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Thermodynamic μT model of ultrafast magnetization dynamics
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Exciting a ferromagnetic sample with an ultrashort laser pulse leads to a quenching of the magnetization on a
subpicosecond time scale. On the basis of the equilibration of intensive thermodynamic variables, we establish
a powerful model to describe the demagnetization process. We demonstrate that the magnetization dynamics
is mainly driven by the equilibration of chemical potentials. The minimum of magnetization is revealed as a
transient electron equilibrium state. Our method identifies the slowing down of ultrafast magnetization dynamics
by a critical region within a magnetic phase diagram.
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I. INTRODUCTION

The strong increase of computational power within the last
30 years has also boosted the need for large and fast data
storage. However, the physical speed limits of conventional
magnetic recording, which are on the order of nanoseconds,
are nowadays reached [1]. A promising enhancement lies in
a subpicosecond change of magnetization, as was found in
1996 by exciting a ferromagnetic material with an ultrashort
laser pulse [2]. However, a detailed understanding of the
underlying physical processes of this ultrafast demagnetization
is still lacking and several models compete, hampering further
development [3–6].

The most promising concepts are based on superdiffusive
spin transport [7–10] or Elliott-Yafet (EY) spin-flip pro-
cesses [5,6,11–21]. It has been shown experimentally that
both processes contribute to the magnetization dynamics,
depending on the sample geometry [3,9]. On the one hand,
superdiffusive transport dominates on bulk and multilayer sys-
tems and has been successfully compared to experiments [8,9].
On the other hand, EY spin-flip scattering has been investi-
gated with kinetic models and reproduces the magnetization
dynamics for thin films [14–16]. Due to the complexity of these
methods, temperature-based models have been proposed, like
the microscopic three temperature model (M3TM) [12,21].
Recently, it has been shown, that this simplification is justified,
despite an ultrafast laser excitation [14].

In this paper, we derive a μT model (μT M), which
traces the dynamics and the equilibration of temperatures
(T ) and chemical potentials (μ) of the electron subsystems
simultaneously. The essential concepts of the μT M are based
on a kinetic approach [13–15], including EY-type spin-flip
scattering and a dynamic exchange splitting [11,14]. The
μT M reproduces the experimental magnetization curves for
different laser fluences. We find that the equilibration of
chemical potentials drives the dynamics of the magnetization
and the magnetization minimum is revealed as a transient
equilibrium state in a magnetic phase diagram. We identify a
critical region within this phase diagram: For certain fluences,
the material is driven into this region, causing an extreme
deceleration of the magnetization dynamics. This finding
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confirms the experimental observation of a critical slowing
down [12,21]. Unlike the M3TM, we trace the dynamics
of minority and majority electron densities explicitly, which
opens the possibility to extend the model for superdiffusive
transport effects.

II. THEORY

A general matrix formulation of a time- and space-
dependent coupled transport equation [22] is given by

C
d

dt
�X = ∇K∇ �X + G �X + �S, (1)

where �X is the vector of transient variables; C, K , and G are
matrices of capacities, transport, and coupling, respectively;
and �S is the source vector. A representative of such an equation
is the well known two-temperature model (TTM) [23] of two
coupled heat conduction equations. In that case, the vector of
interest �X consists of the respective electron and lattice temper-
ature Te and T�, the source vector contributes to the equation
for the electron energy, and the capacity matrix as well as
the transport matrix are diagonal matrices. The temperatures
are coupled through an equilibration term ±g(Te − T�), thus
the coupling matrix G contains also off-diagonal elements,
where g denotes the electron-lattice coupling parameter.

