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Magnetic spiral induced by strong correlations in MnAu2
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The compound MnAu2 is one of the oldest known spin-spiral materials, yet the nature of the spiral state is still
not clear. The spiral cannot be explained via relativistic effects due to the short pitch of the spiral and the weakness
of the spin-orbit interaction in Mn, and another common mechanism, nesting, is ruled out as direct calculations
show no features at the relevant wave vector. We propose that the spiral state is induced by a competition between
the short-range antiferromagnetic exchange and a long-range interaction induced by the polarization of Au bands,
similar to double exchange. We find that, contrary to earlier reports, the ground state in standard density functional
theory is ferromagnetic, i.e., the latter interaction dominates. However, an accounting for Coulomb correlations
via a Hubbard U suppresses the Schrieffer-Wolff-type s-d magnetic interaction between Mn and Au faster than
the superexchange interaction, favoring a spin-spiral state. For realistic values of U , the resulting spiral wave
vector is in close agreement with experiment.
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I. INTRODUCTION

The magnetic spiral is a type of noncollinear magnetic
ordering in materials in which the localized moments form
a screw-type pattern about an axis. Since the discovery of the
first spin spiral in MnAu2 in 1956 [1], the origins of such
spirals have been the subject of intensive research. A number
of mechanisms have been discussed. In the local-moment
Heisenberg-exchange picture, a natural source of spirals is
magnetic frustration of the nearest- and next-nearest-neighbor
exchange parameters, for example, when J1 �= 0 (ferro- or
antiferromagnetic) and J2 > 0 (antiferromagnetic). If the
next-nearest-neighbor exchange is large enough, such that
|J1| < 4|J2|, then the mean-field solution yields a spiral ground
state [2,3]. This mechanism is applicable in both localized
and itinerant electron systems, although in the latter one
may expect long-range interactions to play a role. For an
itinerant system, the structure of the electronic response in
reciprocal space captures the role of such interactions. If
there is a maximum in the spin susceptibility at a particular
wave vector q, then this generates a spin-density wave with
the same wave vector, which can take the form of a spin
spiral. In principle, a kink [as in the uniform two-dimensional
(2D) electron gas] or even a derivative singularity (as in
the 3D electron gas) can induce an oscillatory interaction
[Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction] in real
space, which can also encourage a spiral formation. Contrary
to a common misconception, this effect does not require
electron bands crossing the Fermi surface (the interaction is
defined by the real, not imaginary, part of susceptibility), but
it does become weaker as the excitation gap grows. Finally,
geometric frustration can also encourage noncollinearity and
helical ordering in materials.

The Dzyaloshinskii-Moriya (DM) interaction [4,5], a rel-
ativistic effect that occurs in materials without an inversion
center, has attracted a substantial amount of interest and can
lead to moment canting or spiraling. This interaction becomes
more important in materials with heavy elements, such as

the rare-earth series. Relativistic effects are important in such
materials, although more than one mechanism is often in play.
For example, the spiral phases of the heavy rare-earth metals
Tb-Tm [6] are also understood to be due to nesting [7–9].

Spiral ordering is not restricted to materials with heavy
magnetic ions. Spirals also form in lighter transition-metal
materials with an intriguing range of spiral vectors q. The DM
mechanism may be operative in some of these materials, but in
such systems the weak relativistic effects induce spirals with
long wavelengths, as in MnSi [10–12]. Shorter wavelength
spirals are also common, such as in the magnetically frustrated
spinel chromites ZnCr2Se4 [13] and CdCr2O4 [14]. An
interesting example is FeAs, featuring an incommensurate
spiral with a period of 20 Fe layers [15,16]. This material is
a good metal, so one may think that the conduction electrons
mediate an oscillatory interaction via nesting or the classical
3D RKKY mechanism. However, the search for a nesting
vector or features in the noninteracting susceptibility that
match the spin-spiral vector was unsuccessful [17]. But, as
in the cited example of the 3D electron gas, oscillatory
interactions may manifest themselves even without such peaks,
and so one cannot rule out this mechanism in total without a
full calculation of spin susceptibility in real space.

