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A model is discussed for magnetoelectric (ME) interactions originating from the motion of magnetic domain
walls (DWs) in a multiferroic composite of orthoferrites RFeO3 (RFO) with magnetic stripe domains and a
piezoelectric such as lead magnesium niobate-lead titanate (PMN-PT). The DWs in RFO can be set in motion
with an ac magnetic field up to a critical speed of 20 km/s, the highest for any magnetic system, leading to the
excitation of bulk and shear magnetoacoustic waves. Thus, the ME coupling will arise from flexural deformation
associated with DW motion (rather than the Joule magnetostriction mediated coupling under a static or quasistatic
condition). A c plane orthoferrite with a single Néel-type DW in the bc plane and an ac magnetic field H along
the c axis is assumed. The deflection in the bilayer due to DW motion is obtained when the DW velocity is a linear
function H and the resulting induced voltage across PMN-PT is estimated. It is shown that a combination of
spatial and time harmonics of the bending deformation leads to (i) a linear ME coefficient defined by αE = E/H

and (ii) a quadratic ME coefficient αEQ = E/H 2. The model is applied to yttrium orthoferrites (YFO) and a
PMN-PT bilayer since YFO has one of the highest DW mobility amongst the orthoferrites. The coefficient αE

is dependent on the DW position, and it is maximum when the DW equilibrium position is at the center of the
sample. In YFO/PMN-PT the estimated low-frequency αE � 30 mV/cm Oe and resonance value is 1.5 V/(cm
Oe). Since orthoferrites (and PMN-PT) are transparent in the visible region and have a large Faraday rotation,
the DW dynamics and the ME coupling could be studied simultaneously. The theory discussed here is of interest
for studies on ME coupling and for applications such as magnetically controlled electro-optic devices.
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I. INTRODUCTION

A multiferroic is a material that exhibits two or more
primary ferroic properties, such as ferromagnetism, ferro-
electricity, and ferroelasticity. A composite made of fer-
romagnetic and ferroelectric phases is a multiferroic that
allows for coupling between the electric and magnetic order
parameters and is facilitated by mechanical forces [1–6].
The strain mediated magnetoelectric (ME) effect manifests
as the polarization of the composite in an applied magnetic
field or an induced magnetization/magnetic anisotropy in an
electric field. In studies on direct-ME effects, one measures
the voltage or polarization induced by applied magnetic fields.
For converse-ME effects, the magnetization (or anisotropy
field) induced by an electric field is measured. Studies on thick
film, thin film heterostructures and nanostructures of ferrites,
manganites, or metals/alloys for the ferromagnetic phase and
lead zirconate titanate (PZT), barium titanate (BTO), or lead
magnesium niobate-lead titanate (PMN-PT) for ferroelectric
phases reported a giant low-frequency direct-ME effect [2–4].
A resonant enhancement of ME coupling strength was reported
for the composites under bending, longitudinal, or thickness
acoustic modes in the samples [3].

Modeling aspects of ME coupling include efforts on single
phase materials and in multiferroic composites [7–16]. Past
efforts on the theory of strain mediated ME coupling in bulk
composites, thin film heterostructures, and nanotubes, nanopil-
lars, and fibers involved Green’s function and perturbation
theory, the Mori-Tanaka mean field method, thermodynamic
approach using Landau-Ginzburg free energy expression, and
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quasistatic models [8–16]. The influence of sample geometry,
interface coupling, material parameters, and demagnetization
effects were considered in these models, and estimates of
ME coefficients at low frequencies and at resonance were
compared with available data [5,9–16].

Here, we report a theory for a novel ME effect that
arises due to the motion of magnetic domain walls (DWs)
in a multiferroic composite of orthoferrite and ferroelectric.
Orthoferrites RFeO3 (RFO; R = Y, Sm, Er, Ho, etc.) have an
orthorhombic structure [17]. The magnetic order is a canted
antiferromagnetic with Tc in the range 640–670 K and a weak
ferromagnetic moment along the c axis (except for R = Sm)
with a room temperature saturation induction 4πM ranging
from 62 G for NdFeO3 to 143 G for YbFeO3 [18]. Orthoferrites
show a spin-flip transition at low temperatures or at high fields
on the order of 75 kOe with the net magnetization aligning
along the a axis. Recent studies have reported on a multiferroic
character in some orthoferrites [19,20]. The nature of the
domains and DWs in RFO films is of particular interest for this
report. Thin platelets with the c axis perpendicular to the plane
have uniaxial magnetic anisotropy along the c axis and show
stripe domains that can be observed in the transmitted light
due to the Faraday effect [21]. Due to low magnetization, the
stripe domains in RFO are large in size compared to similar
domains in yttrium iron garnet and spinel or hexagonal ferrites
[21–24]. The DWs in the ac plane are Bloch walls and those in
the ab or bc planes are Néel walls with �0.1–1 μm in width.
The DWs have excellent mobility [18]. Under the influence of
an external ac magnetic field H , a DW can be set in motion
up to a maximum speed of 20 km/s, which is the highest for
any magnetic system [24–27]. This speed is a factor of three
to five higher than for transverse and longitudinal acoustic
waves in orthoferrites. The subsonic or supersonic motion of

