations it may also be
mapped to an n = 3 close-packed-loop (CPL) model on the
kagome lattice, to a six-vertex model on the kagome lattice,
and to a ferromagnetic q = 9 Potts model at a temperature
eβJ = 4 on both the honeycomb and triangular lattices [77].
All of these problems are known to be noncritical, in agreement
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with our conclusion that the system has quite robust, if partial,
long-range order.

We conclude this section by extending our considerations
to the q = 5 Potts model on the centered diced lattice, whose
entropy and specific heat are illustrated in Fig. 11(b). A finite-
temperature phase transition occurs at Tc/J = 0.33(1), and
its signal remains robust even though its critical temperature
is significantly lower than the q = 4 case. As above, the
nature of the partial order may be verified by comparing
the zero-temperature entropy of the model with that of the
decorated honeycomb lattice formed by the sites of sublattices
B and C, which have q = 4 remaining Potts states, in the
event of full A-site order. We obtain Scd,q=5(0) = 0.873 635
and 5Sdh,q=4(0)/6 = 0.867 564, indicating a minor but dis-
cernible entropic contribution from additional configurations
minimizing the bond energy without A-site order.

To our knowledge, the centered diced lattice is the only
planar lattice yet known to have long-range order when
q = 5, and therefore it possesses the largest qc known in
two dimensions. Our initial study of irregular lattices [17]
was followed up by a further analysis of the centered diced
geometry [77], which predicted that qc = 5.397(5).

V. ORDER PARAMETER

The most accurate way to characterize the partially ordered
state is to determine the order parameter, which is the sublattice
magnetization M . Vanishing of the order parameter at the
phase transition also offers an alternative to the specific heat for
determining the presence of a transition and the exact value of
Tc. The fact that M = −∂ ln Z(H )/∂H is only a first derivative
of the free energy, while the specific heat is a second derivative,
makes it possible to determine the location of the transition
from M using significantly larger values of the tensor bond
dimension D.

To calculate the sublattice magnetization most efficiently,
we add a very small field H to one sublattice (which we are
able to choose from the results of Sec. IV), as shown in Eq. (1).
We compute the quantity

M = 1

NL

〈∑
i∈L

δσi ,0

〉
− 1

q
, (28)

which is the probability of finding the NL sites of sublattice
L in the state σi = 0 selected by the field term. The average
value 1/q is subtracted to ensure that the order parameter is
zero when the system is in its high-temperature disordered
phase.

A. Diced lattice with q = 3

Figure 12 shows the magnetization of the AF q = 3
Potts model on the diced lattice. We show results not only
for the probability of finding σi = 0 on the A sublattice,
but also for the probability of finding σi = 1 or 2 on the
B sublattice. Both curves exhibit the typical behavior of
a second-order phase transition, with the order parameter
(determined from the A sublattice) going continuously to zero
at Tc. The low-temperature limiting value for the magneti-
zation of the A sublattice is Md(0) = 0.624 26, somewhat
lower than the perfect-order result M0

d (0) = 2
3 = 1 − 1

3 , from

FIG. 12. (Color online) Magnetization of the A sublattice for the
AF q = 3 Potts model on the diced lattice. The results are obtained
by iTEBD with D = 40. Shown also is the probability of sites on the
B sublattice being in one Potts state σi different from that of the A
sites.

which we deduce that the ground state of the diced lattice
retains fluctuations suppressing the partially ordered state by
approximately 6%.

The B-sublattice quantity is neither a magnetization nor an
order parameter, but its value is 0.166 202, which is very close
to the value 1

6 = 1
2 − 1

3 obtained in the event of a completely
random distribution of the B sites between states σi = 1 and 2.
Indeed, if 6% of the A-sublattice sites are not ordered with
σi = 0, the density of B-sublattice sites with no σi = 0
neighbor is of order 0.063; because these contain only limited
information, we do not present calculations for the nonordered
sublattices in the other systems discussed in this section.

Thus, the entropy and the sublattice magnetization both
demonstrate that the low-temperature phase is a state of partial
order in which A-sublattice sites order in one Potts state
while B-sublattice sites are disordered, choosing the remaining
two Potts states at random and contributing to the very high
ground-state entropy. The sublattice magnetization provides
clearer insight into the deduction made from the entropy in
Sec. IV that there exist ground-state configurations where the
A sublattice is not fully ordered, and these configurations cause
the departures from the ideal values observed in our exact
numerical results.