The material MnAu2, as stated above, is one of the earliest
examples of magnetic spiraling [1,18,19] and may provide
better clues than FeAs as to how short-period spirals can form.
The spiral has an even shorter period than FeAs, the material
is a metal, and, unlike FeAs, Mn d states are removed from the
Fermi level, so the system may be a better representation of a
model with localized moments and an interaction transferred
via itinerant electrons of a different nature. The magnetic
structure consists of ferromagnetic Mn planes (local moments
are in-plane) stacked along the crystallographic c axis, with
the in-plane magnetization direction rotating from plane to
plane, as illustrated in Fig. 1(b). The rotation angle varies
with temperature, from 60◦ at 5 K to 40◦ at 250 K [20].
The Néel temperature is TN = 363 K [1] and the material
transitions from the spiral to a ferrimagnetic fanlike structure
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FIG. 1. (Color online) (a) A schematic [21] of the crystal struc-
ture of MnAu2. (b) A schematic supercell [21] of a magnetic spiral
with q = {0,0,π/2c} in MnAu2.

at room temperature upon application of a ∼10 kOe magnetic
field [1,18,22], which gives rise to a giant magnetoresistance
effect [22].

The crystal structure itself is also interesting, which can be
seen in Fig. 1(a). The Au atoms, which have five neighbors
each, have much larger atomic radii when compared with
Mn, and so they form the framework that holds the structure
together, with the Mn atoms fitting into the center of cubic Au
cages throughout the lattice. Such an arrangement has impli-
cations for the electronic structure, which we will discuss later.

The common explanation for the MnAu2 spiral is magnetic
frustration, where |J1| < 4|J2| [2,3]. In this notation, J1 is
the exchange between nearest-neighbor planes and J2 is
the exchange between second-nearest-neighbor planes. This
interpretation was supported by density functional theory
(DFT) calculations [23], in which the exchange constants were
calculated using a relativistic extension [24] of the torque
method [25] within the screened Korringa-Kohn-Rostoker
formalism [26], and it was reported that |J1| < 4|J2| was
satisfied. However, the presence of highly itinerant carriers
casts doubt on the idea of fully describing the magnetism in
this system using a J1-J2 Heisenberg model. It is possible
that the standard Heisenberg model can even fail to give a
qualitative description of the magnetic state, as in the case
of the Fe-based superconductors where such a description is
dramatically inadequate; see Refs. [27,28]. Furthermore, while
computational estimates for J1,2 seem to satisfy the spiral
criterion, direct calculations (not performed in Ref. [24]) show
that the true DFT ground state is a uniform ferromagnet and
not a spiral.

We are not aware of any other first-principles studies of the
magnetic interactions and the ground state of MnAu2. Overall,
first-principles calculations of MnAu2 have been sparse, aside
from the above reference and a pair of reports with calculations
of the density of states [29,30]. It is worth revisiting this
problem using modern, full-potential DFT calculations with
noncollinear spin configurations and extracting the exchange
parameters from total-energy calculations, rather than by
the torque perturbation theory with spherically symmetrized
potentials [23]. Given that the Mn and Au states each
correspond to distinct portions of the band structure, one may
hope to elucidate microscopic reasons for the spiral ordering.

The paper is organized as follows. In Sec. II, we will detail
our computational methods for calculating the electronic struc-
ture and total energy and extracting the exchange constants.
We then follow, in Sec. III, with a report of our results and
a subsequent discussion. Our main result is that, contrary
to Ref. [23], a “vanilla” density functional theory does not
account for the spirals in MnAu2. However, upon accounting
for on-site Coulomb correlations by applying a Hubbard U

correction in the local spin-density approximation (LSDA)
to the Mn d orbital, we see that spiral solutions appear for
reasonable values of U and agree with the helical angle from
experiment. This is an unexpected result, as the Hubbard U