For ferromagnetic materials, usually two completely dif-
ferent approaches are applied. First, the Heisenberg model
for localized magnetic moments which introduces magnons
and second the Hubbard model which leads to the Stoner
model within a mean field approach [24]. We presume that
both the Heisenberg model and Hubbard model are applicable
to ultrafast magnetization dynamics [14,25] and the truth
lies between both models [26]. Recent ab initio calculations
showed that electron-magnon interaction alone might not
explain the demagnetization on an ultrashort time scale [27],
however, magnons can be created by the decay of Stoner
excitations for longer times [28,29]. In this work, we apply the
Stoner model for itinerant ferromagnets, where the electrons of
majority and minority spins are treated separately. Although
this model completely neglects magnons, it reproduces the
equilibrium magnetization of nickel for finite temperatures by
using a realistic density of states and a dynamic exchange
splitting [14].
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Within each electron system, the thermalization process
after laser excitation occurs on a very short time scale in the
order of 100 fs [30]. However, the equilibration between both
electron systems takes longer and the temperatures of both
electron types, denoted by T

↑
e and T

↓
e , respectively, may differ

for longer times. Moreover, the respective particle densities
may change due to EY spin-flip processes and only their sum
n = n↑ + n↓ is constant. Therefore, the chemical potentials
μ↑ and μ↓ have to be considered as further variables of
�X in Eq. (1). Further, in the frame of an effective Stoner
model [14,24], the densities of states D↑(E) and D↓(E)
of up and down electrons, respectively, are shifted by an
exchange splitting �. This exchange splitting is not constant,
but is directly coupled with the magnetization m through the
effective Coulomb interaction U [24]. In Ref. [14] it was shown
that the instantaneous feedback of the transient magnetization
on the exchange splitting

�(t) = Um(t), (2)

is essential for the quantitative description of demagnetization
dynamics. The normalized magnetization m(t) results from
the transient particle density of each electron reservoir as

m(t) = (n↑(t) − n↓(t))/n. (3)

The particle density of the electrons nσ (T σ
e ,μσ ,m) =∫

f (E,T σ
e ,μσ )D(E,m) dE and internal energy density

uσ
e (T σ

e ,μσ ,m) = ∫
f (E,T σ

e ,μσ )D(E,m)E dE with the spin
σ ∈ {↑,↓} are calculated by the zeroth and first moment of the
current Fermi distribution f (E,T σ

e ,μσ ). Thus, under the given
conditions both particle density and internal energy density
depend on the two intrinsic variables T σ

e and μσ and on
the magnetization which determines the energy shift of the
exchange splitting �, see Eq. (2). The temporal derivatives
of the energy density uσ

e and the particle density nσ include
partial derivatives, e.g.,

duσ
e

dt
= cσ

T

∂T σ
e

∂t
+ cσ

μ

∂μσ

∂t
+ cσ

m

∂m

∂t
, (4)

defining the capacity equivalents cσ
x ≡ ∂uσ

e

∂x
. Analogously,

partial derivatives of the particle density are defined as pσ
x ≡

∂nσ

∂x
. This allows us to mathematically separate the variables

T σ
e , μσ , and m.

To demonstrate the power of the μT model and to
separate the time-dependent effects from transport effects [22],
we restrict ourselves here to the temporal dependence of
the decisive variables, which is capable of predicting and
explaining important characteristics of the magnetization
dynamics of thin ferromagnetic films. The temporal evolution
of T

↑
e ,T

↓
e ,T�,μ

↑,μ↓, and m is expressed with an equation of
type (1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c
↑
T 0 0 c↑

μ 0 c
↑
m

0 c
↓
T 0 0 c↓

μ c
↓
m

0 0 c� 0 0 0
p

↑
T 0 0 p↑

μ 0 p
↑
m

0 p
↓
T 0 0 p↓

μ p
↓
m

−p
↑
T p

↓
T 0 −p↑

μ p↓
μ n↑ + n↓

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎝

T
↑
e

T
↓
e

T�

μ↑

μ↓
m

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

−γ − g↑ γ g↑ 0 0 0
γ −γ − g↓ g↓ 0 0 0
g↑ g↓ −g↑ − g↓ 0 0 0
0 0 0 −ν ν 0
0 0 0 ν −ν 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

T
↑
e

T
↓
e

T�

μ↑

μ↓
m

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

S↑(t)
S↓(t)

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠

.