B. Union jack lattice with q = 4

We computed the magnetization and susceptibility of the
q = 4 Potts model on the union jack lattice in Ref. [17], and
show the results in Fig. 13 to retain the completeness of this
paper. Despite the fact that the phase transition is very difficult
to identify in the specific heat (Fig. 9), it is clearly visible
in the magnetization as a rapid but continuous drop of the
sublattice magnetization. While the tensor-network calculation
of M(T ) can indeed be performed with significantly higher
values of D than for C(T ), it is largely the nature of M

as a true order parameter that makes it a superior indicator
of the phase transition. A further robust indicator of the
transition is the susceptibility, defined as χ = ∂M/∂H , which
diverges on approaching the transition. However, we comment
that the temperature grid used in the preparation of Fig. 13
does not allow a determination of the critical temperature
Tc/J = 0.339(1) more accurate than the result of the detailed
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FIG. 13. (Color online) Magnetization of the A sublattice for the
AF q = 4 Potts model on the union jack lattice. Inset: corresponding
susceptibility χ = ∂M/∂H .

analysis performed in Sec. IV. The low-temperature limiting
value we compute for the order parameter is MUJ(0) = 0.6428,
which is some 14% less than the ideal value 3

4 = 1 − 1
4 . The

sublattice magnetization provides a clear indication of the
discrepancy between the exact result and the state of perfect
A-sublattice order. While we are unaware of an analytical
relationship between the magnetization discrepancy and the
entropy discrepancies calculated in Sec. IV B, our calculations
allow a quantitative determination of this connection for all
lattices, and similar results will appear again in Sec. VII.

C. Centered diced lattice with q = 4 and 5

We conclude this section by computing the magnetization
of the A sublattice for the centered diced lattice, which is
presented in Fig. 14(a) for q = 4 and in Fig. 14(b) for q = 5.
Both curves show clear, second-order phase transitions oc-
curring, respectively, at critical temperatures Tc/J = 0.56(1)
and 0.33(1). The low-temperature limit of the magnetization
for the q = 4 case is Mcd,q=4(0) = 0.748 45, which is very
close to the ideal value 0.75 = 1 − 1

4 , as expected for a system
with the very robust one-sublattice partial order suggested by
our entropy calculations for the decorated honeycomb lattice
(Sec. IV C). For the q = 5 model, we find that Mcd,q=5(0) =
0.7540 in comparison with an ideal value of 0.80 = 1 − 1

5 ,
illustrating clearly a 5.5% departure from perfect order arising
as a consequence of the very high degeneracy of ground-state
configurations in this high-q case.

VI. INTERMEDIATE PARTIAL ORDER AND MULTIPLE
PHASE TRANSITIONS

In the preceding sections, we have considered only models
with the same interaction J between Potts variables on every
pair of sites [Eq. (1)], i.e., despite the inequivalent sites, the
bonds have equivalent strengths. In this section, we relax
this constraint to illustrate the phenomenon of multiple phase
transitions within a single Potts model. These can occur
on a number of different lattices and for specific q values
whose common feature is that states of partial order appear
at intermediate temperatures, between complete order at low
temperature and complete disorder at high temperature.

FIG. 14. (Color online) Magnetization of the A sublattice for the
AF Potts model on the centered diced lattice. The results are obtained
by iTEBD with D = 30. (a) q = 4. (b) q = 5.

A. Union jack lattice with q = 2

The AF q = 2 Potts model is equivalent to the Ising model,
which has been solved exactly on the union jack lattice [19].
We consider the system with inequivalent interactions, taking
those between A and B sites to have a strength JAB and those
of C sites to both A and B sites to have a strength JC. If
the sign of JC is exchanged, and at the same time change
the definition of the Potts variable σi on the C sublattice is
changed to −σi , the model is unchanged. Thus, the phase
diagram is symmetrical about JC = 0 and for simplicity we
consider only ferromagnetic values of JC (JC < 0). When JAB

is ferromagnetic, the model has very simple behavior, and in
the following discussion we consider only the case where JAB

is AF (JAB > 0).
If one considers a single square unit cell, in the limit of

large JAB, sublattices A and B will adopt an AF ordered
configuration and sublattice C will be chosen randomly, as
represented in Fig. 15(a), giving a ground-state energy per
unit cell of −2JAB. In the opposite limit of large |JC|, the
minimum energy is obtained when all the sites in the lattice
are ferromagnetically ordered, as shown in Fig. 15(b), giving
a ground-state energy per cell of −4|JC| + 2JAB. By equating
the two limits, one might expect a transition to occur when
JAB = |JC|.

The local tensor for this model is defined as in Eq. (26).
If we choose a parameter ratio far from either limit of the
previous paragraph, JAB = 1.0, JC = −1.05, our results for
the entropy, specific heat, and sublattice magnetizations show
complex behavior (Fig.16). From the specific heat it appears
that two phase transitions occur, with critical temperatures
of Tc1 = 0.145(5) and Tc2 = 0.635(5). However, the exact
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FIG. 15. (Color online) Ground-state configurations for the q =
2 Potts model on a single unit cell of the union jack lattice.
(a) JAB 	 |JC|. (b) |JC| 	 JAB.

result [19] contains not two but three finite-temperature phase
transitions for this parameter ratio. On cooling from the
high-temperature disordered phase, there is a transition to
an AB-sublattice AF phase with the C sublattice disordered,
then another, very narrow, phase of complete disorder, and
at low temperatures a ferromagnetic phase. The three critical
temperatures are, respectively, 0.634 819 6, 0.144 685 8, and
0.143 872 1.

