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We use quantum Monte Carlo method to determine the magnetic and transport properties of coupled square
lattice spin and fermionic planes as a model for a metal-insulator interface. Specifically, layers of Ising spins
with an intralayer exchange constant J interact with the electronic spins of several adjoining metallic sheets
via a coupling JH . When the chemical potential cuts across the band center, that is, at half-filling, the Néel
temperature of antiferromagnetic (J > 0) Ising spins is enhanced by the coupling to the metal, while in the
ferromagnetic case (J < 0), the metallic degrees of freedom reduce the ordering temperature. In the former
case, a gap opens in the fermionic spectrum, driving insulating behavior, and the electron spins also order. This
induced antiferromagnetism penetrates more weakly as the distance from the interface increases, and also exhibits
a nonmonotonic dependence on JH . For doped lattices, an interesting charge disproportionation occurs where
electrons move to the interface layer to maintain half-filling there.
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I. INTRODUCTION

Over the last several decades, an extensive literature
has developed describing Monte Carlo simulations of both
localized (e.g., Heisenberg) and itinerant (e.g., Hubbard)
models of quantum magnetism. An important subset of these
studies has considered situations where the exchange constants
Jα or electron repulsion Uα can take on multiple values, with
the attendant possibility of quantum phase transitions as the
ratio of these energy scales is altered. For example, in the case
of the one-fifth depleted square lattice model of CaV4O9, the
quotient J/J ′ of the exchange constants on the two different
vanadium bonds tunes the associated Heisenberg Hamiltonian
from a disordered dimer phase, to Néel order, and then back
to a disordered plaquette phase [1], lending an understanding
of spin gapped behavior in this material. Likewise, bilayer
Heisenberg [2] and Hubbard [3] models have a singlet to Néel
transition depending on the ratio of values of the inter- and
intraplane energies.

In addition to describing systems in which long-range order
can be destroyed, multiple Jα and Uα can also give rise to
transitions between different ordered states, such as charge
density versus spin density wave patterns. Simulations of
models with several interaction energy scales are especially
relevant to heterostructures, where the growth of distinct sheets
of the same, or different materials, offers the possibility of
tuned magnetic properties.

In this paper, we present a quantum Monte Carlo inves-
tigation of a mixed localized-itinerant magnetic model in
which we couple a 2D square layer of Ising spins to several
metallic planes. Our interest is both in how, potentially, the
additional fluctuations of the free electrons suppress the Ising
transition temperature and on how the magnetic layer initiates
order amongst the free fermions. We also explore whether the
coupling of the metal to the localized spins can open a gap in
the electronic spectrum, driving a metal to insulator transition,
and the penetration depth of the magnetic order into the metal.
Our work is related to simulations of multilayer Hubbard
models in which the on-site interaction U can distinguish

metallic from magnetic layers [4]. However, by treating the
correlated layers as classical, localized spins we are able to
explore a greater range of parameter space, and, in particular,
to go to lower temperatures away from half-filling of the
metallic band where a sign problem would otherwise prevent
simulations.

This idea of coupling classical spins to itinerant electrons
has been extensively used, e.g., in multiband models of
the manganites and iron pnictides where the sign problem
similarly precludes treating fully quantum mechanical models
[5–7]. Numerical approaches to these models allow easier
access to dynamical behavior and hence greater possibility of
contact with spectroscopy and neutron scattering experiments
[8] than do direct path integral treatments of many-electron
systems which require a difficult analytic continuation to get
real-time information.

A number of recent experiments have examined electronic
reconstruction at the interface of different transition metal
oxides using scanning tunneling microscopy with high spatial
and energy resolution. Some of these experiments focus
on interfaces of paramagnetic metals and antiferromagnetic
insulators [9–11]. The Hamiltonian we consider here, in which
tight-binding layers couple to classical, localized spins, is
the most simple model of such a situation, and will clearly
require considerable refinement before being able to make any
sort of quantitative contact. Nevertheless, it can lend a first
qualitative insight into the sort of trends one might expect,
e.g., for magnetic order. Moreover, the study of fluctuating
classical spins coupled to fermionic degrees of freedom has
recently been suggested as a generally promising approach
to move beyond mean-field treatments of interacting electron
systems [12], providing further motivation for this work.

The remainder of this paper is organized as follows. In
Sec. II, we write down the fermion-Ising Hamiltonian along
with a brief summary of the numerical methods employed,
and definitions of the observables that characterize the phases.
Section III describes the results when the Fermi level is at
the band center, first for the case of antiferromagnetic (AF)
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FIG. 1. (Color online) Lattice geometry for the fermion-Ising
model. A single layer of Ising spins residing on a 2D square lattice
is superposed on several layers of noninteracting fermions. The
nearest-neighbor spin-spin interaction between the free fermions of
layer � = 0 and the Ising spins is proportional to the parameter JH .

Ising spins and then for ferromagnetic coupling, followed
by a discussion (Sec. IV) of the effect of doping away from
half-filling. A particular interesting charge disproportionation
is shown to occur where metallic layers become unequally
populated to allow for an optimal magnetic response. Section V
presents a conclusion and some future directions of research.

