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Using the Aharonov-Casher (A-C) phase, we present a microscopic theory of the Josephson and persistent
spin currents in quasiequilibrium Bose-Einstein condensates (BECs) of magnons in ferromagnetic insulators.
Starting from a microscopic spin model that we map onto a Gross-Pitaevskii Hamiltonian, we derive a two-state
model for the Josephson junction between the weakly coupled magnon-BECs. We then show how to obtain
the alternating-current (ac) Josephson effect with magnons as well as macroscopic quantum self-trapping in a
magnon-BEC. We next propose how to control the direct-current (dc) Josephson effect electrically using the A-C
phase, which is the geometric phase acquired by magnons moving in an electric field. Finally, we introduce a
magnon-BEC ring and show that persistent magnon-BEC currents flow due to the A-C phase. Focusing on the
feature that the persistent magnon-BEC current is a steady flow of magnetic dipoles that produces an electric
field, we propose a method to directly measure it experimentally.
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I. INTRODUCTION

One of the urgent issues in modern electronics is the
removal of waste energy due to Joule heating. Spintronics [1,2]
offers a possible solution to this problem by replacing charge
currents with (pure) spin currents [3]. Therefore, establishing
methods to generate spin currents, and understanding the
transport of magnetic excitations are significant both from the
viewpoint of fundamental science as well as applications to
information and communication technologies.

Traditionally, spintronics mainly concerned itself with the
transport of spin-polarized conduction electrons in metallic
magnets. A standard way to generate a spin current in such
spin-polarized metals is by means of spin pumping [4–11].
The resulting spin current can be indirectly measured using the
inverse spin-Hall effect [5]. Although this is an experimentally
established method, the crucial issue is that the pumped spin
current in metals disappears within a very short distance
(typically a few micrometers). This has been an obstacle
to the practical use of spin currents in metallic systems
so far.

Recently, Kajiwara et al. [12] have experimentally ad-
dressed this issue by employing spin currents in ferromagnetic
insulators. Although such insulators [13–16] contain no
conduction electrons, they do host a qualitatively different
type of magnetic carrier, namely, magnons (or spin wave
excitations). These excitations describe the collective motion
of the exchange-coupled spins of the localized electrons in
ferromagnetic insulators. It is also worth pointing out that in
such nonitinerant systems, the dissipation problem is reduced
since true magnetization transport generates typically much
less power than charge currents [17]. In their experiment,
Kajiwara et al. [12] showed that it is possible to electri-
cally create and read-out a spin-wave spin current in the
magnetic insulator Y3Fe5O12 (YIG) using spin-Hall effects.
Furthermore, they determined that the resulting spin-wave
spin current can be transmitted over distances of several
millimeters, much further than what is typically possible when
using spin-polarized conduction electrons in magnetic metals.

An additional advantageous property of magnons lies in
their bosonic nature, which qualitatively distinguishes them
from fermionic conduction electrons. One of the consequences
of this bosonic nature is that magnons can form a Bose-Einstein
condensate (BEC) [18]. Indeed, Demokritov et al. [19] have
experimentally shown that the quasiequilibrium magnon-
BEC1 can be produced even at room temperature in YIG by
using microwave pumping.

Stimulated by the experimental progress achieved by
Kajiwara et al. [12] and Demokritov et al. [19], we theoreti-
cally propose an alternative method to generate and control
spin-wave spin currents (referred to as magnon currents)
in ferromagnetic insulators using quasiequilibrium magnon-
BECs [19]. To this end, we study both the alternating current
(ac) as well as the direct current (dc) Josephson effects
in junctions consisting of weakly coupled magnon-BECs
(see Fig. 1), in analogy to the original Josephson effects in
superconductors [20]. For earlier work on Josephson effects
in magnetic systems, see Refs. [21–24]. We determine the
effect of the Aharonov-Casher (A-C) phase [25] on the ac and
dc Josephson effects, and find that the A-C phase gives us a
handle to control the different Josephson effects using electric
fields. Finally, we introduce a magnon-BEC ring. We then
show that persistent [26,27] magnon-BEC currents flow in the
ring due to the A-C phase. Focusing on the feature that the
persistent magnon-BEC current is a steady flow of magnetic
dipoles (i.e., magnons), we illustrate how to directly measure
it [3,28] experimentally.