1098-0121/2014/90(14)/144411(7) 144411-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.144411


V. M. PETROV AND G. SRINIVASAN PHYSICAL REVIEW B 90, 144411 (2014)

Bloch or Néel walls leads to the excitation of bulk and surface
magnetoacoustic waves [27]. High power lasers also were used
to excite such waves in YFO [28].

Kuzmenko et al. [27] recently developed a theory for the
excitation of magnetoacoustic waves due to DW motion in
RFO and also measured their amplitude. For modeling, they
considered a Néel type wall in bc (or YZ) plane of YFO and
DW motion along the a (or X) axis due to an ac field along the
c axis. Equations of motion for the net magnetization along
Z direction were solved, taking into consideration exchange
interactions, magnetic anisotropy, magnetoelastic constants,
and strain tensor for YFO. The theory predicted two types of
waves, bulk (Rayleigh-Lamb) waves with flexural amplitude
uz and surface waves with amplitude ux . The surface wave
amplitude is smaller than uz. Our model discussed here
predicts a strong ME effect associated with these flexural
magnetoacoustic waves in a composite with a ferroelectric.

A bilayer of RFO and ferroelectric (1 − x)
Pb(Mg1/3Nb2/3)O3 − x PbTiO3 [PMN-PT] is considered.
Lead magnesium niobate-lead titanate is a relaxor ferroelectric
with a diffused phase transition, frequency dependent
dielectric maxima, and nonlinear dielectric response for bias
voltage [29,30]. The crystal structure and the ferroelectric
nature are critically dependent on x [30]. Also, PMN-PT
shows a morphotropic phase transition around 33% Ti. Much
interest is focused on compositions close to x � 0.33 because
of their large piezoelectric constants [29]. The (001) PMN-PT
compositions with x = 0.30–0.34 have a high piezoelectric
coefficient d33 � 1500–2500 pm/V for strong ME coupling
[30]. Single crystal PMN-PT of nominal thickness (�0.5 mm)
is transparent to visible light and is suitable for simultaneous
ME measurements and optical observation of DWs in the
RFO/PMN-PT composites [31,32].

Here we report on a model for DW motion mediated
ME interactions in RFO/ferroelectric bilayers. The direct ME
effect, i.e., the electric field or voltage induced due to the
motion of a single DW in an applied ac magnetic field,
is considered. A bilayer of a ferroelectric and a c plane
orthoferrite in a two-domain state and a single Néel-type DW
in the bc plane is assumed. An ac magnetic field along the c axis
will lead to the motion of the DW, and a shear force associated
with the moving wall gives rise to a flexural deformation. We
solve the equation of motion for the case when the DW velocity
is a linear function of the ac field strength. The deflection in the
orthoferrite-ferroelectric bilayer is obtained, and the induced
voltage across the ferroelectric layer due to piezoelectric effect
is estimated. The theory predicts a strong ME coupling at low
frequencies and a resonance enhancement at bending mode
frequencies for the bilayer. It is shown that, for direct-ME
effect, the combination of spatial and time harmonics of the
bending mode leads to (i) a linear ME coefficient defined by
αE = E/H and (ii) a quadratic ME coefficient αEQ = E/H 2.
The coefficient αE is dependent on the DW position, and
it is maximum when the DW equilibrium position is at the
center of the sample. The model is then applied to the specific
case of YFO/PMN-PT since YFO has one of the highest
DW mobility among the orthoferrites and PMN-PT has a
very high piezoelectric coupling coefficient. In YFO/PMN-PT,
the estimated low-frequency αE � 30 mV/cm Oe and the
resonance value of 1.5 V/cm Oe compare favorably with

FIG. 1. (Color online) Diagram showing a bilayer of c plane
orthoferrite RFeO3 and ferroelectric PMN-PT. A dc magnetic field
gradient along the X direction stabilizes a single magnetic DW in
the bc plane. The DW can be set in motion along the X direction by
applying an ac magnetic field H along the Z direction.