II. MODEL

We consider the Hamiltonian

Ĥ = −t
∑

〈ij〉�,σ
( c

†
i�σ cj�σ + c

†
j�σ ci�σ ) − μ

∑

i�,σ

ni�σ

− t⊥
∑

i〈��′〉,σ
( c

†
i�σ ci�′σ + c

†
i�′σ ci�σ )

− JH

∑

i

sz
i,�=0 Si + J

∑

〈ij〉
Si Sj , (1)

where c
†
i�σ (ci�σ ) are creation(destruction) operators for

fermions of spin σ on lattice site i of layer � =
0,1, . . . ,Nlayer − 1. Our convention is that layer � = 0 is
adjacent to the classical spins. The intralayer hopping t is
on nearest-neighbor sites (denoted by 〈ij 〉) of each layer �;
the interlayer hopping between neighboring fermionic layers
〈��′〉 is t⊥, and the density of fermions is tuned by the chemical
potential μ. The geometry of each layer is that of a 2D square
lattice of linear length L. The remaining degrees of freedom
are Ising spins which populate a single layer [13] and are
coupled by exchange constant J . The Ising spins interact with
the z component of the fermion spin sz

i,0 = ni,0,↑ − ni,0,↓ in
the interface layer � = 0, via a second exchange constant,
JH . The lattice geometry is sketched in Fig. 1. We choose
periodic boundary conditions in the planes, and open boundary
conditions in the direction perpendicular to the planes. Our
results will be for two metallic layers (i.e., Nlayer = 2), since,
as we shall show, such a situation already allows us to address
many of the key questions concerning the interface between a
magnetic and a metallic layer.

We have chosen |J |/t = 0.2 (both signs of J will be
studied) so that the temperature scale for the development
of correlations in the classical spins is comparable to that
in the metallic layer and, consequently, possible competing
phases are most readily discerned. There are different ways to

understand this. The most simple is to note that, if J = t , the
2D square lattice Ising Tc ∼ 2.27J is much higher than typical
temperature scales at which short range correlations get more
robust for noninteracting fermions in a square lattice. This
is because for the half-filled U = 0 Hubbard Hamiltonian,
short-range antiferromagnetic correlations corresponding to
the Fermi wave vector kF = (π,π ), do not onset until the
temperature gets below T ∼ 0.25t . Even when electron-
electron interactions, which are not considered here, are turned
on, nearest-neighbor spin correlations do not begin to grow
substantially until T ∼ 0.5t (for the U/t = 4 Hubbard model).
Thus, in either case, a choice |J |/t ∼ 0.2 (Ising Tc ∼ 0.45t)
is required to select classical spin and fermionic spin ordering
scales to be roughly equal.

An alternate to Eq. (1) would be to consider continuous
planar 	S = (Sx

i ,S
y

i ) or Heisenberg 	S = (Sx
i ,S

y

i ,Sz
i ) spins, with

an 	Si · 	Sj spin-spin coupling between pairs of local spins,
and 	Si · 	sj spin-spin coupling of local spin to fermion spin
[5]. The restriction used here, to a single (z) component, has
been considered in other problems involving treating electronic
correlation, from mean-field approaches [14] to the study of
the t-Jz model [15]. The choice of Ising spins also ensures
a robust magnetic phase transition in which true long-range
order occurs at finite Tc in the spin plane. This will be discussed
further in the conclusions.

It is worth noting several symmetries of the Hamiltonian (1).
Consider first a combined particle-hole transformation ciσ →
(−1)ic†iσ and inversion of the localized spins ( Si → −Si).
Here, (−1)i denotes a staggered ±1 phase taking opposite
values on the two sublattices of the bipartite square lattice. This
transformation leaves each of the terms in the Hamiltonian,
the fermion kinetic energy, the Ising interaction, and the local
spin-fermion coupling, invariant. Thus, if μ = 0, the whole
Hamiltonian is unchanged, and the lattice is half-filled (ρ =
1.0).

The finite temperature properties of the system can be
obtained from its partition function and associated expectation
values. The partition function is

Z =
∑

Si=±1

eβJ
∑

〈ij 〉 SiSj · Zf({S}), (2)

where Zf ({S}) = Tr e−β(Ĥf↑+Ĥf↓) represents the grand-
canonical partition function of the fermionic part of the
Hamiltonian for a particular Ising field configuration {S}. Since
the Hamiltonian (1) is bilinear in the fermionic operators, each
Ĥfσ can be written as the product of a vector of creation
operators, a real-valued matrix Mσ [16], and a vector of
destruction operators. The fermion contributions to Z can then
be expressed in terms of the eigenvalues λσ

j of Mσ ,

Zf =
∏

σ=↑,↓

∏

j

(1 + eβλσ
j ). (3)

From this expression, it is clear that the summand in Eq. (2)
is positive definite and there is no “sign problem” (for any
μ). Of course, this is simply a consequence of the fact that
the spin field to which the fermions are coupled does not
vary in imaginary time, as it would, for example, if {S} =
Siτ were a Hubbard-Stratonovich field used to decouple a
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fermion-fermion interaction. The largest computational effort
arises from diagonalizing the two N × N matrices Mσ for
each update to the configuration of the Ising spins Si .

An alternate method to the direct matrix diagonalization
used in the literature employs a representation of the density
of states ρ(λ) in terms of Chebyshev polynomials [17–19].
The moments of ρ(λ) are computed recursively in a way
that involves only sparse matrix-vector multiplications. This
approach improves the scaling with system size to linear in
N , at the cost of a significant prefactor. It also involves an
(well-controlled) approximation which is the truncation of
the expansion at some maximum order. Here, we use exact
diagonalization, as opposed to the Chebyshev method.