This paper is organized as follows. In Sec. II, we introduce
the model we will use to describe a quasiequilibrium magnon-
BEC Josephson junction (MJJ). In Sec. III, we discuss the ac
Josephson effect as well as macroscopic quantum self-trapping
(MQST) in a quasiequilibrium magnon-BEC. Then, in Sec. IV,
we present our results on the dc Josephson effect and determine
the effect of an electric field applied to the MJJ. Finally,

1Regarding the semantic issue about the terminology BEC, see
Refs. [18,46–49].
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FIG. 1. (Color online) (a) Schematic representation of the
quasiequilibrium magnon-BEC Josephson junction (MJJ) consisting
of two coupled ferromagnetic insulators (FI) in the presence of
magnetic fields BL and BR. Each cloud of circles represents a
single magnon-BEC. A quasiequilibrium magnon-BEC corresponds
to a macroscopic coherent precession of the spins in each FI. The
boundary spins S�L in the left FI and S�R in the right FI are relevant
to the Josephson magnon current. (b) Close-up of the MJJ. The two
FIs are separated by an interface of width �x and thereby weakly
exchange-coupled with strength Jex. The variable J represents the
exchange interaction between neighboring spins in each FI. The
applied electric field, E = Eey , couples to the magnons through the
A-C phase.

we introduce a magnon-BEC ring in Sec. V. We show that
persistent magnon-BEC currents flow due to the A-C phase. A
method to directly measure the steady flow of magnetic dipoles
(i.e., magnons) is also proposed at the end of this section.

II. MAGNON-BEC JOSEPHSON JUNCTION

A. Gross-Pitaevskii Hamiltonian

We consider the setup depicted in Fig. 1. It consists of two
weakly exchange-coupled ferromagnetic insulators (FIs). We
will assume that the FIs are identical, but different magnetic

fields BL(R)(t) = BL(R)(t)ez are applied to respectively the left-
and right FI [eν denotes the unit vector along the ν axis (ν =
x,y,z)]. Furthermore, we apply an electric field E = Eey to
the interface. We are interested in the transport of the Bose-
Einstein condensed magnons between the two FIs as a function
of these different applied fields.

A microscopic spin Hamiltonian HH that describes a single
FI is given by

HH =
∑
〈ij〉

Si · J · Sj − gμBB ·
∑

i

Si , (1)

where J denotes a diagonal 3 × 3 matrix with diag(J) =
J {1,1,η}. The variable J < 0 represents the exchange interac-
tion between neighboring spins in the ferromagnetic insulator
and η > 0 denotes the anisotropy of the spin Hamiltonian. We
assume a cubic lattice and a magnetic field B(t) = B(t)ez is
applied. By using the Holstein-Primakoff [29] transformation,
S+

i = √
2S[1 − a

†
i ai/(2S)]1/2ai , Sz

i = S − a
†
i ai , we can map

Eq. (1) onto a system of magnons: chargeless bosonic quasipar-
ticles with magnetic moment gμBez. Magnons are described
by the Fourier transform of the creation/annihilation operators
a

(†)
i that satisfy the commutation relation [ai,a

†
j ] = δi,j in real

space.
We will assume that the magnons in both FIs have under-

gone quasiequilibrium Bose-Einstein condensation, through a
procedure such as realized in Ref. [19]. This implies that the
magnon state in either FI is given by a coherent macroscopic
quantum state characterized by a finite expectation value 〈ai〉.
Since we are interested in the semiclassical dynamics of the
quasiequilibrium magnon-BEC, we take the continuum limit
in Eq. (1) and replace the operator ai with its expectation value
in the coherent state, given by 〈a(r,t)〉 = √

n(r,t)exp[iϑ(r,t)].
The variable n(r,t) ≡ 〈a(r,t)〉∗〈a(r,t)〉 represents the number
density of magnons and ϑ(r,t) denotes the phase.