enhances localization and suppresses itinerant effects. Here,
however, the correlated electrons forming local moments are
different from the itinerant electrons mediating the magnetic
interaction, and so a typical analysis using superexchange
fails in such materials. Instead, the magnetism needs to be
reanalyzed in a way similar to dilute magnetic semiconductors
and Kondo lattices. We show, in particular, that the main effect
of the application of U is to reduce hybridization between
Mn bands and Au electrons forming the Fermi surface. While
the nearest-neighbor superexchange is suppressed as 1/U , the
transferred RKKY-type interaction goes as 1/U 2, introducing
partial cancellation between the antiferromagnetic superex-
change and ferromagnetic transferred interaction between the
neighboring layer, which, in turn, enhances the |J2/J1| ratio.
We describe our conclusions in Sec. IV.

II. COMPUTATIONAL METHODS

We employed density functional theory (DFT) in three
different implementations to study spin spirals in MnAu2. We
used projector augmented wave (PAW) potentials as imple-
mented in VASP [31,32] and full-potential linear augmented
plane waves as implemented in ELK [33] and WIEN2K [34]. The
Perdew-Burke-Ernzerhof generalized gradient approximation
(GGA) [35] was used for the exchange-correlation functional
in all three codes and the local spin-density approximation
(LSDA) [36] was also used in ELK. Correlation effects were
considered in MnAu2 using the DFT + U method in the fully
localized limit [37], in which an empirical Hubbard U is
introduced on the d orbitals of the Mn and/or Au atoms. Also,
for a better comparison with the atomic sphere approximation
(ASA) calculations of Ref. [23], which were not a full-potential
treatment, we have performed selected calculations in the ASA
using a linear muffin-tin orbitals (LMTO) code [38].

The material MnAu2 belongs to the space group I4/mmm

with Wyckoff positions 2a for Mn and 4e for Au, which yields
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planes of Mn and Au atoms (two layers of Au between each
Mn layer). We set the lattice parameters to a = 3.370 13 Å
and c = 8.758 94 Å and the internal parameter for Au to
zAu = 0.34. The experimental ground state of MnAu2 is a spin
spiral, where ferromagnetic Mn planes (local moments are
oriented in-plane) rotate about the c axis with a noncollinear
pitch vector close to the incommensurate π/2c. To simulate
the magnetic state, we consider spin spirals in MnAu2 with
two different methods. The first is to construct explicit spirals
in supercells using noncollinear moments in the xy plane
commensurate with q = {0,0,π/2c}, see Fig. 1(b), which is
done using the GGA functional in both VASP and ELK. The
second approach is to use a spin-spiral method to simulate
spirals in a primitive cell with one Mn atom, which is done
using the LSDA functional in ELK alone.

We fit the energy calculations using the above methods to
the one-dimensional Hamiltonian,

H = const +
∑

i

Ji cos(iθ ), (1)

where the sum is taken over the layers of Mn atoms. As
this is a one-dimensional model, the exchange parameters Ji

represent the coupling between entire layers of Mn atoms (the
Mn layers can be seen in Fig. 1(b)) instead of the coupling
between individual Mn atoms, i.e., J1 is the coupling between
two nearest-neighbor Mn layers, J2 is the coupling between
two next-nearest-neighbor Mn layers, and so on. Our primary
interest is in the ratio |J2/J1|, so at a minimum we kept the
first two terms in the sum with constants J1 and J2, and then
we varied the number of layers in the sum to evaluate the
robustness of the fit and the extracted parameters.

III. DISCUSSION

We calculated the band structure and density of states
(DOS) of ferromagnetic MnAu2 using the LSDA functional,
shown in Figs. 2(a) and 3(a). The Mn d bands are fully
spin split, corresponding to the ionic configuration of Mn(d5)
and the formal Mn valency of 5+. The total moment of
the system is 3.93μB/Mn, and the reduction of the moment
from the ideal 5μB is due to the hybridization of Mn with
Au. The experimental moment of MnAu2 is 3.5μB [19,22],
and so the DFT result is about 9% larger in magnitude. The
experimental moment is likely smaller than the DFT prediction
because of zero-point fluctuations [39], which are not captured
by DFT as it is a mean-field-type method. The bands crossing
the Fermi energy consist of both Mn and Au character that is
spin dependent: the minority bands have ∼1.6 times more Mn
weight than the majority bands, while the majority bands have
∼1.5 times more Au weight than the minority bands. We note
that while the Au bands are polarized at the Fermi energy, the
net moment on the Au ions is zero.