The results of the simulations presented below were
obtained by averaging over 5–10 independent simulations,
each of which was composed of 35 000 Monte Carlo sweeps
of the Ising variables. Typically, the linear lattice size L was
varied between 4 � L � 12, selecting a geometry with one
Ising plane and stacked on top of two fermionic ones, so that
N = 2 L2.

Expectation values of the Ising variables are averaged in
the usual way over the configurations generated in the course
of the simulation. For example, to address directly if there
is long-range ferromagnetic order in the Ising plane in the
case J < 0, we calculate the fourth order Binder cumulant
[20], B4(T ) = (1 − 〈M4〉/3〈M2〉2). Here, M = 1/N

∑
i Si is

the magnetization per site. When J > 0 (the antiferromag-
netic case), we replace M by the staggered magnetization,
1/N

∑
i(−1)iSi . Crossings of B4(T ) obtained for different

lattice sizes determine the critical temperature for magnetic
ordering of the classical spins. When the interaction JH

between the Ising and fermionic spins is nonzero, we expect a
shift away from the 2D square lattice Ising Tc = 2.269 |J |.

Fermionic measurements like the kinetic energy, double
occupancy, and spin-spin correlations can be written in terms
of combinations of the single-particle Green’s functions,
Gσ

ij = 〈 ciσ c
†
jσ 〉 = (Mσ

ij )−1, for every configuration of the
classical spins. The elements of Gσ are easily obtained from
the diagonalization of Mσ , which is already in hand from the
update of the spin variables. Further details of the numerical
algorithm for coupled classical spin-fermion systems are
contained in Refs. [5,17,19].

It is known from related simulations of Hubbard Hamil-
tonians that fermions with no direct interaction U have large
finite-size effects: the discrete (and often highly degenerate)
U = 0 energy levels E(kx,ky) are readily visible in mea-
surements, especially dynamic quantities like the density of
states. Although the U = 0 metal considered here is coupled
to classical spins, and hence does have interactions, we still
observe significant finite-size effects, especially in the metallic
portions of the phase diagram. We overcome this difficulty
through the introduction of a small magnetic field B = 
0/L

2

along the direction perpendicular to the planes. Here 
0 is
the magnetic flux quanta. With this choice, the intralayer
hopping terms are changed by a Peierls-like phase factor
[tij → t exp( 2πi


0

∫ j
i A · dl)]. We use the Landau gauge in order

to set the values of the vector potential A. This procedure can
be considered as an improvement/generalization of “boundary
condition averaging” [21–23]. For a more complete descrip-
tion, see Ref. [24]. Nevertheless, it is important to emphasize

the distinction of this field, which couples to the “orbital”
motion of the electrons (i.e., their hopping) from a Zeeman
field coupling to spin which affects magnetic order. The orbital
field introduced here reduces finite-size effects by introducing
an additional averaging over discrete allowed momenta on a
finite lattice. The coupling to the classical spins, on the other
hand, produces a Zeeman field for the electrons, whose role in
ordering we will determine.

This reduction in the finite-size effects is especially evident
in the single-particle density of states,

N (ω) = 1

N
Im

∑

r

∑

j

|Uj,r |2
λj − ω − iδ

. (4)

Here, Uj,r are the components of the eigenvectors correspond-
ing to the eigenvalue λj of the matrices Mσ defining the
(quadratic) Hamiltonian, and which now contain the phase
factors described above. The outer sum averages all the
equivalent sites in order to recover translationally invariance.
Instead of displaying well-separated discrete delta-function
peaks, even for free fermions N (ω) becomes nearly continuous
on relatively small lattices, and has a form much closer to that
of the thermodynamic limit [24]. In our Hamiltonian, turning
on JH further reduces residual finite-size effects.

III. RESULTS: HALF-FILLING

Because of Fermi surface nesting with vector k = (π,π ),
the dominant magnetic instability of the half-filled square
lattice Hubbard Hamiltonian is antiferromagnetic. Indeed, the
noninteracting susceptibility χ0(π,π ) diverges as temperature
T → 0 so that, within the random phase approximation
(RPA), the ground state exhibits AF order for any finite
U . Similarly, in the strong coupling (Heisenberg) limit, the
exchange interaction J favors near neighbor spins, which are
antialigned. Since the U = 0 fermion sheets exhibit this strong
AF preference, we expect a rather different response to the
coupling of an AF versus a F Ising plane to the metal. We
begin with the AF case.

A. The antiferromagnetic case

Figure 2 shows the Binder ratio B4(T ) for two metallic
planes of linear size L = 4, 6, 8, 10, and 12 coupled in each
case to a single Ising plane of the same dimensions. The
interlayer hopping between the fermionic layers is set to t⊥ = t

and the coupling JH between the local spins and the fermions
is JH = 3t . The Binder ratios for the three lattice sizes cross at
a common point, Tc ∼ 0.62, representing a 36% enhancement
over the free spin plane result Tc ∼ 2.27J = 0.454 for J =
0.2.