To interpret these results we note from above that if
|JC| > JAB, the ground state should be ferromagnetic on all
the three sublattices [Fig. 15(b)]. However, this is a state with
zero entropy, whereas the AF configuration of the A and B
sublattices [Fig. 15(a)] has a higher energy (only marginally
higher for JC/JAB = −1.05) but a massive degeneracy of
2N/2 in an N -site lattice. Thus, a moderate temperature may
stabilize this type of partially ordered configuration, with
complete C-sublattice disorder, before order is lost on all three
sublattices at higher temperatures. The most striking aspect of
the phase diagram is that all transitions are continuous (second
order), but the AB-sublattice AF configuration is so different
from the low-temperature ferromagnetic configuration that
the order parameter must vanish completely between the two
phases. The width of this regime of “fully frustrated disorder”
is, however, so narrow that it can only be resolved in our
numerical calculations by specific targeting [45]. We note in
addition that the energy balance allowing this entropy-driven
reordering to occur is also rather delicate, arising only for
coupling values 1 < |JC/JAB| < 1.09(1).

To verify the nature of the ordered and partially ordered
phases, we also calculate the sublattice magnetization and the
results are presented in Fig. 16(b). We remind the reader that
the magnetization is computed [Eq. (28)] with an explicit
assumption for the Potts state σi of each sublattice. With
the assumption of low-temperature ferromagnetism and an
intermediate AF state, the numerical results confirm the
above analysis. We observe in the low-temperature state that
the frustrated AB-sublattice order is suppressed by thermal
fluctuations more rapidly than is the satisfied C-sublattice
order.

The existence of multiple phase transitions in this model
has been discussed [78] in a general framework of competing
effective interactions between spin pairs arising due to paths
with different numbers of bonds. We stress that, although
this is the only model we consider in this paper with
an explicit frustration, this frustration is resolved in favor
of one (fully ordered) configuration in the ground state,

FIG. 16. (Color online) Thermodynamic properties of the q = 2
Potts model on the union jack lattice, calculated with coupling con-
stants JAB = 1.0 and JC = −1.05. The results are obtained by iTEBD
with D = 30. (a) Entropy and specific heat. (b) Magnetizations of the
A, B, and C sublattices.

which is nevertheless supplanted at finite temperatures by an
entropically driven, partially ordered state of a very different
local nature, without altering the frustration parameter.

B. Union jack lattice with q = 3

We turn to the q = 3 union jack lattice and focus on the
fully AF regime (JAB > 0, JC > 0). Because this lattice is
tripartite and there is a unique way of dividing all the sites into
three disconnected sublattices, the ground state of the q = 3
AF model is expected to be a traditional three-sublattice AF
ordering of the type shown in Fig. 17(a), but the fact that
this is a state of zero entropy suggests the possibility of more
complex physics at finite temperatures.

To investigate this situation, we compute the entropy,
specific heat, and sublattice magnetizations for a range of
values of the parameter ratio JC/JAB. The definition of the local

FIG. 17. (Color online) Configurations of the AF q = 3 Potts
model on a single unit cell of the union jack lattice. (a) Three-
sublattice AF-ordered ground-state configuration. (b) Configuration
for the intermediate phase of partial order arising for JC/JAB > 2.2.
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FIG. 18. (Color online) Thermodynamic properties of the q = 3
Potts model on the union jack lattice, calculated with coupling
constants JAB = 1.0 and JC = 5.0. The results are obtained by iTEBD
with D = 30. (a) Entropy and specific heat. (b) Magnetizations of the
A, B, and C sublattices.

tensor is the same as in the q = 2 case [Eq. (26)]. Figure 18
shows our results for JAB = 1 and JC = 5, where again
two finite-temperature phase transitions are clearly visible
in the specific heat [Fig. 18(a)], with critical temperatures
Tc1 = 1.10(1) and Tc2 = 1.89(1). In the absence of an exact
solution for this model, we deduce the nature of the phases
at low and intermediate temperatures by calculating the
sublattice magnetizations for the same parameters, as shown
in Fig. 18(b).

At low temperatures, the system adopts the three-sublattice
AF configuration as expected. However, when the temperature
exceeds Tc1, only the C-sublattice order is preserved but the
A- and B-sublattice order is destroyed by thermal fluctuations.
Sites in these two sublattices do not become completely
random but remain “polarized” by their strong AF interaction
with the C sites; thus, if the C sublattice has σi = 0, the A
and B sites have a random choice between σi = 1 and 2, a
result reflected in their finite magnetization of approximately
1
6 = 1

2 − 1
3 in the regime Tc1 < T < Tc2 [Fig. 17(b)]. At tem-

peratures T > Tc2, entropic demands destroy the C-sublattice
order as well, driving the system into the fully disordered
phase.