The crystal structure of MnAu2, as mentioned earlier,
consists of Mn atoms placed in cubic Au cages. The band
structure and DOS suggest that the electronic structure at the
Fermi level is mostly determined by the Au atoms; therefore
we calculated the band structure of a hypothetical Au system
where the Mn atoms have been removed, shown in Fig. 2(b).
In the real system there is a charge transfer of one electron per
Au ion. We infer this from the band structure in Fig. 2(a) and
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FIG. 2. (Color online) The spin- and species-resolved (see leg-
end) band structure of MnAu2 calculated using the FLAPW code ELK.
The plot point size corresponds to the species weight. (a) The MnAu2

band structure using the LSDA functional. (b) Hypothetical Au-only
band structure with Mn atoms removed from the unit cell and Fermi
level chosen to reflect Au1− charge transfer. (c) The MnAu2 band
structure using the LSDA + U functional with U = 4.7 eV.

the density of states in Fig. 3(a), where we observe that the
Mn 3d majority states are occupied and the Mn 3d minority
states are unoccupied, which implies a Mn2+ charge state and
so an electron is donated to each Au atom. Therefore the Fermi
level of the hypothetical Au-only system is chosen to reflect
an ionic charge of Au1−. Comparing Figs. 2(a) and 2(b) shows
the remarkable similarity between the two band structures,
indicating that much of the electronic structure is due to the Au
atoms only. The spin majority band crossing the Fermi energy
in Fig. 2(a) is the same Au band in Fig. 2(b), while the spin mi-
nority band originates from the Mn atoms when they are placed
into the structure, shifting the Au bands upwards in energy.

We next calculated the energy as a function of the spiral’s
helical angle θ using the spin-spiral method of ELK and
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FIG. 3. The total and species-projected DOS of the ferromagnetic
state of MnAu2 calculated using the FLAPW code ELK. (a) The DOS
using the LSDA functional. (b) The DOS using the LSDA + U

functional with U = 4.7 eV.

explicit spirals in supercells in both ELK and VASP. For the
spin-spiral method, we used the LSDA functional [40], and for
the supercell calculations, we used the GGA functional. We
then computed the difference of E(θ ) − E(0), comparing the
energy of the spiral state with the energy of the ferromagnetic
configuration. The results are summarized in Fig. 4(a). We
consistently find in all cases that there is a preference
for the ferromagnetic ground state. The qualitative trend
across codes and functionals is the same. They differ with
respect to the energy of the antiferromagnetic configuration,
with the LSDA spiral method yielding the highest energy
and the GGA VASP calculation yielding the lowest energy.
Overall, this shows that DFT does not support a stable spin
spiral, which is in disagreement with Korringa-Kohn-Rostoker
(KKR) calculations from Ref. [23].

The origin of this disagreement cannot be ascribed to using
different density functionals, as we found the same result
with LSDA and GGA, nor in the approximations used to
represent the crystal potential and electron (spin) density. We
have verified, using a LMTO method that employs the same
spherical approximation as the KKR method of Ref. [23],
that the ground state is still ferromagnetic; see Fig. 4(a). An
important difference may be that Ref. [23] uses the perturbative

FIG. 4. The energy difference between a helical, in-plane spiral
with angle θ and a ferromagnetic configuration in MnAu2. (a) The
energy dependence for LSDA and GGA functionals. The calculations
are either spin-spiral calculations or explicit supercell calculations
using VASP, ELK, or LMTO; see the legend. The solid line is the Eq. (1)
fit to the ELK results. (b) The energy dependence using LSDA + U ,
where the Hubbard U is applied to Au and/or Mn d states. See the
legend for the values of U . The dashed and solid lines are the Eq. (1)
fits to the U = 3.7 eV and U = 4.7 eV calculations, respectively.

torque method to calculate the exchange constants, while we
performed total-energy calculations for explicit spin-spiral
configurations.