Similar Binder crossing plots for other choices of JH and
interlayer hopping yield analogous transition temperatures,
which are shown in Fig. 3. The enhancement in Tc over that
of an independent spin plane is nontrivial, because there is
a competition between the additional entropy, which results
from fluctuations of fermionic variables in the metallic plane
and the tendency, noted above, towards antiferromagnetism
of the U = 0 Hubbard model, due to Fermi surface nesting.
Evidently, the latter tendency wins: TNéel is enhanced. The
universality class of the transition to an ordered phase as the
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FIG. 2. (Color online) Crossing plot of the Binder ratio of an AF
Ising sheet coupled with JH = 3t (top) and JH = 10t (bottom) to two
metallic layers. The interlayer hopping between the fermion layers
was set to t⊥ = t . For JH = 3t , the crossing occurs at T/t ∼ 0.62,
which is well above the critical temperature of a free Ising sheet (JH =
0). T/t = (J/t) × (Tc/J ) = 0.2 × 2.269 = 0.454. The behavior of
Tc with JH is nonmonotonic as the critical temperature for JH = 10t

drops to T/t ∼ 0.54 (see Fig. 3).

temperature is lowered remains an open question. Our results
are consistent with an Ising transition, and we believe that is
the most likely scenario, but the available system sizes do not
allow us to draw any final conclusion.

There are several additional interesting features in the
data. First, the enhancement in Tc is nonmonotonic in JH .
The transition temperature reaches a maximum at JH/t ∼ 3
for both t⊥ = 0 and t⊥ = t . Although data are not shown,
even for t⊥ = 5t the enhancement of Tc comes back down at
large JH . We note that the band structure of the two sheet
Hubbard model is ε(kx,ky) = −2t( cos kx + cos ky) ± t⊥. The
two bands overlap for t⊥ < 4t and have a band gap t⊥ − 4 t

otherwise. Thus the choice t⊥ = 5 t represents the coupling
of an Ising spin layer to a band insulator rather than a metal.
Figure 3 indicates that the magnetic response of the Ising
layer is qualitatively the same in the two situations (metal with
t⊥ < 4t or band insulator with t⊥ > 4t), although the response
of a coupling to a band insulator produces less of an effect, as
might be expected. This is likely due to the fact that the bilayer
Fermi surface is still nested with k = (π,π ) for t⊥ > 4 t , even
though the density of states at EF vanishes.

0 1 2 3 4 5 6 7 8 9 10 11
0.9

1.0

1.1

1.2
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1.4
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T c
/T

2D
Is
in
g

c

JH / t

t⊥ = 0

t⊥ = t
t⊥ = 5t

J = 0.2t

FIG. 3. (Color online) Critical temperature Tc (normalized to the
2D Ising value) for the magnetic transition in the Ising spin plane as a
function of the interaction JH with the metal. Several different choices
of the hopping parameter t⊥ connecting the two metallic planes are
shown. Tc is obtained by the crossing of the Binder ratio B4(T ) for
different lattice sizes. (See Fig. 2.) Coupling of the spin layer to the
metal enhances Tc. The degree of enhancement is strongest when the
fermionic layers are most weakly coupled to each other (small t⊥).
Lines are guides only.

The nonmonotonic behavior of Tc with JH is reflected
also in the evolution of the farthest-neighbor intraplane spin
correlation function. c(i,j ) = 〈SiSj 〉. Figure 4 shows c(i,j )
versus T/t for several values of JH at t⊥ = t on a 8 × 8
lattice. This quantity, which in the thermodynamic limit would
equal the square of the order parameter, evolves rather sharply
from zero to one as T/t is lowered. The position where the
switch in values occurs moves to larger T/t as JH changes
from JH = 0 to JH /t ∼ 3–4, but then comes back down, in
agreement with the maximal Tc in Fig. 3. The inset of Fig. 4
displays the same quantity as a function of temperature and
shows, unequivocally, this nonmonotonic effect.

Having described the effect of the interaction JH between
the Ising spin plane and the metal on the ordering transition of
the classical spins, we turn now to the issue of the effect of JH

on the metal. We calculate several quantities that characterize
both the magnetism and the transport in the fermionic planes.
We begin by showing, in Fig. 5, the intraplane kinetic energy
[25] as a function of temperature for the different values of
JH . In (a), which gives the kinetic energy of electrons in
the fermionic plane right at the interface, the increase of
the interaction with the Ising spins localizes the electrons,
eventually driving their kinetic energy to small values. This
trend is monotonic in JH . In (b), the farthest plane from the
interface with the Ising spins, we find a much weaker effect, as
is expected in the absence of direct contact with the classical
spin layer. There is a steady increase of the absolute value of
the kinetic energy—the opposite of the effect seen in layer
� = 0. The sharp crossover temperature in the fermion kinetic
energy aligns with Tc for the classical spins, as given in Fig. 3.
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FIG. 4. (Color online) Temperature dependence of the Ising spin-
spin correlation between most distant neighbors in the lattice and
several values of the interaction JH for L = 8 with one Ising layer
stacked over two fermion ones. These correlations display a similar
trend to the critical temperature: they initially become more robust
with the coupling between the different planes; for large JH , they
return to values similar to the decoupled Ising model (JH = 0).
The inset shows the same but now as a function of JH where the
nonmonotonic effects on the Ising spins correlations are unequivocal.