For a complete understanding of these phenomena, in
Fig. 19 we show the phase diagram of the full parameter
space. In the regime of large JC, there are always two phase
transitions, of which the lower one (Tc1) approaches the value
1.13 as JC → ∞. Tc/J = 1.13 is the transition temperature of
the Ising model on the square lattice [4], and this is the model
for the behavior of the AB-sublattice system when dominant
JC bonds enforce for example σi = 0 on all C sites, leaving
a q = 2 Potts degree of freedom on the A and B sites. This
is fully consistent with the discussion above for the nature

FIG. 19. (Color online) Phase diagram of the q = 3 Potts model
on the union jack lattice. The transition from full to partial order is
shown in red (light gray) and from partial order to disorder in blue
(dark gray). The two transitions merge for JC < 2.2. JAB is fixed to 1.

of the first transition, it means that Tc1 depends only on the
coupling between A and B sites (JAB), and it means that the
lower transition is in the universality class of the Ising model.

The upper transition is the loss of C-sublattice order and
therefore Tc2 scales linearly with JC when this becomes
large. A linear fit using the data from JC = 3 to 10 gives
the form Tc2 = 0.41(2)JC + 0.292(3). This transition has the
universality of the ferromagnetic Ising model. As JC/JAB

becomes smaller, the behavior becomes more complex and
the two transitions merge to a single one at JC 
 2.2. One
may anticipate that for very small values of JC, a further type
of intermediate phase could appear in which the A and B sites
retain AF order but the C sites become random for entropic
reasons. However, in our calculations we find only that Tc → 0
as JC → 0, consistent with the fact that, when JC = 0, one
obtains the q = 3 Potts model on the square lattice, which is
known to be critical at zero temperature [10].

C. Centered diced lattice with q = 3

We complete our analysis of intermediate-temperature
partial order by considering the centered diced lattice with
q = 3. In common with the union jack lattice, this geometry
is tripartite with only one way of dividing all the sites into
three disconnected sublattices and again one expects that
the ground state should display three-sublattice AF order
for q = 3. Restricting our considerations to the isotropic
AF model, meaning JAB = JAC = JBC = 1, we calculate the
entropy, specific heat, and sublattice magnetization using the
iTEBD method. From the specific-heat curve in Fig. 20(a),
we again find two finite-temperature phase transitions with
Tc1 = 0.48(1) and Tc2 = 0.79(1).

To determine the nature of the intermediate phase in
this case, we compute the sublattice magnetizations shown
in Fig. 20. At low temperatures, the results for all three
sublattices converge to their ideal value of 2

3 = 1 − 1
3 , but

in the intervening phase between Tc1 and Tc2, the sites on the
B and C sublattices are randomized not among all three Potts
states, but among only two, giving the value 1

6 = 1
2 − 1

3 . On
the isotropic centered diced lattice, the energy-minimization
problem of removing the order in two of the three sublattices
is a subtle one. As noted in Sec. IV C and shown in Fig. 10,
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FIG. 20. (Color online) Thermodynamic properties of the q = 3
Potts model on the isotropic centered diced lattice. (a) Entropy and
specific heat obtained by iTEBD with D = 40. (b) Magnetizations of
the A, B, and C sublattices obtained by iTEBD with D = 30.

the coordination numbers of sites in the three sublattices
are zA = 12, zB = 6, and zC = 4 but the site numbers are
NA = N/6, NB = N/3, and NC = N/2, from which it is easy
to deduce that the bond numbers are NAB = NAC = NBC = N .
Thus, for any other coupling ratios (one may imagine a wealth
of different cases depending on the values of JAB, JAC, and
JBC), the bond energy would decide on which sublattice the
partial order is retained. However, in the isotropic case the
selection is entropic only, and thus, as in Sec. IV C, the partial
order remains on the A sublattice, maximizing the entropic
contribution from partial disorder (two of the three Potts states)
on 5

6 of the lattice sites.
We summarize this section by stating that we have explored

a number of models in which partial order emerges as a phase
intermediate between a low-temperature phase of complete
order and a high-temperature phase of complete disorder. In
principle, one may also expect that this is not a requirement,
in that a sufficiently complex model may contain more than
one type of partially ordered phase, including a partially
ordered ground state, and in this case it would be possible
to investigate further types of sequential phase transition to
states of different intermediate partial order. However, these
phases do not emerge from within the confines of the ge-
ometries (Archimedean and Laves lattices only) and coupling
constants (mostly isotropic) we consider. The emergence of in-
termediate partial order is neither a consequence of frustration
(Sec. VI A only) nor of anisotropic couplings (see Sec. VI C),
the difference between the q = 3 union jack and centered diced
lattices being a result of their connectivity. Quite generally, a
Potts model possesses a number of symmetries, which depend
on both the geometry of the lattice and on the Potts degeneracy

FIG. 21. (Color online) (a) Generalized decorated square lattice.
(b) For the sublattice partition illustrated, sites in sublattices B and
C have coordination numbers zB = zC = 6 and those in sublattice A
have zA = 4. (c) Definition of tensors in each unit cell of the lattice.

q, and these may be broken partially and sequentially at the
different transitions from full to partial to no order.