(5)

The first three equations determine the energy of spin-up
and spin-down electrons as well as of the lattice, respectively.
Equations four and five trace the densities of both electron
systems. The last equation defines the transient magnetization,
Eq. (3). In the spirit of the TTM [23], we introduce a
respective equilibration term for the electron temperatures,
±γ (T ↑

e − T
↓
e ), and chemical potentials ±ν(μ↑ − μ↓). This

is in accordance with a first-order approximation of the
collision integrals in Refs. [14,30]. A comparison to Ref. [14]
reveals that the parameters γ and ν are directly proportional
to the spin-flip matrix element |〈↑|↓〉|2, hence proportional
to the spin-mixing parameter b2. The laser excitation of
each electron system is described by the source term Sσ (t).
To reduce the number of parameters, we assume that both
electron reservoirs absorb the same energy during irradiation
S↑ = S↓. However, due to the different densities, the electron
temperatures and chemical potentials of up and down electrons
may differ after excitation. To conserve the total energy with
a dynamic exchange splitting, the correlation energy [24]
uCorr(t) = −Un↑(t)n↓(t)/n has to be taken into account in
Eq. (5), but this is not shown for illustrative purposes.

The formulation of the μT M is not limited to Elliott-
Yafet spin-flip mechanisms of electrons and phonons. Other
processes, for instance electron-defect spin-flips, could be
treated by our approach. Regardless of the underlying spin-flip
channel, the μT M assumes that the total angular momentum
of the system including both lattice and electrons with their
dynamic band structure, is conserved. A further point of the
μT M is that the exchange splitting vanishes for temperatures
above Curie temperature TC in equilibrium. However, it has
been shown experimentally [31] that even above TC a finite
exchange splitting exists. These magnetic short-range order
effects are difficult to describe theoretically [32] and they are
not covered by our approach. The result of the μT M should
be interpreted in terms of a long-range order magnetization.

III. RESULTS

We solve the μT M for a thin nickel film with the density of
states from Ref. [33]. The thickness of the sample z = 15 nm
is in the order of the penetration depth and we assume a homo-
geneously heated film [21]. In this case, the experimentally
applied laser fluence after reflection (1 − R)F = z

∫
(S↑ +

S↓)dt can be related to the laser source term Sσ of the μT M.
Applying an effective Coulomb interaction U = 5.04 eV to
the Stoner model, the experimental equilibrium magnetiza-
tion curve [34] is well reproduced [14]. Here, the Stoner
model underestimates the magnetic moment μmag = 0.51μB ,
in comparison to the literature value μmag = 0.62μB [35].
The deviations between theory and experiment result from
neglecting magnons in the ferromagnetic description. These
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TABLE I. Entries of the matrix C, determined for nickel at room
temperature, in dependence on the spin σ ∈ {↑,↓}. Note that these
parameters vary strongly during the calculation. The parameter pσ

m

vanishes for all times.

↑ ↓
cσ
T [J/m3K] −1.44 × 107 1.01 × 107

cσ
μ[1/m3] 1.45 × 1030 2.67 × 1030

cσ
m[J/m3] 3.51 × 1011 −3.83 × 1011

pσ
T [1/m3K] −1.21 × 1025 8.28 × 1024

pσ
μ[1/m3J] 1.21 × 1048 2.29 × 1048

low-energy excitations are sketched by a lower magnetic
moment which in turn leads to a lower exchange splitting.

The lattice heat capacity is taken as c� =
3.776 × 106 J/Km3 [35]. For simplicity, we introduce the same
electron-lattice coupling gσ = g/2 = 1 × 1018 W/Km3 from
Ref. [30] for both electron systems. The coupling parameters
between chemical potentials ν = 5.80 × 1060 1/Jsm3 and the
inner-electronic temperature coupling γ = 163.8 × gσ are
newly introduced in this work. They are determined through a
fit of the transient magnetization curve obtained by the μT M
to experimental data of Ref. [21]. The entries of matrix C

change strongly during the calculation interval. Therefore,
they are determined dynamically for each time step. Table I
lists the parameters for nickel at room temperature.