The double occupancy 〈n↑n↓〉 provides complementary
information to the kinetic energy, and in particular provides
insight into the formation of local moments 〈m2〉 and the
possibility of Mott metal-insulator behavior. Specifically,
〈m2〉 = 1 − 2〈n↑n↓〉 at half-filling so that vanishing double
occupancy implies a well-formed moment on every site,
and a nonzero double occupancy implies moments, which
are partially suppressed by charge fluctuations. 〈n↑n↓〉(T ) is
shown in Fig. 6. Data for plane 0 and plane 1 are shown
in the top and bottom panels, respectively. In both cases
〈n↑n↓〉 takes on its uncorrelated value 〈n↑n↓〉 = 〈n↑〉〈n↓〉 =
1/4 for JH = 0, as should be the case for a metal with no
interactions. In plane 0, there is a monotonic suppression of
double occupancy with JH , and hence a steady development
of local moments. By the time JH = 4, double occupancy has
decreased to 〈n↑n↓〉 ∼ 0.05 implying 〈m2〉(T ) ∼ 0.90. The
reason for this behavior is clear: the classical Ising spin Si acts
as a local magnetic field for the fermions on site i in plane
0, enhancing(suppressing) the occupation of the electron spin
occupation parallel (antiparallel) to it. As we shall see, this
induced moment formation aids in magnetic ordering.

In plane 1, more isolated from the classical spins, the
double occupancy is barely modified from its JH = 0 value.
Nevertheless, despite exhibiting only a small efect, the onset
of deviations provides a nice signal of the Neél transition
temperature. Indeed, the nonmonotonicity of TNéel observed in
Fig. 3 is reflected in a similar nonmonotonicity in the double
occupancy in fermionic plane 1. Presumably, the large re-
sponse of the double occupancy to the effective field in plane
0, which is evident far above TNéel, masks the more subtle
signature of the onset of long range order.
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FIG. 5. (Color online) Intraplane kinetic energy 〈K〉 as a function
of temperature for different values of the interaction JH . Here, t⊥ = t .
In (a), the fermionic plane � = 0 directly in contact with the Ising spin
layer; and in (b) the more distant fermionic plane � = 1. The trend
with increasing JH is opposite in (a) and (b). For � = 0, the connection
to the Ising spins reduces the kinetic energy at all temperatures. For
� = 1, the kinetic energy increases. The vertical arrows at panel (a)
indicate the critical temperature below which the magnetic ordering
takes place for the Ising spins (Fig. 3).

Long-range order of the spin in the metallic planes can
be analyzed by a finite-size scaling of the antiferromagnetic
structure factor [26],

Sz
af = 1

L2

∑

i,j

(−1)i+j
〈
sz
i s

z
j

〉 = m2
af,z + A

L
+ B

L2
. (5)

Here, maf,z represents the magnetic order parameter in the
metallic layer, and the sum over i,j is restricted to that same
layer. The coupling of the Ising spins with the z component of
the fermionic spins breaks the SU(2) symmetry of the Hubbard
Hamiltonian, leading to the possibility of long-range order at
finite temperature. Figure 7 shows the extrapolation according
to Eq. (5). We chose t⊥ = t , and separate the contributions
of plane 0 and 1 in (a) and (b), respectively. However, we do
not attempt to discern this possibility, and restrict ourselves
to examining the ground-state magnetism by setting T = t/10
where the structure factor has saturated to its ground state
value. The values of m2

af,z in the two layers, obtained from the
thermodynamic limit 1/L → 0 extrapolation, are displayed
in Fig. 8 for the same three cases for the interplane hopping
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FIG. 6. (Color online) Temperature dependence of the double
occupancy in the case t⊥ = t , in (a) for � = 0, while in (b) for
� = 1. In the former, the increase of JH decreases double occupancy
since the electrons are strongly coupled to the Ising spins and, as a
consequence, become more localized. For � = 1, the effect is very
small (note the vertical scale) a slight decrease in double occupancy
and then a recovery towards the JH = 0 value which begins
at JH /t � 2.

appearing in Fig. 3. Again, the plot is separated in (a) and (b)
corresponding to the planes 0 and 1, respectively.

While plane 0, which directly interacts with the Ising spins,
becomes easily “saturated” (maf,z → 1) with the increase of
JH , the fermions on plane 1, farther from the classical spins,
are less easily aligned. For smaller values of JH , the long-
range order present in the plane at the interface is propagated
farther inwards. However, for JH /t � 3.0, the magnetism in
plane 1 gets less robust. Indeed, the reduction of magnetic
order in plane 1 coincides with saturation of magnetic order in
plane 0.

We turn now to the issue of how the coupling to the
classical Ising spins affects the density of states N (ω) of the
metal. There are two separate issues to consider. First, even
at high temperatures, the fluctuating classical Ising spins act
as a random site energy ±JH for the fermions. In the limit
t = t⊥ = 0, we expect N (ω) = 1

2 ( δ(ω + JH ) + δ(ω − JH )).
Nonzero hopping will broaden this distribution. Second, as
T is lowered, the Ising spins no longer fluctuate randomly
but instead, for J > 0, form an ordered antiferromagnetic
pattern. This staggered site energy opens a gap in the fermionic
spectrum. Figure 9 shows N (ω) for L = 12 and t⊥ = t . The
left panels give N (ω) in plane 0 for fixed JH /t = 3 [the density
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Sz af
/L