To make the connection to the standard theory of Josephson
effects in BECs, we rewrite Eq. (1) in terms of the parameters
n(r,t),ϑ(r,t). After some straightforward manipulations, we
obtain the well-known [30] Gross-Pitaevskii (GP) Hamiltonian
HGP given by

HGP =
∫

dr{g1[|∇√
n|2 + n|∇ϑ |2] + g2n

2 + Beffn}. (2)

Thus we note that only the homogeneous condensates will play
a role, without space dependence of 〈a〉. The parameters of the
GP Hamiltonian are given in terms of the original parameters
of the microscopic model as

g1 = −JS(1 + η)α2, g2 = −J (1 − η)α3, (3)

and

Beff = 4JS(1 − η) + gμBB. (4)

The parameter α describes the lattice constant. From Eqs. (2)
and (3), we recover then the expected result that the system
is noninteracting in the isotropic case (i.e., η = 1), whereas
η ≶ 1 corresponds to attractive (repulsive) magnon-magnon
interactions.
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B. Aharonov-Casher effect

Next, we focus on the interface region connecting the two
FIs. We will denote by S�L(R) the localized spins that reside
on that relevant two-dimensional boundary surface of the left
(right) insulator. Due to a finite overlap of the wave functions,
there exists in general a finite exchange interaction between
the spins located on the boundaries of the different FIs. Let us
denote by Jex (>0) such energy scale. In the tunnel limit, one
has therefore Jex � |J |. The exchange interaction between the
two FIs may be described by the Hamiltonian

Hex = −Jex

∑
〈�L�R〉

S�L · S�R . (5)

In terms of magnon operators, this interaction can be rewritten
as Hex = −JexS

∑
〈�L�R〉(a�La

†
�R

+ a
†
�L

a�R ). We have ignored
terms arising from the z component of the spin variables in the
Hamiltonian Hex, since these do not influence the dynamics of
the junction in any significant manner.

Finally, we focus on the effect of an applied electric field
on the transport of the magnons. A magnetic dipole gμBez

moving along a path γ in an electric field E(r) acquires a
geometric phase

θA-C = gμB

�c2

∫
γ

dl · [E(r) × ez]. (6)

This phase is called the Aharonov-Casher phase [25]. It is dual
to the Aharonov-Bohm phase [31]. Both geometric phases
are a special case of a Berry phase [32,33]. The tunneling
Hamiltonian Hex is changed when an electric field E = Eey

is applied to the interface. It becomes [3]

HA-C
ex = −JexS

∑
〈�L�R〉

(
a�La

†
�R

e−iθA-C + H.c.
)
, (7)

where θA-C = [gμB/(�c2)]E�x for the geometry under con-
sideration [see Fig. 1(b)].

C. Two-State model

Next, we determine the time evolution of the MJJ under the
Hamiltonian HMJJ = HGP + HA-C

ex . To this end, we assume
HA-C

ex is a small perturbation and use the semiclassical approx-
imation introduced in the previous section. Using Hamilton’s
equation of motion, we then find the effective two-state
model [34] of the MJJ (Fig. 1):

i�ψ̇L = ELψL + ULnLψL − KLψR, (8a)

i�ψ̇R = ERψR + URnRψR − KRψL, (8b)

with

EL(R) = 4JS(1 − η) + gμBBL(R), (9a)

UL(R) = −2J (1 − η)α3, (9b)

KL = K∗
R = K0eiθA-C . (9c)

Here we have replaced the operators a�L(R) in HMJJ by
their respective expectation values ψL(R)(r,t) = √

nL(R)e
iϑL(R)

as before, where nL(R) = ψ∗
L(R)ψL(R) represents the number

density of magnons in each ferromagnetic insulator and
ϑL(R) the phase. We have defined the tunneling amplitude

K0 ≡ JexS. Note that KL(R) becomes complex in the presence
of an electric field. Here, the fact that the magnon eigenstates
in a single FI are known (since the magnon-BEC state
corresponds to the condensation of the magnons in the
lowest momentum state) allows us to write the parameters
UL(R),EL(R),KL(R) in terms of the parameters of the original
microscopic spin model.