The Gaussian pump pulse of 50 fs (FWHM) at a wavelength
of 800 nm was chosen according to the experiment [21].
With the reflectivity of R = 0.55, the μT M reproduces the
magnetization curve for different fluences. A comparison
between the experiment and the μT model is depicted in the
upper panel of Fig. 1.

Figure 1 shows from top to bottom the dynamics of the
magnetization, of the chemical potentials μ↑, and μ↓ and of
the temperatures T

↑
e , T

↓
e , and T�. Two different fluences were

applied for the calculations F0 = 2.5mJ/cm2 (blue curves)
and 2 × F0 (red curves). The minima of the magnetization
curves are marked with vertical lines through all three panels of
Fig. 1. The chemical potentials (central panel) of the majority
and minority electrons differ strongly during irradiation, equal
each other for an instant crossover, and equilibrate on later
time scales. The electron temperatures (lower panel) both
grow fast during irradiation, however, majority and minority
temperatures differ due to the different heat capacities. After
excitation, both electron temperatures equilibrate with each
other and later also with the lattice temperature.

Inverting the capacity matrix C in Eq. (5) leads to a direct
formulation for the temporal derivatives of T

↑
e ,T

↓
e ,T�,μ

↑,μ↓,
and m. In particular, the change of magnetization is given by

dm

dt
= −2ν

n
(μ↑ − μ↓), (6)

where the time dependence occurs only in the difference of
the chemical potentials. Thus, in the μT M the equilibration
of the chemical potentials of majority and minority electrons is
the driving force of the magnetization dynamics, as proposed
in Ref. [13].

IV. MAGNETIZATION CURVE CHARACTERISTICS

Five characteristic points appear in the magnetization
dynamics. They are indicated in the magnetization curve for
the lower excitation in Fig. 1. Their origins are explained with
the μT model in the following.

(i) We analyze the magnetization dynamics directly at the
time when the laser hits the sample. In this case, the μT M
predicts a vanishing first derivative dm/dt for the initial time
step, when the chemical potentials are still in equilibrium
μ↑ = μ↓, see Eq. (6). The feedback effect, induced by a
dynamic exchange splitting only occurs at later times, when the
chemical potentials are driven out of equilibrium. The μT M
explicitly accounts for the feedback effect and its influence can
be illustrated by calculating the second derivative of Eq. (5)
during a constant laser excitation

d2m

dt2
= −

(
p

↑
T

c
↑
μp

↑
T − c

↑
T p

↑
μ

− p
↓
T

c
↓
μp

↓
T − c

↓
T p

↓
μ

)
νS

n
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FIG. 1. (Color online) Typical results of the μT model, transient
magnetization (upper panel), chemical potentials (central panel), and
temperatures (lower panel). The blue curves correspond to a low
fluence F0 = 2.5mJ/cm2, whereas the red curves are calculated after
excitation with twice of that fluence, 2 × F0. In the upper panel,
experimental results [21] are shown for comparison. The vertical
lines indicate the respective time where the magnetization dynamics
suffer a minimum. Characteristic points (i) to (v), as marked for the
blue solid demagnetization curve, are analyzed in the text.
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FIG. 2. (Color online) Magnetization dynamics for a rectangular
laser pulse with the duration of 50 fs. Two fluences F = 1 × F0 and
F = 2 × F0 are applied. For a direct comparison, the approximation
m(t) ≈ m0 + 1

2
d2m

dt2 t2 is depicted in the diagram.

assuming G and C as constant over the considered time
interval. Initially, d2m/dt2 ∝ S(t = 0) holds for very short
times and the transient magnetization is determined mainly
by m(t) ≈ m0 + 1

2
d2m
dt2 t2. A direct comparison between this

approximated form and the complete μT M is shown in Fig. 2.
In this calculation, a rectangular pulse shape is applied and
the fluences are the same as in Fig. 1. A parabolic decrease
is observed even for the rectangular laser pulse and the
approximation gives reasonable estimates for the first 50 fs.