2

plane 0 (a)
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/L
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1 / L

t⊥ = t
J = 0.2 t

Τ/t = 0.10

FIG. 7. (Color online) Finite-size extrapolation for the z compo-
nent of the antiferromagnetic structure factor Sz

af for planes 0 and 1,
in (a) and (b), respectively. Here, t⊥ = t and T/t = 0.10. A parabolic
fit is used to obtain the value in the thermodynamic limit, m2

af,z.

of states for individual planes is obtained by the appropriate
restriction of the spatial sum in Eq. (4)] and decreasing
temperature. Both features discussed above are present: peaks
in the density of states at ±JH at all temperatures, and,
near ω = 0, an insulating gap which opens only below the
Ising Tc ∼ 0.615 (Fig. 2) for JH /t = 3. The insulating gap is
substantially less than one might expect from a strictly rigid
staggered site energy. Presumably, this reflects some residual
fluctuations of the Ising spins.

In the right panels of Fig. 9, the density of states in the
plane further from the interface is shown. In the topmost panel
Fig. 9(e), where JH = 0, we recover the analytic result of the
DOS of a bilayer with t⊥ = t (displayed as a black thick curve),
with some additional structure associated with the discrete
finite lattice peaks. For JH nonzero, the antiferromagnetic
gap induced in layer 0 propagates to layer 1, rendering it
insulating as well. The size of the gap in N (ω) for layer
� = 1 goes down for large JH , consistent with the decrease
in the AF order parameter [Fig. 8(b)]. One picture of the
induced antiferromagnetism, and associated gap, in the layer
not adjacent to the Ising spins, is the following: when the Ising
spins order they induce antiferromagnetism in plane 0 via JH .
It is preferable to have a fermion in plane 1 of opposite spin
from the one above it in plane 0, because it can then hop in
the perpendicular direction, a lowering of the kinetic energy
which is forbidden by the Pauli principle if the plane 1 fermion
has parallel spin to the plane 0 fermion.
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FIG. 8. (Color online) Antiferromagnetic order parameter as a
function of JH for temperature T/t = 0.10. In (a) for plane 0 and
in (b) the same for plane 1. Plane 0 exhibits a rapid and monotonic
saturation with JH . m

(1)
af z in plane 1 first increases with JH and then

falls.

B. The ferromagnetic case

The antiferromagnetic tendency of tight-binding electrons
on a square lattice at half-filling can be understood from
a weak coupling perspective. The Fermi surface is nested
at the antiferromagnetic ordering vector (π,π ) and, as a
consequence, the noninteracting susceptibility

χ0(q) = 1

L2

∑

k

f (εk) − f (εk+q)

εk+q − εk
, (6)

diverges there as T → 0. This reasoning suggests Tc might
be suppressed for ferromagnetically coupled Ising spins,
whose ordering wave vector conflicts with what the half-filled
metallic fermion spins prefer.

Figure 10 shows the transition temperature Tc of ferro-
magnetically coupled Ising spins in contact with a half-filled
metallic layer. It confirms that Tc is suppressed, consistent with
the qualitative argument suggested above, and in contrast to the
enhancement seen in the antiferromagnetic case of Fig. 3. The
maximal suppression of Tc occurs at JH /t ≈ 4, and reveals a
lowering of Tc by almost a factor of two. Tc ultimately recovers,
but only for very large values JH /t � 5.

When ferromagnetic order is present in layer 0, we can
ask whether it will induce similar order in the more distant
layer 1, something which occurred with antiferromagnetic
coupling J . We calculated the ferromagnetic structure factor
[Sz

f = (1/L2)
∑

i〈sz
i s

z
j 〉] for the same values of interaction
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FIG. 9. (Color online) (Left) Density of states N (ω) of fermions
in plane 0 for different temperatures T/t = 1.00,0.67,0.50,0.40 [(a)–
(d)]. The linear lattice size L = 12, Ising exchange coupling J =
0.2t , classical spin-fermion spin coupling JH = 3t , and the interplane
hopping t⊥ = t . There are two interesting features in N (ω): a pile-up
of density at ω ∼ ±JH , which is present even at high T , and a gap
which opens in the vicinity of ω = 0 when T is decreased. Insets
display the finite-size dependence around ω = 0. See text for further
discussion. (Right) Density of states N (ω) of fermions in plane 1 for
different JH /t = 0.0,1.0,3.0,10.0 [(e)–(h)]. The temperature T/t =
0.10,t⊥ = t, and L = 12. A gap is present for finite JH , but gets filled
for larger JH . (See text for discussion.)

JH considered in the previous case. A similar finite-size
analysis, Eq. (5), was performed, the order parameter mF for
ferromagnetism in each of the fermionic planes was obtained
as function of JH for low temperature, and is shown in Fig. 11.
Ferromagnetic order is induced in both planes, although mf is
an order of magnitude smaller for plane 1 than for plane 0, in
contrast to the antiferromagnetic case where there was only a
factor of two difference.