We define the magnon population imbalance z(t)
≡ [nL(t) − nR(t)]/nT and the relative phase θ (t) ≡ ϑR(t) −
ϑL(t). The constant nT ≡ nL(t) + nR(t) denotes the total
population in the MJJ. In terms of the canonically conjugate
variables z(t) and θ (t), Eqs. (8a) and (8b) become

dz

dτ
= −

√
1 − z2sin(θ + θA-C), (10a)

dθ

dτ
= �E + z + z√

1 − z2
cos(θ + θA-C). (10b)

We have rescaled the time by t → �τ/2K0, and have
defined

�E = EL − ER

2K0
+ UL − UR

4K0
nT, (11a)

 = UL + UR

4K0
nT. (11b)

Equations (10a) and (10b) are the fundamental equations
of the Josephson effects in a MJJ in the presence of an electric
field. From now on, on the basis of the Josephson equation
shown by Eqs. (10a) and (10b), we discuss the contribution
of the A-C phase to the Josephson effects in quasiequilibrium
magnon-BEC and clarify the conditions for the ac and dc
Josephson effects to occur. We note that �μ ≡ θ̇(τ ) is usually
referred to as chemical potential difference [35].

Finally, let us remark that when θA-C = 0, the description of
the MJJ is mathematically identical to that of a Bose Josephson
junction of atomic BECs [34,36,37]. Similar equations for
θA-C = 0 have been proposed phenomenologically for antifer-
romagnets [23].

III. AC JOSEPHSON EFFECT AND MACROSCOPIC
QUANTUM SELF-TRAPPING

The ac Josephson effect is most easily understood by
considering Eqs. (10a) and (10b) with  = 0 (corresponding to
isotropic ferromagnets) and z � 1. Applying a static magnetic
field BL to the left condensate leads to a uniformly increasing
phase difference θ (t), which in turn results in an ac magnon
current through the junction. The population imbalance for
the ac Josephson effect is shown in Fig. 2(a) for realistic
experimental parameters. It is seen that an applied magnetic
field of approximately 1 mT leads to oscillations with a
frequency in the gigahertz range. By analogy with the original
Josephson effect, we note that the magnon ac Josephson effect
could be used in metrology to convert an applied magnetic
field into a frequency.

Next, we focus on the phenomena of macroscopic quantum
self-trapping (MQST) [24,38] in our MJJ. MQST is defined by
an oscillation of the population of magnons in each magnon-
BEC around a nonzero time-averaged value, i.e., z(τ ) 
= 0: in
the remainder of this section, we will put �E = 0 and  
= 0,
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FIG. 2. (Color online) The ac Josephson effect: plots of the
population imbalance z(τ ) as function of the rescaled time τ =
(2JexS/�)t obtained by numerically solving Eqs. (10a) and (10b)
for the values (a) �E = 0.1,  = 0, θA-C = 0, z(0) = 0.6, and
θ (0) = 0. As an example, for Jex = 0.25 μeV, S = 2, and g = 2,
this corresponds to BL − BR = 1 mT and the period of an oscillation
is T = 6 ns (i.e., the rescaled time τ = 1 corresponds to t = 1 ns).
(b)–(d) show cases with vanishing �E = θA-C = 0, z(0) = 0.6, and
θ (0) = 0, which give MJJ

c = 10. (b)  = 1, (c) 9.99, and (d) 11.
When the value of  exceeds MJJ

c ,  > MJJ
c , the MQST occurs as

shown in (d).

and focus on the effect of the A-C phase on the occurrence
of MQST. We will consider the initial conditions z(0) 
= 0
and θ (0) = 0. An initial population imbalance z(0) 
= 0 could
be realized by tuning the magnitude of the microwave [19]
applied to each ferromagnetic insulator when generating the
quasiequilibrium magnon-BEC differently.