ME voltage coefficients for Joule magnetostriction mediated
ME coupling in ferromagnetic-ferroelectric composites. In
the sections that follow, the theory and the application to
YFO/PMN-PT are discussed.

II. THEORY

We consider a bilayer of c plane platelet of RFO and (001)
PMN-PT as shown in Fig. 1. A coordinate system with the
origin at the center of the sample, a axis of RFO along the X (1)
direction and b axis along the Y (2) axis is assumed. The c plane
platelet of orthoferrite is assumed to be in a two-domain state
(with the aid of an in-plane dc magnetic field gradient along
the X direction) with a Néel-type DW in the bc plane. An ac
magnetic field is assumed along the Z (3) axis (perpendicular
to the sample plane). The theory that follows has the following
steps. (i) We consider the single DW motion and obtain
the amplitude vs driving field and frequency characteristics.
(ii) The DW displacement is then used to estimate the
transverse (shear) force acting on the sample. (iii) The shear
force acting across the region of DW that produces a flexural
deformation is represented by two δ functions. (iv) We
solve a relevant differential equation of motion to obtain the
deflection of the sample due to the shear force. (v) Then the
longitudinal (along X axis) deformation of the ferroelectric
layer is estimated from the deflection. (vi) The electric field
generated across the ferroelectric layer due to piezoelectric
effect is calculated. (vii) The ME coefficient due to DW motion
is thus obtained.

The DW motion under the influence of the ac magnetic field
is described by the equation [33–35]

mẍW + βẋW + αxW = 2MH exp (iωt) (1)

where H is the amplitude of the ac drive field of frequency
ω, M is the net magnetization of orthoferrite layer, xw is the
displacement of the wall from equilibrium, β is a viscous
damping parameter, α is the restoring pressure per unit wall
displacement, and m is an effective mass characterizing the
inertial properties of the wall. Within a frequency range well
below DW resonance ωr = √

α/m (typically 100 MHz), we
can neglect (ω/ωr )2 compared to unity, and consequently
the inertial term in Eq. (1) can be omitted. For this case,
the approximate solution for wall displacement is given
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FIG. 2. Measured frequency dependence of DW displacement in
yttrium orthoferrites at room temperature (from Ref. [36]).

by Ref. [34]

|xW | = x0

[
1 +

(
ω

ωc

)2]−1/2

, (2)

where x0 = 2MH/α is the low-frequency limit of displace-
ment and ωc = α/β is the relaxation frequency. Figure 2 shows
the measured frequency dependence of DW displacement in
YFO [36]. One could then use Eq. (2) and the data in Fig. 2
to obtain the amplitude of DW displacement and the resulting
transverse force for estimation of the strength of ME coupling.

A DW is known to produce a shear deformation due to
magnetoelastic coupling [37]. The shear deformation is due
to the Wiedemann effect that originates from orthogonal
magnetization or magnetic fields [38]. A shear deformation
S5 is expected under DW motion since the magnetization
components M1 and M3 are nonzero. The DW motion thus
results in a transverse force confined to the moving DW in
the RFO layer. For the Néel type DW in the bc (YZ) plane,
this force per unit width equals mT5

mt with mT5 denoting the
stress component in the orthoferrite layer. The thickness of the
sample is assumed to be small compared to other dimensions
and its width small compared to its length. In that case, we
need to consider only one component of strain and stress. The
equation of bending motion for the middle plane of bilayer has
the form

∇2∇2w + ρt

D

∂2w

∂τ 2
= 1

D
f (x, τ ), (3)

where �2�2 is the biharmonic operator, w is the deflection
(displacement in Z direction), t and ρ are the thickness and
average density of the sample, respectively, D is the cylindrical
stiffness, f (x, τ ) is the load intensity due to DW motion, and
τ is the time. For a bilayer, total thickness t = pt + mt and
average density ρ = (pρpt + mρmt)/t , where pρ, mρ, pt , and mt

are densities and thicknesses of ferroelectric and magnetic
layers, respectively. The load intensity is defined as the
magnetostrictive force per unit width of the sample. In turn, the
magnetostrictive force can be found from the magnetoelastic

energy density


ME = (μ1S1 + μ3S3) sin2θ + μ5S5sin(2θ), (4)

where µi and θ are the magnetoelastic constants and angle
between the c axis and ferromagnetic moment [39], and Si

are the strain components. For periodic DW motion, the load
intensity has a point of application of xDW = x1 + xW cos(ωτ )
with x1, xW , and ω denoting the distance of equilibrium posi-
tion of DW from the center of the sample, peak displacement of
the DW, and angular frequency of the driving magnetic field,
respectively. Thus, one-dimensional (1D) approximation of
Eq. (3) takes on the form