Recent ab initio calculations determine the initial change
of magnetization, dm/dt |t=0, utilizing EY spin-flip pro-
cesses [5,6,11]. They predict a much smaller demagnetization
than it was observed in the experiment. Since the feedback
effect [14] has not been taken into account, these calculations
do not contradict the EY picture.

(ii) During laser excitation, the magnetization decreases
rapidly, reaching the maximum change at the inflection point
of the magnetization curve. Equation (6) proposes that also
the nonequilibrium of chemical potentials is at its maximum,
which is supported by Fig. 1. The difference in chemical
potentials is explained by inverting the matrix C of the μT M:

dμσ

dt
= gσ

(
T� − T σ

e

) + γ
(
T σ̄

e − T σ
e

) + ν(μσ − μσ̄ )ξ+Sσ

cσ
μ − cσ

T pσ
μ

/
pσ

T

,

(7)

with the abbreviation ξ = (cσ
T n + 2cσ

mpσ
T )/(npσ

T ). During laser
excitation, the last summand of the numerator in Eq. (7) dom-
inates, i.e., dμσ

dt
≈ Sσ /(cσ

μ − cσ
T pσ

μ/pσ
T ). Even for the same

energy absorption S↑ = S↓, a nonequilibrium in chemical
potentials is established. This is due to the different response
of up and down electrons to heating: The shifted density of
states causes different entries of the matrix C for both spin
types, as listed in Table I. Applying ultrashort laser excitation,
also nonequilibrium effects may come into play [30,36].
However, it has been shown by a kinetic approach that for the
given material and excitation parameters the nonequilibrium

of the electrons plays a minor role in ultrafast magnetization
dynamics [14]. An analysis based on thermal properties is
therefore justified.

(iii) At the minimum of magnetization a transient equi-
librium between the electron subsystems is observed. Here,
the chemical potentials μ↑ = μ↓ [as expected from Eq. (6)]
and also the temperatures T

↑
e = T

↓
e are equilibrated, both con-

firmed by Fig. 1. However, the lattice is still not in equilibrium
with the electron system. In this transient equilibrium state, the
μT M shows that the parabola approximation of the minimum,

d2m

dt2
= 2gν

n

(
p

↑
T

c
↑
μp

↑
T − c

↑
T p

↑
μ

− p
↓
T

c
↓
μp

↓
T − c

↓
T p

↓
μ

)
(Te − T�),

is mainly determined by the temperature difference between
the electrons and the lattice.

(iv) After the transient equilibrium state of the electron
subsystems, the chemical potentials are driven out of equilib-
rium again. This is due to the relaxation with the lattice. At
the maximum difference between both chemical potentials, the
second inflection point in the magnetization curve occurs.

(v) For larger times, the chemical potentials and tempera-
tures of the electrons and the lattice equilibrate, see Fig. 1, and
the magnetization reaches its equilibrium value m(Te).

V. MAGNETIC PHASE DIAGRAM

The strength of the μT M is the possibility of analytical
predictions about many relevant physical processes in ultrafast
magnetization dynamics. In particular, we observe in Fig. 1
a so-called critical slowing down of magnetization dynam-
ics [28,37] for the high laser fluence. The reason is explained
in Fig. 3, which depicts the phase diagram of m and Te:
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FIG. 3. (Color online) Phase diagram of ultrafast magnetization
dynamics. The black curve is the equilibrium magnetization cuve
m(T ). The gray curves result from the μT model for the flu-
ences F/F0 = 1.0,1.2, . . . ,2.4,2.8,3.2,3.6 with F0 = 2.5 mJ/cm2.
The symbols mark several times at t = 0,0.3,0.5,1,2,5,10,25 ps. The
background color labels the relaxation time towards the equilibrium
magnetization.
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For long excitations, in the order of nanoseconds, we expect
that the magnetization follows the equilibrium magnetization
m(Te), which is indicated as a black curve. However, the
ultrashort laser pulse drives the system out of equilibrium
and the magnetization becomes a function of T

↑
e ,T

↓
e ,μ↑, and

μ↓. In particular, in these nonequilibrium states, the chemical
potentials differ strongly, which is reflected in the central panel
of Fig. 1. The temperatures T