We find that MQST occurs [36] when the value of the
self-interaction  satisfies  > MJJ

c , where

MJJ
c = 1 +

√
1 − z(0)2cos(θ (0) + θA-C)

z(0)2/2
. (12)

Experimentally, controlling  will probably most easily be
achieved through the total number of magnons nT in the
system. The onset of MQST as a function of  is shown
in Figs. 2(b)–2(d). It also follows from Eq. (12) that the
application of an electric field, which leads to an increased
θA-C, reduces the value of  required to observe the MQST
effect. We note that when θA-C = 0, the value of MJJ

c is
reduced to the value found by Smerzi et al. [34,36,37] in
their study on Josephson effects in atomic BECs.

IV. DC JOSEPHSON EFFECT IN MAGNON-BECS

Next, we focus on the dc Josephson effect [35] in the
presence of an A-C phase. We consider a junction consisting of
two identical anisotropic ferromagnetic insulators with η > 1.
We will show that it is possible to generate a dc Josephson
magnon current by applying a time-dependent magnetic field
to the (say) left FI such that the term �E(τ ) in the Josephson
equation (10b) can be written as

�E(τ ) = gμB

2K0
(BL − BR) =

{−b0τ for τ ∈ (0,τ0),
0 otherwise. (13)

In other words, we apply a magnetic field whose magnitude
increases over time with a rate proportional to b0, for a limited
(renormalized) time τ0.

To illustrate how this leads to the occurrence of the dc
Josephson effect, we focus initially on the dynamics in the
limit where |z| � 1 and  � 1. The latter corresponds to
Jex �| J |, so we are in the weak-tunneling regime. Equa-
tions (10a) and (10b) can then be approximated as

dz

dτ
≈ −sin(θ + θA-C), (14a)

dθ

dτ
≈ −b0τ + z. (14b)

It is immediately seen that the presence of a dc Josephson
magnon current is described by the steady-state solution

z(τ ) = z0τ and θ (τ ) = − arcsin(z0) − θA-C, (15)

with z0 ≡ b0/. We see from Eq. (15) that the system can only
sustain the (dissipationless) dc Josephson magnon current for
values b0 � . Hence the magnetic field must be increased
adiabatically, i.e., slowly enough such that enough magnons
can tunnel through the junction to keep the difference in
chemical potential �μ = θ̇ (τ ) equal to zero, in order for the
dc Josephson effect to occur in this setup. If, on the other
hand, the magnetic field is increased with a rate b0 > , a
chemical potential difference across the junction builds up,
and the system ends up in the ac regime.

It should be stressed that the steady-state solution by itself
does not necessarily completely determine the physics of the
dc Josephson effect. Assuming the junction is in equilibrium at
τ = 0, the initial phase difference is given by θ (0) = 0. Unless
θA-C is tuned to the value

θA-C = − arcsin(z0), (16)

a mismatch in θ (τ ) with the steady-state solution arises. This
mismatch leads to two related phenomena. Firstly, it leads to
oscillations in both z(τ ) and θ (τ ), as can be seen in Fig. 3(a)
as opposed to the case θA-C = − arcsin(z0) represented in
Fig. 3(b). However, even if dθ (τ )/dτ 
= 0 for certain τ , the
time-average dθ/dτ does still satisfy dθ/dτ = 0 for small
enough z0. In that sense, the dc Josephson magnon current is
robust against initial phase differences. On the other hand, we
can view the fact that the oscillations can be tuned by θA-C as
one of the signatures of the A-C phase [albeit one that will
be hard to demonstrate experimentally, given the prohibitively
short period of the oscillations, see caption of Fig. 3(a)].