∂4w

∂x4
+ ρt

D

∂2w

∂τ 2
= 1

2D
μ5

mt[δ(x − x1 − xW cos ωτ )

− δ(x − x1 − �/2 − xW cos ωτ )], (5)

where � is the DW width and the introduction of δ functions is
enabled due to small DW displacement compared to the sample
length. Note that the force associated with DW motion is
modeled by two δ functions since the transverse force vanishes
at the wall borders and wall center and has two maxima with
a distance of �/2 between the two.

The δ functions can be expanded as a Fourier series in
eigenfunctions of corresponding homogeneous differential
equations, i.e., Eq. (5) with the right part zero. For a freely
supported sample, one gets the series for

δ(x − x1 − xW cos ωτ ) − δ(x − x1 − �/2 − xW cos ωτ )

= A0

2
+

∞∑
n=1

An cos
nπx

L
+

∞∑
n=1

Bn sin
nπx

L
, (6)

where L is the sample length, and An and Bn are Fourier
coefficients that, in turn, can be expanded as power series in
cos ωτ . The final expression for deflection can be obtained as a
double series in spatial and time harmonics by substituting the
expansion of the δ function into Eq. (5). For finding the ME
voltage induced due to an applied ac magnetic field, the stress
component in the piezoelectric layer should be expressed in
terms of deflection as pT1 = −pY (z ∂2w

∂x2 + pd31
pE3), where z is

measured from the middle plane of the sample. The middle
plane is defined as the plane for which the displacement is
only along Z. In this expression, pY , pd31, and pE3 are Young’s
modulus, piezoelectric coefficient, and electric field generated
across the piezoelectric layer, respectively. Assuming an open
circuit condition, the electric field in the piezoelectric layer
pE3 can be found from the equation

pE3 = −
pd31

Lpε33

∫ L/2

−L/2

pT1dx, (7)

where pε33 is permittivity. Thus, the average induced electric
field E across the piezoelectric layer is given by

E = 1
pt

∫ z0

z0−pt

pE3dz, (8)

with z0 denoting the distance of the middle plane from the
orthoferrite/piezoelectric interface. It is clear from Eqs. (5) and
(6) that E is a function of integral multiples of frequency ω.
One therefore needs to consider harmonics in space and time in
order to estimate the ME coefficients. We use the designation
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n = 1, 2, 3 . . . for spatial harmonics and m = 1,2 . . . for
time harmonics. Since we consider a freely supported bilayer,
the coefficient Bn = 0 in the expansion in Eq. (6). Specific
harmonics of bending modes in space and time are discussed
next.

(i) First spatial harmonic and first time harmonic (n = m
= 1): To illustrate the use of Eqs. (5)–(8) for estimating the
ME coupling coefficient, we consider the DW displaced by
distance x1 from the sample center. The ME coefficient for this
case must be estimated for the term A1 cos πx

L
in the Fourier

series for the δ functions with

A1 = π2xW�

48L6

[(
24L2 − 12π2x2

1 − 6π2x1� − π2�2
)

cos ωτ

− 3π2xW (4x1 + �)cos2ωτ − 4π2x2
W cos3ωτ

]
.

(9)

The above equation contains terms with ωτ , 2ωτ , and 3ωτ

(m = 1, 2, and 3, respectively). We define the funda-
mental mode as n = m = 1 with the coefficient A1,1 =
(1 − π2x2

1
2L2 )π2

L3 �xW cos ωτ . For this case, solutions of Eq. (5)
can be written as w(x, τ ) = u(x) cos ωτ . The equation for u(x)
has the form

d4u

dx4
− k4u = 1

2D
μ5

mt

(
1 − π2x2

1

2L2

)
π2

L3
�xW cos

πx

L
,

(10)

where k4 = ω2 ρt

D
. The particular solution of Eq. (10), which

satisfies the end conditions for freely supported ends of the
sample is as follows:

u(x) =
pd31E

pYpt(pt − 2z0)
[

cos(kx) cosh
(

kL
2

) − 4 cosh(kx) cos
(

kL
2

)]
4k2D cos

(
kL
2

)
cosh

(
kL
2

) + μ5�π2xW
mtL cos

(
πx
L

)
2D(π4 − k4L4)