VII. PARTIAL ORDER WITH SUBEXTENSIVE
RESIDUAL ENTROPY

We conclude our investigation of the different types of
partial order in AF Potts models by considering the form
of the configurational entropy. In all of the models studied
in the preceding sections, the partially ordered ground and
intermediate states always possess an extensive degeneracy
and thus a nonzero entropy per site. In this section, we
discuss the issue of partial order in the ground states of
systems whose entropy is subextensive, such that the residual
(zero-temperature) entropy per site is 0.

A. Generalized decorated square lattice

We introduced the concept of partial order arising from
subextensive residual entropy in a study [51] of the AF Potts
model on the generalized decorated square lattice, particularly
the q = 3 case, and summarize the results in this subsection.
The union jack lattice is obtained from the square lattice by
adding one site at the center of each square; if centering sites
are placed only on alternate squares or equivalently the union
jack lattice is alternately diluted, one obtains the generalized
decorated square lattice shown in Fig. 21(a), with two different
couplings J1 and J2. Like the union jack lattice, this lattice is
tripartite (three-colorable in graph theory), but because the
lattice is formed of both triangular and square polygons, the
division into three sublattices is not unique.

The local tensor for the generalized decorated square lattice
is given by

Tijkl =
∑
m

exp
[−βJ1

(
δσi ,σm

+ δσj ,σm
+ δσk,σm

+ δσl,σm

)]
× exp

[−βJ2
(
δσi ,σj

+ δσj ,σk
+ δσk,σl

+ δσl,σi

)]
(29)

and represented in Fig. 21(c). The Potts variables σi on each
site serve as the indices of the tensors, and the tensors for
each unit cell may be combined to form a square-lattice
tensor network. Because the partition of the lattice into three
sublattices is not unique, the ground state of the AF q = 3
Potts model is not expected to be as straightforward as the
(zero-entropy) three-sublattice order of the same model on
the triangular, union jack, or centered diced lattices. Indeed,
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FIG. 22. (Color online) Specific heat for the q = 3 AF Potts
model on the generalized decorated square lattice with J1 = J2 = 1.
The results are obtained by iTEBD with D = 30. The inset shows the
very narrow discontinuity appearing at Tc = 0.5373(1).

the specific heat shown in Fig. 22 for the case J1 = J2 = 1
appears to lack any evidence of a phase transition. However,
on careful inspection it reveals not a divergence but a small
discontinuity qualitatively similar to that of the q = 4 union
jack lattice (Sec. IV B), which marks a phase transition to
partial order at Tc = 0.5373(1) (detected more clearly but less
accurately through the magnetization and the susceptibility
shown in Ref. [51]).

To understand the origin of this behavior, we consid-
ered [51] the configurations minimizing the bond energy that
make up the ground manifold. Sites in a single sublattice are
expected to order ferromagnetically because they are separated
by pairs of AF bonds. If the B sublattice in Fig. 21(b) is
ordered with σi = 0, the state on the intervening lines of A
and C sites may be either 121212 . . . 12 or 212121 . . . 21, each
with probability 50%. An analogous state exists for order only
on the C sublattice, but the two are mutually exclusive; both
ordered states break the π/2 rotation symmetry of the lattice
[also broken on the union jack lattice for q = 4, where a similar
competition between ordered states causes the weak transition
in C(T )]. It is the linear structures of alternating order that hold
the key to the properties of the system. If one calculates the
degeneracy of the ground manifold for a system of size L × L,
it is S = 6(2L − 1), a quantity exponential only in the linear
size of the system and not in its volume. Thus, the residual
entropy per site is

S0 = lim
L→∞

ln(6 × 2L − 6)

L2
= 0, (30)

vanishing due to the one-dimensional nature of the ground-
state degrees of freedom. However, the selection of a partially
ordered ground state within this model, proceeding in the same
way as the extensively degenerate examples studied in Sec. IV,
indicates that a large but subextensive degeneracy of Potts
configurations is sufficient to drive this phenomenon.

B. Dilute centered diced lattices

We continue by demonstrating that partial order with
subextensive entropy can occur more generally than in a
single lattice. In the same way that partial dilution of the
centering sites of the union jack lattice leads to the generalized

FIG. 23. (Color online) Dilute centered diced lattices. The
quadrilaterals containing centering sites are marked in color. In
lattices IA and IB, 1

3 of the quadrilaterals have center sites, while
lattices IIA and IIB have center sites on 2

3 of the quadrilaterals.
Lattices IA and IIA correspond to k = 0 arrangements on the kagome
lattice formed by all of the centering sites in the centered diced lattice,
whereas lattices IB and IIB are

√
3 × √

3 arrangements.

decorated square lattice, dilution of the centering sites of the
centered diced lattice leads to a further class of irregular
lattices. The centering sites of the centered diced lattice form
a kagome lattice (yellow sites in Fig. 10), which is a tripartite
geometry offering many ways to divide all the sites into three
disconnected sublattices; the two most common are known as
the k = 0 and