The second consequence of the mismatch due to the initial
conditions is that the value of z0 where the transition between
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FIG. 3. (Color online) The dc Josephson effect through the A-C
phase: plots of the population imbalance z(τ ) and the relative phase
θ (τ ) as function of the rescaled time τ = (2JexS/�)t obtained by
numerically solving Eqs. (14a) and (14b) for the values (a) (b)
z0 = 10−6,  = 103(�1), and z(0) = θ (0) = 0. (a) θA-C = 0, in
which the period of the small oscillation is estimated as T ≈ 0.2
ns. (b) θA-C = − arcsin(z0) = −10−6. (c) The breakdown of the dc
Josephson effect (θA-C = 0) due to increase of b0. The transition
between the dc region [(i) and (ii)] and the ac one [(iii) and (iv)] takes
place for z0 ≈ 0.725 due to the absence of the A-C phase. Under the
conditions (z(0),θ (0)) = (0,0) and  = 100 (�1), each z0 = b0/

reads (i) 0.100, (ii) 0.724, (iii) 0.726, and (iv) 1.100. (d) Example of
the recovery of the dc Josephson effect from the ac effect through
the A-C phase in the region z0 � 1 (i.e., b0 � ). (iii) θA-C = 0, (v)
θA-C = − arcsin(z0).

the dc and the ac regimes occurs is reduced by a numerical
factor ≈0.725. This is illustrated in Fig. 3(c). Interestingly,
this allows one in principle to cross the transition between the
ac- and dc-regime for values of z0 � 0.725 by tuning the A-C
phase between θA-C = 0 and θA-C ≈ − arcsin(z0), see Fig. 3(d).

So far, we have neglected the influence of the cosine term
in Eq. (10b) on the occurrence of the dc Josephson effect.
We have actually solved numerically the system in Eqs. (10a)
and (10b) for different values of . We have found that the
effect of smaller values of  (i.e., an increased effect of the
cosine term) is to increase the amplitude of the oscillations in
z(τ ) and θ (τ ). However, besides that, we check that the main
mechanism behind the occurrence of the dc Josephson magnon
current remains in place.

V. PERSISTENT MAGNON-BEC CURRENT

Lastly, based on the duality between the Aharonov-Bohm
phase and the A-C phase, we introduce a magnon-BEC ring
[Fig. 4(a)], in analogy to a superconducting ring [39,40].
Due to the A-C phase, persistent magnon-BEC currents
flow in the ring. We remark that persistent spin currents in
magnetic systems have been considered before [41–43], but

(a)

BECBEC

R
× φ

ρ

(b)

y
z

x
ρ

0

E

IBEC
ring

FIG. 4. (Color online) (a) A schematic picture of the magnon-
BEC ring. The radius of the ring reads R and the applied electric
field is E(ρ,ϕ) = Eρeρ . (b) An enlarged view of the cylindrical wire
that forms the ring. The radius of the wire is ρ0. The persistent
magnon-BEC current I

ring
BEC flows in the ring due to the A-C phase.

to the best of our knowledge not yet for quasiequilibrium
magnon-BECs [18,19].

A. Magnon-BEC current

Let us now calculate the general expression for the
magnon-BEC current. For this, we first consider a spin
chain along the x axis described by (see also Sec. II B)
HA-C

chain = JS
∑

j (aja
†
j+1e−iθ chain

A-C + H.c.). The A-C phase reads
θ chain

A-C = [gμB/(�c2)]Eα, where E is the applied electric
field along the y axis. We assume that the magnons have
undergone quasiequilibrium Bose-Einstein condensation as
before, through a procedure such as realized in Ref. [19]. A
uniform magnetic field is also applied along the z axis (i.e.,
quantization axis), but we have ignored such terms arising from
the z component of the spin variables since these commute
with the number operators of magnons on each site and they
do not influence the dynamics of the magnon-BEC current
in any significant manner. The operator of the magnon-BEC
current that flows from the l site to (l + 1)-site becomes IBEC

= −gμB[Nl,JS(ala
†
l+1e−iθ chain

A-C + H.c.)]/(i�), where Nl ≡
a
†
l al is the number operator of condensed magnons on the

l site. A quasiequilibrium magnon-BEC corresponds to the
macroscopic coherent precession in terms of the original spins.
We then treat it semiclassically and replace the operators
al(l+1) by their expectation values as before (see Secs. II A
and II C). Thus, the magnon-BEC current in the spin chain
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HA-C
chain becomes

IBEC = −2gμB(J/�)SNBECsinθ chain
A-C , (17)

where NBEC is the number of condensed magnons on each site.