As they order, the fermions in direct contact with the
Ising spins (� = 0) start to localize as seen in their reduced
double occupancy [Fig. 12(b)]. For any JH and T , the
double occupancy for � = 1 is basically unchanged from its
uncorrelated value 1/4 [Fig. 12(c)]. This is similar to what
happened in the AF case of Fig. 6(b). The behavior of the
� = 0 kinetic energy [Fig. 12(a)], on the other hand, is quite
different from the AF case (Fig. 5). Althougn in both cases
there is a systematic suppression with JH , in the ferromagnetic
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FIG. 10. Curie temperature for the ferromagnetic Ising model
with J = −0.2t coupled with two fermionic planes (t⊥ = t), as a
function of JH . Unlike the antiferromagnetic case, the coupling with
metal decreases the ferromagnetic critical temperature. Lines are
guides to the eye.

case the magnitude of the kinetic decreases as T is lowered for
JH /t � 3. This is likely a consequence of the Pauli principle;
in the F case, ordering of the Ising spins promotes polarization
of the fermions in layer � = 0 and as this polarization becomes
more and more complete the fermions can no longer hop on
the lattice.

Finally, we analyze the influence of the magnetically
ordered plane of Ising spins on the metallic density of states,
Fig. 13. Similar to the AF case (Fig. 9), there are peaks
at ω ∼ ±JH for layer � = 0. The increase of JH induces a
pseudogap, however the insets to (c) and (d) indicate N (ω = 0)
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m
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FIG. 11. Dependence of the ferromagnetic order parameter mF

for the itinerant spins as a function of the interaction JH with a
ferromagnetic Ising plane. We choose temperature T = t/10. Here,
t⊥ = t and J = −0.2t .
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FIG. 12. (Color online) In (a), temperature dependence of the
intraplane kinetic energy for � = 0 in the case t⊥ = t and ferro-
magnetic interaction between the Ising spins with exchange constant
J = −0.2t . JH /t � 3.0 marks a distinct behavior where the kinetic
energy decreases rapidly with decreasing temperature in opposition to
the cases where JH is small. Equivalently to Fig. 6, the temperature
dependence of the double occupancy in planes � = 0 and � = 1,
(b) and (c), respectively. In the former, similar to the antiferromagnetic
case, the increase in moment localization due to the interaction
with the neighbor Ising spins can be readily seen. In the latter,
despite the upturn of double occupancy for low temperatures and
large interactions, the later downturn for even smaller temperatures
indicates that the ferromagnetism of the Ising layers starts to
propagate through the more distant fermionic region. Again, in (a)
and (b), the vertical arrows depict the Ising critical temperature Tc.

remains finite, in contrast to the AF case. The dashed line
gives the density of states for a single fermionic plane coupled
to a perfectly ordered ferromagnetic arrangement for the
Ising spins, which is derived from the dispersion E(k) =
−2t[cos(kx) + cos(ky)] ± JH . The DOS for plane � = 1 is
approximately given by that of a fermionic bilayer with t⊥ = t .
The effect of JH is to slowly decrease the distance between
the van Hove singularities at ω = ±t⊥. This trend would then
ultimately result in a single van Hove singularity at ω = 0
similar to that of an isolated free fermion plane. Increasing JH

helps “disconnecting” the planes � > 0, which are not right
at the interface. Similar decoupling can be seen in layered
Hubbard models [4].

IV. RESULTS: DOPED LATTICE

In the previous section, we analyzed the influence in the
critical temperature of the Ising plane after attaching a metal
to it. Its enhancement(suppression) could be explained by
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FIG. 13. (Color online) Density of states N (ω) of fermions
in plane � = 0 for different values of the interaction JH /t =
1.0,3.0,4.0,5.0 [(a)–(d)] at temperature T/t = 0.25. [(e)–(h)] show
the correspondent results for plane � = 1. The linear lattice size
is L = 12, Ising exchange coupling J = −0.2t and the interplane
hopping t⊥ = t . Insets at (c) and (d) include also L = 6,8, and 10 near
the region ω = 0. Also displayed, as a dashed line, the corresponding
density of states resulting from the dispersion of one plane under the
influence of a fixed global chemical potential as if the configuration
for the Ising spins is “frozen” in the ferromagnetic state. Worth noting
is that there is a pile-up of density at ω ∼ ±JH , and a pseudogap,
which opens only for values of JH /t � 4. Insets in (c) and (d) show
a finite-size comparison of this gap.

the preferred wave-vector of the ordering in this metallic
region. Since there is a natural tendency for short-ranged
antiferromagnetic order for free fermions in a tightly-binded
bipartite lattice at half-filling, these fermions and the Ising
spins act cooperatively in order to boost the critical temperature
of the antiferromagnetic Ising model. The same argument
shows that when the Ising spins have a ferromagnetic coupling,
the critical temperature is reduced, once again due to the
antiferromagnetic tendency introduced by the contact with the
fermionic spins. We now examine the doped lattice where the
dominant AF response in the noninteracting χ0(q) of Eq. (6)
is no longer present.

Performing a similar analysis of Fig. 2, we computed
the crossings in the Binder ratios for several values of the
interaction JH when the metal has a fixed total density
ρ = 0.87. The global chemical potential μ in Eq. (1) is
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FIG. 14. (Color online) Dependence of critical temperature on
JH of the long-range order for the Ising spins when coupled to
fermions at total density ρ = 0.87 for different scenarios: antifer-
romagnetic (ferromagnetic) interaction between the Ising spins and
two fermionic planes coupled by a hopping t⊥ = t and the same
for the interaction with a single plane. In the situation, one have
two fermionic planes, this dependence is quantitatively similar to
the half-filled case. In the latter scenario, in the regime of larger
interactions, the coupling with the fermions is detrimental (benign) to
the critical temperature when the antiferromagnetic (ferromagnetic)
Ising model is considered in a clear contrast with the half-filled case.

tuned in order to select this density for each of the lattice
sizes and temperatures values calculated. Figure 14 shows
the dependence of the critical value of the Ising spins for
t⊥ = t and t⊥ = 0. When t⊥ = t so that two metallic layers are
coupled to the Ising magnetic layer, the qualitative behavior
is similar to that at half-filling (Figs. 3 and 10). Indeed, the
values of the transition temperatures are quantitatively similar.
This is true in both the ferromagnetic and antiferromagnetic
cases.