These results also hold when spin-orbit coupling (SOC) is
turned on. The band structure of MnAu2 with and without SOC
is practically identical even though, in principle, Au is heavy
enough to support non-negligible SOC effects. Importantly,
the moment on Au is zero and therefore relativistic magnetic
interactions of the DM type are excluded.

Although MnAu2 is a good metal, the Mn d states are quite
localized and are subject to local Hubbard correlations, not
accounted for in straight DFT. It is well known that other
compounds with Mn2+ require a Hubbard U on the order
of 3–5 eV to reproduce the correct positions of Mn bands.
With this in mind, we employed the LSDA + U method
in combination with the spin-spiral calculations in ELK to
incorporate additional electronic correlations. We applied the
Hubbard U to the Mn 3d orbitals, using two plausible values
for U : U = 3.7 eV and U = 4.7 eV. The parameter J was
set to J = 0.7 eV. The Mn moment increased from its DFT
value of 3.93μB to 4.30μB for U = 3.7 eV and 4.39μB

for U = 4.7 eV. This increase in the moment is due to the
reduction in hybridization as the Mn 3d bands are moved
away from the Fermi energy. In addition, we also checked if
the application of U = 3.7 eV and J = 0.7 eV to the Au 5d

orbitals affected the results. The results of these calculations
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are shown in Fig. 4(b). We found that spirals form when U is
applied to Mn states, while adding an additional U to Au had a
negligible effect. For U = 3.7 eV, a shallow energy minimum
of ∼3 meV appears around θ = 30◦, and for a U = 4.7 eV, a
deeper well of ∼8 meV/Mn appears around θ = 45◦. Finally,
we note that including U compresses the overall energy scale
compared with the results of Fig. 4(a).

This evolution can be understood if we picture the relevant
magnetic interaction as a combination of the nearest-neighbor-
plane antiferromagnetic superexchange, proportional to
t2
⊥/�↑↓, and the transferred magnetic interaction mediated

by the Au electrons. Note that t⊥ is the effective interplane
hopping and �↑↓ is the energy cost of transferring a Mn d

electron to a neighboring site and flipping its spin. The transfer
interaction can be visualized as the spin susceptibility of the Au
subsystem multiplied by the square of the Mn-Au interaction
vertex. In our case, this vertex is, to a first approximation, the
Schrieffer-Wolff interaction [41,42], which is proportional to
τ 2/�sd , where τ is the Mn-Au hopping amplitude and �sd

measures how removed the occupied Mn d states are from the
Fermi level. For a Fermi energy that falls roughly in the middle
of the lower and upper Mn Hubbard bands, �sd ≈ �↑↓/2.
Furthermore, in the LSDA + U calculations, �↑↓ ≈ �ex + U,

where �ex is the LSDA (Stoner) exchange splitting.
The transferred interaction is distance dependent and is

allowed to change sign, in contrast to the superexchange
interaction. In particular, our calculations are consistent with
a ferromagnetic nearest-neighbor interaction and an antiferro-
magnetic next-nearest-neighbor interaction. The next-nearest-
neighbor exchange parameter is J1 ≈ JSE + J

(1)
Mn-Au, where

J
(1)
Mn-Au < 0 and |JSE| < |J (2)

Mn-Au|, while J2 ≈ J
(2)
Mn-Au, where

J
(2)
Mn-Au > 0. Since JSE ∝ 1/�↑↓ and JMn-Au ∝ 1/�2

↑↓, as U

increases both J1 and J2 shall decrease, but J1 will decrease
more rapidly as JSE starts to play a more dominant role.