√
3 × √

3 structures [79].
We consider only commensurate dilutions yielding small

unit cells, which leaves two choices of dilution, namely, 1
3

and 2
3 . If 2

3 of the centering sites are removed, such that only
one sublattice of the kagome lattice has a Potts variable and
the other two sublattices are empty, we obtain the lattices
shown in Fig. 23 as IA and IB. If 1

3 of the centering sites are
removed, leaving a regular 2

3 filling, we obtain the lattices IIA
and IIB. We note that lattices IB and IIB contain the additional
complexity of inequivalent A sites (specifically, in lattice IB
these have coordinations 6 and 9, while in IIB they have 9
and 12) and we do not consider these geometries further; this
is equivalent to considering only the k = 0 structures (IA and
IIA). If the sublattices A and B of the diced lattice are labeled
as in Sec. IV C, and the remaining centering sites form a partial
sublattice C, then lattice IA has site numbers NA = N/4, NB =
N/2, and NC = N/4, with respective coordination numbers
zA = 8 and zB = zC = 4, while lattice IIA has NA = N/5 and
NB = NC = 2N/5 with zA = 10, zB = 5, and zC = 4.

1. IIA Lattice

We begin by considering the IIA lattice with q = 3. For
every centered rhombus, every bond can be satisfied if both
pairs of diagonal sites have the same σi . Thus, all A sites are
mutually ferromagnetic, by convention with σA = 0, and all
B sites between two horizontal lines of A sites (Fig. 23, IIA)
should also have the same σB �= 0, but the values of σB on the
different (horizontal, zigzag) lines of B sites are independent,
i.e., σB = 1 or 2 at random. The value of σC is fixed for all C
sites once σA and the lines of σB values are known. Thus, the
ground-state degeneracy is 2L, where L = √

NA is the number
of lines of A sites. As a consequence, the residual entropy per
site in the thermodynamic limit is 0 for the same reason, linear
structure formation, as in the q = 3 model on the generalized
decorated square lattice (Sec. VII A).

Figure 24 shows the entropy, specific heat, and magnetiza-
tion of sublattice A for the IIA dilute centered diced lattice.
The zero-temperature entropy per site is 0, in accord with the
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FIG. 24. (Color online) Thermodynamic properties of the q = 3
Potts model on the IIA lattice of Fig. 23. The results are obtained by
iTEBD with D = 40. (a) Entropy and specific heat. (b) Magnetization
of the A sublattice.

analysis above. The peak in the specific heat indicates that a
finite-temperature phase transition occurs at Tc = 0.74(1). The
magnetization of the A sublattice is 2

3 = 1 − 1
3 , corresponding

to perfect order, while the analogous quantities for the B and C
sublattices (not shown) exhibit perfect disorder. Thus, the IIA
lattice provides another example of partial order in the ground
state selected by a subextensive residual entropy.

By contrast, despite the linear structure of the lattice, the
q = 4 model in the same geometry shows very different
behavior. In Ref. [51], we demonstrated that the AF q = 4
Potts model on the generalized decorated square lattice is
critical at zero temperature, its susceptibility approaching a
divergence as T → 0. However, on the IIA lattice with q = 4
we find a “conventional” finite-temperature phase transition
at Tc = 0.48(1), appearing as a clear peak in the specific
heat in Fig. 25(a) and with a large residual entropy per site,
SIIA,q=4(0) = 0.5556. Straightforward counting arguments for
perfect partial order only on the A, B, or C sublattices re-
veal respective ground-state degeneracies gA = 24N/5(3/2)L,
gB = exp[3NSds,q=3(0)/5], where Sds,q=3(0) = 0.561 070 is
the residual entropy for the q = 3 decorated square lattice
(Sec. IV B), and gC = 1.6063N/5, where the numerical proper-
ties are given by the q = 3 diced lattice of the A and B sites.
Clearly, a partial order on the A sublattice remains the most
favorable, and indeed our computed entropy is very close to the
value SA = ( 4

5 ) ln 2 = 0.5545 obtained in this case. The zero-
temperature A-sublattice magnetization is MA

IIA,q=4 = 0.7438
[Fig. 25(b)], a result within 0.8% of the ideal value 0.75 =
1 − 1

4 . The discrepancies of both entropy and magnetization
from their ideal values indicate the presence of non-negligible
contributions from different ground-state configurations, but
no changes to the qualitative physics of Sec. IV.

FIG. 25. (Color online) Thermodynamic properties of the q = 4
Potts model on the IIA lattice of Fig. 23. The results are obtained by
iTEBD with D = 40. (a) Entropy and specific heat. (b) Magnetization
of the A sublattice.