B. Magnon-BEC ring

Next, we apply this result to the magnon-BEC ring
[Fig. 4(a)]. Assuming single-valuedness of the BEC wave
function around the ring, in analogy to superconducting rings,
a standard analysis gives [see also Eq. (6)]

θA-C = gμB

�c2

∮
dl · (E × ez) (18a)

= 2π
φ

φ0
, (18b)

where “electric-gradient flux” through the ring is defined
as

φ ≡
∫

dAez · ∇ × (E × ez), (19)

and the “electric flux quantum” [44] φ0 ≡ hc2/(gμB). The
electric-gradient flux φ is quantized as φ = pφ0, where
the integer p is the phase winding number of the closed
path around the magnon-BEC ring. When the quantization
condition is not satisfied, the current that flows in the ring is
not steady. However, these nonsteady variations of the current
away from its equilibrium value are small, on the relative
order of 1/p � 1 (see estimates below). This is in contrast to
a superconducting ring where the quantization of the magnetic
flux is achieved by the magnetic field of the supercurrent itself
to compensate for variations on the external magnetic flux [45].

We note that for E(r) = E(x,y), the expression for φ

simplifies to φ = − ∫
dA∇ · E. For an electric field of

the form E(ρ,ϕ) = Eρeρ [Fig. 4(a)], we find that φ =
−πR2E for a ring of radius R. We now suppose that
the ring consists of the cylindrical wire whose cross-
section is πρ2

0 with the radius ρ0 [Fig. 4(b)]. Conse-
quently, using Eq. (17), θ chain

A-C = [α/(πR)]θA-C, and NBEC =
[(πρ2

0 )α]nBEC, the magnitude of the persistent magnon-
BEC current in the magnon-BEC ring becomes |I ring

BEC| =
2πgμB|J/�|Sρ2

0αnBEC|sin[2αφ/(Rφ0)]|, where nBEC is the
density of condensed magnons [19].

C. Experimental detection

Finally, we show how to directly measure the persistent
magnon-BEC current in the ring. Note that the persistent
magnon-BEC current is a steady flow of magnetic dipoles
(i.e., magnons with magnetic moment gμBez) and the mov-
ing magnetic dipoles produce electric dipole fields [28].
The magnitude of the resulting electric dipole field in
Fig. 5 is [3] |Em(r)| = μ0|I ring

BEC|/(2πr2). Assuming [19] ρ0 =
1 mm, r0 = 1 mm, R ≈ 10 mm, α = 1 Å, nBEC = 1019

cm−3, ER ≈ 5 GV/m, g = 2, S = 2, and |J | = 0.1 eV, the
phase winding number becomes p ≈ 50 and an electric field
|Em(r0)| ∼ 4 μV/m is generated. This leads to a voltage drop
Vm ∼ 4 nV between the points (i) and (ii) in Fig. 5. Although
being small, such a value is within experimental reach and
due to the macroscopic coherence of magnon-BECs, the

z

y

mE

r

ρ×0

(i)
(ii)

IBEC
ring

FIG. 5. (Color online) A schematic picture of the cross-section
of the cylindrical wire. The electric dipole field Em arises from the
persistent magnon-BEC current I

ring
BEC (i.e., the magnetic dipole steady

current) flowing in the magnon-BEC ring. This leads to a measurable
voltage drop Vm between the points (i) and (ii). The points are (i)
(y,z) = (0, −r0) and (ii) (y,z) = (−r0,0).

value is actually much larger than the one which has been
predicted in spin chain systems (i.e., noncondensed magnonic
systems) [3].