This is precisely what we observe in the calculations. Fitting
to Eq. (1), we were able to reliably extract the constants
J1 and J2, which remained robust regardless of the number
of additional neighbors we included in the fit. The extracted
constants are summarized in Table I along with the constants
from Ref. [23], and the fits using the extracted constants
are shown [43] in Fig. 4. In all cases, the J1 parameter is
ferromagnetic and J2 is antiferromagnetic. Consistent with
the argument above, the nearest-neighbor exchange J1 is very
sensitive to correlations, decreasing by a factor of ∼3 for
U = 3.7 eV and ∼6 for U = 4.7 eV. In contrast, the decrease
for J2 is moderate for U = 3.7 eV and very small when U is
increased further to U = 4.7 eV. Our LSDA value of J2 is in

TABLE I. The extracted exchange constants obtained by fitting
the results of Fig. 4 to Eq. (1). For comparison, the calculated
constants from Ref. [23] are also included. All constants are reported
in units of meV.

LSDA + U LSDA

const LSDA U = 3.7 eV U = 4.7 eV Udvardi et al.

J1 − 49.37 − 16.50 − 8.51 − 25.16
J2 8.17 6.43 6.30 8.31

good agreement with Ref. [23], while we find J1 to be larger
by a factor of 2.

The band structure for MnAu2 with U = 4.7 eV is shown in
Fig. 2(c) and the DOS is in Fig. 3(b). As described, the primary
effect of introducing U is to move the Mn d bands away
from the Fermi level, which decreases the hybridization of Au
with Mn, localizing Mn and decreasing the energy difference
between ferromagnetic (FM) and layered antiferromagnetic
(AFM) configurations. This, in turn, lowers the polarization of
the Au bands, which mediate the transferred interaction, which
then weakens the ferromagnetic exchange of J1. We conclude
that the spiral instability in MnAu2 is driven by correlation
effects which enhance the importance of the superexchange
interaction relative to the transferred interaction induced by
Au polarization.

Finally, we tried to identify the microscopic reason for
the transferred interaction to change sign between c/2 and c

along the c axis. A natural explanation would be in terms of a
Fermi-surface nesting at an appropriate qz. We note that qz does
not have to coincide exactly with the spiral wave vector; adding
superexchange will shift it towards shorter wavelengths.
Unfortunately, one cannot use the nonmagnetic MnAu2 for
investigating nesting effects, as the Mn moments are very
large and a linear response treatment is not appropriate. The
hypothetical (Au1−)2 system is more appropriate due to the
similarity of the band structures in Figs. 2(a) and 2(b), which
become increasingly more alike with increasing U . To check
for nesting, we calculated the noninteracting one-electron
susceptibility for (Au1−)2, defined as

χ0(q) =
∑

α,β,k

f (εα,k) − f (εβ,k+q)

εβ,k+q − εα,k + iγ
.

Note that this expression neglects any matrix elements arising
from the fact that Au wave functions deviate from plane
waves. We found a weak maximum at q = {0,0,2π/c}, which
would support antiferromagnetically aligned layers and would
induce J1 > 0 and J2 < 0, opposite to what is needed for the
experiment and what has been derived in Table I from the
calculations. As it stands, further progress in understanding
the Au-mediated transferred interaction requires calculations
of the full spin susceptibility, which includes matrix elements
and Stoner renormalization. At the present moment, we do not
have the capability to perform these calculations.

IV. CONCLUSION

We have revisited the origin of spirals in MnAu2 using
accurate, full-potential, noncollinear DFT calculations, and
found that contrary to previous findings, DFT alone is not
sufficient to sustain a helical spiral state. We find that the
spirals in MnAu2 are supported by Hubbard correlations,
which localize the Mn d electrons and strongly reduce the
ferromagnetic coupling between neighboring Mn layers. This
mechanism is in contrast to the common origin of spirals,
which are typically due to relativistic effects such as the
DM interaction or one-electron effects such as Fermi-surface
nesting. This uncommon physical origin may be present in
other materials where traditional explanations of spirals fail,
such as FeAs.
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