(
1 − π2x2

1

2L2

)
. (11)

This expression could be used for finding the stress component pt1, which enables calculating the electric field E and assuming
pK31, the electromechanical coupling factor, satisfies the condition pK2

31 � 1. The electric field E is determined from

E = H

pd31
pYmYμ5�π3xW1

(
2L2 − π2x2

1

)
mt2t

4DL3(π4 − k4L4)(pY pt + mYmt)pε33
, (12)

where xW1 = xW/H is the DW displacement per unit drive field. Since E is a linear function of H , one may define the ME
coefficient for this specific case as αE (1,1) = E/H . In the low-frequency limit, αE (1,1) = E/H is given by

aE(1,1) = E/H ; E = H

pd31
pYmYμ5�xW1

(
2L2 − π2x2

1

)
mt2t

4DL3π (pY pt + mYmt)pε33
. (13)

(ii) First spatial harmonic and second time harmonic (n = 1, m = 2): Next we consider the term with 2ωτ in Eq. (9) with the
coefficient A1,2 = − π2

4L3 x
2
W cos 2ωτ . For this case, the solution of Eq. (5) can be written as w(x, τ ) = u(x) cos 2ωt. Substituting

A1 cos πx
L

in place of the δ function into Eq. (5) leads to the following equation for u(x):

d4u

dx4
− 4k4u = 1

8D
μ5�

π4x2
W

mtx1

L5
cos

πx

L
. (14)

The particular solution of Eq. (14), which satisfies the end conditions for freely supported ends of the sample is as follows:

u(x) =
pd31E

pYpt(pt − 2z0)
[
cos(

√
2kx) cosh

(
kL√

2

) − 4 cosh(
√

2kx) cos
(

kL√
2

)]
4k2D cos

(
kL√

2

)
cosh

(
kL√

2

) − μ5
mtπ4x2

Wx1�L cos
(

πx
L

)
8DL(π4 − 4k4L4)

. (15)

Since u(x) is a function x2
W in Eq. (15), the deflection and consequently induced electric field are quadratic functions of the

applied ac magnetic field. This suggests introducing the ME coefficient αEQ (1,2) for the case of quadratic ME coupling as follows:

αEQ (1,2) = E

H 2
= 1

ptH 2

∫ z0

z0−pt

pE3dz, and (16)

αEQ (1,2) =
pd31

pYmYμ5�π5x2
W1x1

mt2t

8DL3(π4 − 4k4L4)(pY pt + mYmt)pε33
. (17)

(ii) Second spatial harmonic: For the second spatial harmonic, the deflection of the sample is an odd function of x. Taking this
into consideration, induced voltage vanishes according to Eq. (7) since it is calculated as the integral of the odd function over the
full period. Thus, ME coefficients αE(2,1) and αE(2,2) become zero.
(iii) Third spatial harmonic: The third spatial harmonic will give rise to an ME response as discussed below. For this case, the
term A3 cos 3πx

L
in the series for the δ function, and assuming the solution of Eq. (5) to be w(x, t) = u(x) cos ωt, leads to the

following expression for u(x):

u(x) =
pd31E

pYpt(pt − 2z0)
[
cos(kx) cosh

(
kL
2

) − 4 cosh(kx) cos
(

kL
2

)]
4k2D cos

(
kL
2

)
cosh

(
kL
2

) + 9μ5�π2mtxW

(
2L2 − 9π2x2

1

)
cos

(
3πx
L

)
8D(81π4 − k4L4)

. (18)
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This expression enables finding the stress component pt1, and
then the ME voltage coefficient for the first time harmonic is
given by

αE(3,1) = E/H

= 27pd31
pYmYμ5�π3xW1

mt2t
(
9π2x2

1 − 2L2
)

8DL3(81π4 − k4L4)(pY pt + mYmt)pε33
.

(19)

The expression for αEQ (3,2) for the third spatial and second
time harmonic is obtained using a procedure similar to the
previous case for αEQ (1,2)

αEQ (3,2) = 343pd31
pYmYμ5�π5x2

W1x1
mt2t

16DL3(81π4 − 4k4L4)(pY pt + mYmt)pε33
.