However, when t⊥ = 0, so that only one metallic plane is
coupled, doping appears to change the behavior of Tc quite sub-
stantially. While for small values of JH the increase(decrease)
of the critical temperature of the antiferromagnetic (ferromag-
netic) Ising model is the same as for ρ = 1, once higher values
of JH are reached (JH /t ∼ 4 in the AF case and JH/t ∼ 10
in the F one) the scenario changes. An antiferromagnetic Ising
plane has its critical temperature decreased by the coupling
with the free electron spins, while in the ferromagnetic case
the critical temperature is enhanced. This is not completely
unexpected since, as commented earlier, the peak in χ0(q)
moves away from (π,π ) so that the fermions in the metal no
longer so strongly favor AF order.

The reason that this does not happen in the two layer
case t⊥ = 1 is that the second metallic layer � = 1 acts as
a charge reservoir for the layer � = 0 at the interface. That
is, the electron density is imbalanced, as seen in Fig. 15.
Plane � = 0 adjacent to the magnetic layer has a tendency to
become half-filled, leaving the farthest plane less populated.
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FIG. 15. (Color online) Dependence of the density on JH /t in
each of the fermionic planes at temperatures close to where the
magnetic transition takes place for the Ising spins. The lattice size is
L = 8, t⊥ = t and the interactions among the Ising spins are either
ferro or antiferromagnetic with value |J | = 0.2t .

For larger values of JH , the occupations tend to 1.0 and 0.75,
for � = 0 and � = 1 respectively. Throughout this evolution the
total density is preserved at ρ = 0.87. The half-filling of layer
� = 0 allows for the enhancement(supressing) of the critical
temperature of an antiferromagnetic(ferromagnetic) aligned
Ising plane.

V. CONCLUSION

We studied magnetic order at the interface between an
insulator and a metal using quantum Monte Carlo method.
Specifically, we considered a 2D Ising plane coupled to a
lattice of noninteracting (metallic) fermions. In the case of
an antiferromagnetic Ising model, and a half-filled metal, the
coupling enhanced the Ising critical temperature. Antiferro-
magnetic order was also induced in the metal, both in the layer
immediately at the interface with the classical spins and also
deeper within. This enhancement occurs even in the case where
the interlayer hopping in the fermionic sheet is made large
enough that the fermions become a band insulator, namely a
bilayer with interplane hopping t⊥ bigger that 4t .

In contrast, the critical temperature of ferromagnetic Ising
spins is reduced by the coupling to the fermions at half-filling.
We attribute these distinct effects to be a consequence of
the perfect nesting of the square lattice fermion tight-binding
Hamiltonian, which favors antiferromagnetism. Indeed, stud-

ies of the doped lattice demonstrate that the system’s desire
to optimize “magnetic consistency,” that is, to have an AF
metallic response when the magnetic layer is AF, is so great
that, if available, charge will be pulled from a second magnetic
layer into the interface metallic layer so that half-filling is
maintained there. In the absence of such a reservoir, the AF
transition is suppressed by this mismatch with the metallic
ordering wave vector.

A central consideration of our work has been the con-
sistency of the order in the classical spin plane from the
ordering tendency of the metal. In “unfrustrated” cases where
the metal and local spins prefer the same wave vector, transition
temperatures are enhanced, and vice versa. Recent experiments
[27] have explored the importance of these considerations
on the decoupling of surface and bulk magnetism in UO2.
The distinct surface behavior observed is attributed to the
different symmetry of its ordered phase relative to the bulk.
Other 3D systems in which 2D order occurs due to frustration
are certain of the doped cuprate superconductors [28,29].
In individual CuO2 sheets, stripes of d-wave order coexist
with intervening antiferromagnetic stripes. The orientation of
the d-wave phases alternates from stripe to stripe in a given
layer. In adjacent CuO2 sheets, the same stripe pattern occurs,
but, because of structural effects, the stripes are oriented
perpendicular to the neighboring sheet. The result is that
the intersheet Josephson coupling tends to cancel and 2D
superconductivity is observed.

A natural progression of the work reported here would be
to consider the case of continuous XY (planar) or Heisenberg
spins. As previously noted, in this case an isolated 2D spin
plane has no transition to long-range order, owing to the
Mermin-Wagner theorem. One interesting question will be
how the less robust power law correlations that develop at low
T in the XY case are qualitatively affected by coupling to
the metal. For J < 0, where we find the Ising Tc suppressed,
will the Kosterlitz-Thouless transition survive? Because the
fermion determinant depends only on the spin degrees of
freedom in the interface layer, adding additional spin layers
has relatively little computational cost. Thus it is feasible to
study 3D lattice Heisenberg spins, which has a finite ordering
temperature, coupled to one of more metallic layers.
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