2. IA Lattice

For completeness, we conclude by considering the IA
dilute centered diced lattice of Fig. 23. Because this geometry
also consists of linear structures in two dimensions, it is not
unreasonable to expect a further example of partial order
with subextensive residual entropy. As noted above, every
centered rhombus in an AF Potts model with q = 3 has the
same σi for diagonal pairs of sites, and thus all A sites in
the same horizontal line have the same state, but the A sites
on adjacent lines may take the same or different states σi

with complete energetic degeneracy. For fully ferromagnetic A
sites, for example with σi = 0, pairs of B sites in every centered
rhombus retain two independent choices, σi = 1 or 2, and the
degeneracy is 2N/4 (N/4 is the number of centered rhombi).
However, if there exists a row of A sites with σi = 1, then
the B sites in this row and both its neighboring rows become
fixed to σi = 2 and the degeneracy falls to 2N/4−3L, where
L = √

N/4 is the number of centered rhombi in a row. Thus,
configurations in which all A sites have the same value are
dominant in the ground state but one expects a finite residual
entropy of SA

IA,q=3(0) = (1/4) ln 2 = 0.173 286 795 139 986.
In Fig. 26, we present the entropy, specific heat, and the A-

sublattice magnetization of the AF q = 3 Potts model on the IA
lattice. Our numerical result for the zero-temperature entropy
SIA,q=3(0) = 0.173 286 795 139 99 confirms completely the
analytical reasoning. Both the specific heat and the sublattice
magnetization confirm a conventional entropy-driven phase
transition at Tc = 0.66(1) and the magnetization of the A
sublattice in the low-temperature limit is the expected 2

3 = 1 −
1
3 . We conclude that linear structures may be a necessary but
not a sufficient condition for partial order from subextensive
residual entropies in two dimensions, but that the fundamental
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FIG. 26. (Color online) Thermodynamic properties of the q = 3
Potts model on the IA lattice of Fig. 23. The results are obtained by
iTEBD with D = 40. (a) Entropy and specific heat. (b) Magnetization
of the A sublattice.

criterion for partial order, namely, the relationship between z̄

and q, remains the dominant determining factor.
We end with the q = 4 model on the IA lattice. In this

case, the degeneracy is large and the connectivity smaller than
the IIA lattice, so one may even suspect a zero-temperature
critical phase with no true order [51]. Focusing directly on a
candidate partially ordered state with all A sites ferromagnetic
(σA = 0), the Potts variables on the B and C sites in each
centered rhombus are independent. If the C sites have σ = 1,
the two B sites can be (2,2), (2,3), (3,2), or (3,3), and so
the centered rhombus has 3 × 4 = 12 configurations, giving
a total degeneracy gA = 12N/4. The analogous degeneracies
for full B- and C-sublattice order are gB = 2N/2(3/2)L and
gC = 1.6063N/4, confirming that if a partially ordered state
exists, then it will be on the A sublattice.

The entropy, specific heat, and A sublattice magnetization
of the q = 4 AF Potts model on the IA lattice are shown
in Fig. 27. A finite-temperature phase transition does in fact
occur, at Tc = 0.32(1). However, the associated discontinuity
is not the dominant feature in the specific heat, a situation
more reminiscent of the q = 4 model on the union jack lattice
(Sec. IV B) and the q = 3 model on the generalized decorated
square lattice (Sec. VII A), and the transition temperature
is one of the lowest finite values we have encountered.
The evidence for a general lack of robustness to thermal
fluctuations in this model is reinforced by our results for
the residual entropy SIA,q=4(0) = 0.634 02, which lies above
the perfect-order value ( 1

4 ) ln 12 = 0.6212 by an amount we
have seen (Sec. IV) to be significant. Similarly, although our
results confirm that the partial order is on the A sublattice,
the zero-temperature magnetization MIA,q=4(0) = 0.6725 lies
well below the ideal value of 0.75.

FIG. 27. (Color online) Thermodynamic properties of the q = 4
Potts model on the IA lattice of Fig. 23. The results are obtained by
iTEBD with D = 40. (a) Entropy and specific heat. (b) Magnetization
of the A sublattice.

VIII. SUMMARY

We have performed a detailed analysis of the antiferromag-
netic Potts model in two dimensions, covering a range of lattice
geometries and numbers q of degrees of freedom per site. The
primary focus of our investigation is the phenomenon of partial
long-range order, which arises in the presence of high-state
degeneracies. Quite generally, this partial order sets in at a
“finite-temperature phase transition,” which is the defining
property of the Potts model in question, but whose properties
can differ widely as a consequence of the interplay between
lattice geometry and q value.

An essential ingredient of the partial ordering scenario
is the nature of the lattice. In the absence of frustration,
ordering transitions occur when the site coordination number z

constrains the number of degrees of freedom q. For sufficiently
large q, the AF Potts model on any lattice is insufficiently
constrained and is disordered at all temperatures. In restricting
our considerations to Archimedean and Laves lattices, one
of the key qualitative properties of a lattice is whether it
is regular (all sites equivalent) or irregular, meaning that it
has different types of site with different local coordination
numbers. While both types of system may possess a large
number of Potts configurations minimizing the total energy, the
irregular lattices have nontrivial entropies, which in a number
of cases drive only a partial ordering transition on some of the
inequivalent sublattices.