↑
e and T

↓
e are close to each

other and are approximated by their mean value Te for the
following discussion. In Fig. 3, the parametric (m,Te) curves
of magnetization dynamics after different laser fluences are
indicated by gray lines. All curves start at room temperature,
top left of the diagram. Further symbols up to 25 ps show
the dynamical behavior on the parametric curves. The laser
drives the system to high electron temperatures, however,
due to the nonequilibrium situation, the magnetization is
still finite even for Te > TC . The first crossover with the
equilibrium magnetization curve, observed for fluences up
to 2.2 × F0, corresponds to the transient equilibrium state
(iii) and coincides with the minimum of the respective
magnetization curve.

Importantly, the time to reach the final state on the
equilibrium magnetization curve m(Te) differs for different
fluences. For each pair (m,Te) both chemical potentials μ↑,μ↓
can be determined by simultaneously solving Eq. (3) and the
equation of particle conservation, n = const. We can estimate
the time τeq to reach the equilibrium magnetization (black
curve) for each point of m and Te in the phase diagram by a
relaxation time approximation of Eq. (6),

m(Te) − m(Te,μ
↑,μ↓)

τeq
= −2ν

n
(μ↑ − μ↓). (8)

The relaxation time to equilibrium, τeq, is depicted in the
background color code of Fig. 3. Under strong nonequilibrium
conditions, especially at high temperatures, this relaxation
occurs very fast: The large difference in chemical potentials

rapidly drives the magnetization to its equilibrium value.
However, around the Curie temperature at 631 K [35], the
chemical potentials are nearly equal and the equilibration
time according to Eq. (8) reaches rather high values up to
nanoseconds, thus, the magnetization dynamics is extremely
decelerated. The fluences F/F0 ≈ 2.0–2.4 drive the system
into this critical region, appearing red in Fig. 3. For low and
very high laser fluences this region is circumvented. Thus,
the μT M directly illustrates the origin of a critical slowing
down and explains why experiments show a maximum in
demagnetization time [12], by utilizing basic thermodynamical
concepts.

VI. CONCLUSION

In conclusion, we derived the μT model for itinerant ferro-
magnets. The description traces the dynamics of spin-resolved
electron temperatures and chemical potentials simultaneously,
combined with the coupling to the lattice. The demagnetization
process can be described based on a few fundamental physical
concepts, like dynamic exchange splitting and the relaxation
towards thermodynamic equilibrium. Our method identifies
the minimum of the magnetization as a transient equilibrium
state of the electron systems. We explain the experimentally
observed slowing down of the magnetization dynamics by a
critical region in the magnetic phase diagram, Fig. 3. For cer-
tain fluences, the system is driven into this region and the time
to reach the equilibrium magnetization increases considerably.
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[29] H.-S. Rhie, H. A. Dürr, and W. Eberhardt, Phys. Rev. Lett. 90,

247201 (2003).
[30] B. Y. Mueller and B. Rethfeld, Phys. Rev. B 87, 035139

(2013).
[31] D. E. Eastman, F. J. Himpsel, and J. A. Knapp, Phys. Rev. Lett.

40, 1514 (1978).
[32] V. Antropov, Phys. Rev. B 72, 140406 (2005).
[33] Z. Lin, L. V. Zhigilei, and V. Celli, Phys. Rev. B 77, 075133

(2008).
[34] F. Tyler, Philosophical Magazine Series 7 11, 596 (1931).
[35] D. R. Lide, G. Baysinger, L. I. Berger, R. N. Goldberg,

H. V. Kehiaian, K. Kuchitsu, G. Rosenblatt, D. L. Roth, and
D. Zwillinger, CRC Handbook of Chemistry and Physics, 86th
ed., (CRC, Boca Raton, FL, 2005).

[36] K. Carva, D. Legut, and P. M. Oppeneer, Europhys. Lett. 86,
57002 (2009).

[37] O. Chubykalo-Fesenko, U. Nowak, R. W. Chantrell, and
D. Garanin, Phys. Rev. B 74, 094436 (2006).