Regarding the experimental detection of the persistent
magnon-BEC current, one concern [45] might be that the
ratio R ≡ |Vm/V | would be too small, where Vm is the
voltage drop due to the persistent magnon-BEC current and

(a)

BECBEC

(b)

ρ
0

IBEC
ring

IBEC
ring

(c)

V

V (i)

(ii)

m

ρ
2 ρ

1

ρ
2

ρ
1

FIG. 6. (Color online) (a) A schematic picture of a magnon-BEC
ring. (b) An enlarged view of the isotropic cylindrical wire that forms
the magnon-BEC ring (r0 = ρ0 = ρ1 = ρ2). The cross-section is πρ2

0 .
The voltage drop due to the persistent magnon-BEC current I

ring
BEC is

Vm and the one arising directly from the applied electric field is
V . The points are (i) (y,z) = (0, −r0) and (ii) (y,z) = (−r0,0) (see
also Fig. 5). (c) An enlarged view of the anisotropic cylindrical wire
that forms the ring (ρ1 � ρ2; e.g., ρ2 = 100ρ1). Consequently, the
voltage drop V directly due to the applied electric field becomes much
smaller (about 10−2 times) than the one of (b). The cross-section
remains about the same with (b). Therefore it generates about the
same amount of the persistent magnon-BEC current I

ring
BEC as for that

of (b).
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V is the one arising directly from the applied electric field.
In the case of Fig. 6(b) [or Fig. 4(b)], it amounts to Rb ≈
1 nV/ 1 MV. We remark, however, that this ratio could be
improved by using an anisotropic cylindrical wire, shown
in Fig. 6(c), where ρ1 � ρ2 (e.g., ρ2 = 100ρ1) and the
cross-sectional area remains about the same as for Fig. 6(b).
Therefore this cylinder geometry generates about the same
amount of persistent magnon-BEC current I

ring
BEC as that of

Fig. 6(b) with substantially reduced magnitude V , while,
simultaneously, Vm is increased. Consequently, the ratio Rc

is also much improved in Fig. 6(c). Indeed, a rough estimate
gives Rc/Rb ≈ 104.

Lastly, we remark that the above method for the detection
of magnon-BEC currents via the voltage drop is applicable
also to the Josephson junction shown in Fig. 1. The Josephson
magnon-BEC currents are generated at the interface and flow
between the FIs. Consequently, a voltage drop arises at the
interface. When an ac or dc Josephson effect is generated,
the resulting voltage drop becomes also ac or dc. Thus the
experimental detection of such ac and dc effects would be
in principle possible. As discussed in Sec. IV, the A-C
phase is essential for the generation of the dc Josephson
effect [Fig. 3(b)] as well as for the persistent current in the
ring. Therefore the detection of the dc Josephson effect or
the persistent magnon-BEC current through the resulting dc
voltage drop would both be a manifestation of the A-C phase.
When MQST occurs, the oscillation (i.e., period) of the ac
effect increases as shown in Fig. 2(d) [see also Fig. 2(a) for
the usual ac effect]. Thus all these phenomena (i.e., ac or dc
Josephson effects and MQST) are in principle experimentally
detectable via the Josephson effect. Indeed, to estimate the
voltage we assume the junction formed by a cylindrical wire
as shown in Fig. 4(b), with parameter values [19] ρ0 =
1 mm, r0 = 1 mm, �x ≈ 10 Å, nT ∼ nBEC = 1019 cm−3,
g = 2, S = 2, and Jex = 0.25 μeV. Then, the corresponding

drop of the voltage amplitude amounts to 0 � Vm � 1 μV at
the interface generated by the ac or dc Josephson effects or
by the MQST. Given these estimates, we conclude that the
experimental detection of magnon-BEC currents, while being
challenging, seems within reach.

VI. SUMMARY

Starting from the microscopic Heisenberg Hamiltonian,
we have derived the equations of motion that describe the
tunneling of a Josephson magnon current through a junction
connecting two quasiequilibrium magnon-BECs. We have
discussed the occurrence of the ac Josephson effect and
macroscopic quantum self-trapping in such junctions. We have
proposed a method to generate a dc Josephson magnon current
using time-dependent magnetic fields, and have shown that
the application of an electric field to the system influence the
physics of the junction through the Aharonov-Casher phase.
Finally, we have introduced a magnon-BEC ring and have
proposed a method (based on induced voltage differences) to
directly measure persistent magnon-BEC currents in the ring
due to the Aharonov-Casher phase. Likewise, the same method
can be used to detect the Josephson effects.
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