The majority of our results are obtained for three particular
Laves lattices, the diced, union jack, and centered diced
lattices, which have integer average coordination number z̄

but behavior rather different from regular lattices with z = z̄.
Specifically, for the value q = qc where the regular lattice is
critical, they all show finite-temperature transitions to states of
partial order. Thus, the irregular lattice geometry leads quite
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generally to high values of qc (indeed, qc > 5 for z̄ = 6 on
the centered diced lattice). The entropic selection mechanism
is such that the partial order is always on the site of highest
local coordination, which creates a high number of satisfied
bonds while imposing a q − 1 Potts degeneracy on all of the
connected sites.

The finite-temperature transitions from partially ordered
states to disordered states may in different cases be very
obvious or extremely subtle. We have analyzed both types
and shown that this is a function of the number of competing
partially ordered states; when there is no unique sublattice
with the largest connectivity, then the system must resolve
this competition and the result can be a very weak transition.
Indeed, the existence of inequivalent sites in a lattice cannot
on its own guarantee a partially ordered ground state, because
sufficiently large q will always cause disorder, and so the
existence of order must be tested in every case. However,
the effectiveness of thermal fluctuations in suppressing the
partial order parameter is determined not only by the number
of degenerate states in the manifold, but also by the nature of
the competition between partially ordered states.

Another factor in this competition can be the nature of the
entropic driving forces. In most of the models we have studied,
the entropy of the ground manifold of minimum-energy states
is extensive, scaling with the volume of the system. However,
we have also discovered some situations where the balance
of connectivity (z̄), q, and the interactions (J ) is such that
the ground state has one-dimensional correlations and the
degeneracy scales only with the linear dimension of the
system. Despite the resulting subextensive entropy, the ground
manifold remains highly degenerate, and this is sufficient to
preserve the physics of partial order.

We comment here that we have largely avoided considering
systems with frustrated interactions. Frustration is regarded as
a very general driving force for (complete) suppression of order
parameters and in certain systems for the existence of only
partially ordered ground states. The family of AF Potts models
can largely be categorized into three regimes, one with q > z̄,
which exhibits disorder at all temperatures, one with (crudely)
q ∼ z̄, which exhibits phenomena including zero-temperature
criticality and entropy-driven partial order, and one with q � z̄

where the ground state usually has complete order. Frustration
is the key factor affecting the nature and extent of order in the
last of these categories. This paper concerns almost exclusively
the intermediate category, where entropic effects dominate and
frustration is absent, quite simply, a triangle is not a frustrated
unit when q � 3.

In addition to partially ordered ground states, we have
also investigated the formation of partially ordered states at
intermediate temperatures. In the models we consider, these
occur in systems with conventional, fully ordered ground
states, which are also states of low (or zero) degeneracy. As
the temperature is increased, the huge entropic preference
for partially ordered states of high degeneracy can drive an
additional phase transition. The typical regime for this type of
behavior is where q is slightly smaller than in the systems with
partially ordered ground states. The consequence is a system
with multiple phase transitions, from order to partial order
at low temperatures and then from partial order to complete

disorder, which we are able to characterize completely by
computing the magnetizations on every sublattice. Potts
models possess both the symmetry of their lattice and the
q-fold permutation symmetry of the Potts variable, and models
showing separate phase transitions give a very clear example
of sequential breaking or restoration of partial symmetries,
which can be used to classify the transition type (universality
class) [1].

One of the key features of our calculations is that they
yield quantitative thermodynamic information about Potts
models and, in particular, about the partially ordered states
at low temperatures. Highly accurate values for the entropies
and magnetizations can be compared with expectations for
different, competing, partially ordered model states, to deduce
their contributions to the true ground state. In this study, we
have exposed a number of models where the thermodynamic
properties do not match with naive expectations based on
perfect order on the highest-coordinated sublattice. For reasons
of space, we have not dwelled on the development of scenarios
for improving the analytical description of Potts states,
although our data allow direct comparisons with models for the
leading “defect” configurations within a state of perfect partial
order. When these defects are present at finite densities due to
their entropic contributions, their effects will be observable
in the entropy and sublattice magnetization we compute.
Our results also permit detailed comparisons with different
models in classical statistical mechanics, further developing
cross-links within the field.

Finally, we have demonstrated the power of tensor-based
numerical methods for problems in classical statistical me-
chanics. The ability to express the partition function as a
tensor product, to renormalize systematically, and to truncate
in the tensor dimension gives unprecedented access to accu-
rate thermodynamic information. The method is completely
general in that calculations can be performed for all lattice
geometries and all values of q, with no restrictions to
special cases. We have exploited this power to find and
characterize previously unknown phase transitions, to quantify
thermodynamic properties both at the transition and at low
temperatures, and thus to gain extra insight into the physics
of partial ordering processes. We close by noting that the
development of tensor-based numerical techniques remains in
its relative infancy, and that significant improvements in size
(tensor dimension) and accuracy may still be expected. This
would make possible a new level of quantitative discussion
for topics such as scaling exponents and universality at phase
transitions, which are currently still at the frontiers of our
capabilities.
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