144420-6

http://dx.doi.org/10.1103/PhysRevLett.101.237401
http://dx.doi.org/10.1103/PhysRevLett.101.237401
http://dx.doi.org/10.1103/PhysRevLett.101.237401
http://dx.doi.org/10.1103/PhysRevLett.101.237401
http://dx.doi.org/10.1103/PhysRevB.78.174422
http://dx.doi.org/10.1103/PhysRevB.78.174422
http://dx.doi.org/10.1103/PhysRevB.78.174422
http://dx.doi.org/10.1103/PhysRevB.78.174422
http://dx.doi.org/10.1103/PhysRevX.2.021006
http://dx.doi.org/10.1103/PhysRevX.2.021006
http://dx.doi.org/10.1103/PhysRevX.2.021006
http://dx.doi.org/10.1103/PhysRevX.2.021006
http://dx.doi.org/10.1063/1.4891633
http://dx.doi.org/10.1063/1.4891633
http://dx.doi.org/10.1063/1.4891633
http://dx.doi.org/10.1063/1.4891633
http://dx.doi.org/10.1103/PhysRevB.85.064408
http://dx.doi.org/10.1103/PhysRevB.85.064408
http://dx.doi.org/10.1103/PhysRevB.85.064408
http://dx.doi.org/10.1103/PhysRevB.85.064408
http://dx.doi.org/10.1103/PhysRevLett.90.087205
http://dx.doi.org/10.1103/PhysRevLett.90.087205
http://dx.doi.org/10.1103/PhysRevLett.90.087205
http://dx.doi.org/10.1103/PhysRevLett.90.087205
http://dx.doi.org/10.1103/PhysRevB.90.014417
http://dx.doi.org/10.1103/PhysRevB.90.014417
http://dx.doi.org/10.1103/PhysRevB.90.014417
http://dx.doi.org/10.1103/PhysRevB.90.014417
http://dx.doi.org/10.1038/nmat2706
http://dx.doi.org/10.1038/nmat2706
http://dx.doi.org/10.1038/nmat2706
http://dx.doi.org/10.1038/nmat2706
http://dx.doi.org/10.1103/PhysRevLett.90.247201
http://dx.doi.org/10.1103/PhysRevLett.90.247201
http://dx.doi.org/10.1103/PhysRevLett.90.247201
http://dx.doi.org/10.1103/PhysRevLett.90.247201
http://dx.doi.org/10.1103/PhysRevB.87.035139
http://dx.doi.org/10.1103/PhysRevB.87.035139
http://dx.doi.org/10.1103/PhysRevB.87.035139
http://dx.doi.org/10.1103/PhysRevB.87.035139
http://dx.doi.org/10.1103/PhysRevLett.40.1514
http://dx.doi.org/10.1103/PhysRevLett.40.1514
http://dx.doi.org/10.1103/PhysRevLett.40.1514
http://dx.doi.org/10.1103/PhysRevLett.40.1514
http://dx.doi.org/10.1103/PhysRevB.72.140406
http://dx.doi.org/10.1103/PhysRevB.72.140406
http://dx.doi.org/10.1103/PhysRevB.72.140406
http://dx.doi.org/10.1103/PhysRevB.72.140406
http://dx.doi.org/10.1103/PhysRevB.77.075133
http://dx.doi.org/10.1103/PhysRevB.77.075133
http://dx.doi.org/10.1103/PhysRevB.77.075133
http://dx.doi.org/10.1103/PhysRevB.77.075133
http://dx.doi.org/10.1209/0295-5075/86/57002
http://dx.doi.org/10.1209/0295-5075/86/57002
http://dx.doi.org/10.1209/0295-5075/86/57002
http://dx.doi.org/10.1209/0295-5075/86/57002
http://dx.doi.org/10.1103/PhysRevB.74.094436
http://dx.doi.org/10.1103/PhysRevB.74.094436
http://dx.doi.org/10.1103/PhysRevB.74.094436
http://dx.doi.org/10.1103/PhysRevB.74.094436