(20)

It is clear from the expressions for αE that the ME coefficients
are directly proportional to the product mt2 t . One could
achieve a strong ME response by increasing the thickness
of the orthoferrites. Application of the theory to specific
orthoferrite-ferroelectric bilayers is considered next.

III. APPLICATION TO YFO/PMN-PT AND DISCUSSION

Next, we apply the theory to a representative bilayer, i.e.,
YFeO3/PMN-PT. Since thick films of both YFO and PMN-PT
are transparent in the visible region, simultaneous measure-
ments on DW motion and ME effect are possible in such
systems. Another advantage is the very high mobility for DW
in YFO that will lead to a strong ME coupling in the bilayer.
The theory in Sec. II is valid when the DW displacement
and, therefore, the velocity is a linear function of the ac
magnetic field amplitude H . Measurements of the velocity
of Néel-type DWs by optical techniques were reported in a
series of RFO samples [21,36,40,41]. For YFO, DW speed v

at 300 K increased linearly with Hfor H < 1 kOe, followed by a
nonlinear dependence up to the limiting speed of c � 20 km/s,
which is much higher than the speed of transverse sound waves
st = 4 km/s [40]. In the data on v vs H , there are regions close
to st and multiples of st over which v remained constant or
showed nonlinear dependence on H [40]. We, however, restrict
our discussion here to the linear v vs H region.

A bilayer of lateral dimensions 9.2 × 1 mm and YFO
of thickness 100 μm and PMN-PT of thickness of 50 μm
is assumed. The above sample dimensions were chosen in
order to achieve a desired resonance frequency of around
�3 kHz for the acoustic modes. The resonance frequencies
for a freely supported sample are known to be determined
by the equation sin(kL) = 0 where the wave number k is
defined by the expression k4 = ω2ρt

D
with ρ and D denoting

the average density and cylindrical stiffness of the sample. D

is known to be dependent on layer thicknesses and sample
length. Thus, the resonance frequencies are closely related
to the sample geometry. The selection of the sample length
and layer thicknesses is stipulated by appropriate values of
resonance frequencies. In turn, the resonance frequencies
are taken so that they are much lower compared to the
DW relaxation frequency to avoid an additional decrease in
DW displacement in the applied drive field (see Fig. 2).
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FIG. 3. Variation of low-frequency ME voltage coefficient
with the equilibrium DW position relative to sample center for
YFeO3/PMN-PT bilayer.

The following material parameters were assumed for YFO
and PMN-PT: mY = 1.9 · 1011 N/m2, pY = 0.77 · 1011 N/m2,
mρ = 5.5 · 103 kg/m3, pρ = 7.7 · 103 kg/m3, pε33ε0 = 5000,
pd31 = −600�10−12 m/V, µ5 = 1.2�106 J/m3, and � =
0.1 μm [39,42]. Resonance losses are accounted by using
a complex frequency ω + iω′ with ω′/ω = 10−2. Consider
first the low-frequency linear ME coefficient given by Eq.
(13). Figure 3 shows αE(1,1) vs the position of the DW for the
low-frequency region. The ME coupling is maximum with a
value of �30 mV/cm Oe when the DW is at the center of
the sample (at x1 = 0). A decrease in αE is evident as the
DW equilibrium position is moved away from the center and
it vanishes for x1 = ±L/2. A significant enhancement in the
αE value is expected when the frequency of the applied field
H is at the bending mode for the bilayer, as discussed next.

The linear ME coefficient αE = E/H for the first time
harmonic of the first and third spatial harmonics, αE (1,1) and
αE(3,1), respectively, are shown as a function of frequency f in
Fig. 4. The resonance value of αE1,1 is very much dependent
on the DW position [Eqs. (16) and (19)], similar to the case of
low-frequency ME coupling in Fig. 3, and is �0.4 V/cm Oe for
x1 = 0.4 L at 3.45 kHz. The estimated frequency f dependence
of the quadratic ME coefficient αEQ = E/H 2 for the first and
third spatial harmonics are shown in Fig. 5. The results indicate
a resonance enhancement in ME coupling strength when 2 f =
fr , the bending mode frequency for the bilayer. The quadratic
ME coupling strength is linearly dependent on the equilibrium
position of the DW [Eqs. (17) and (20)]. Figures 4 and 5 reveal
that the output voltage induced by the magnetic field H = 1 Oe
for the second time harmonic is much smaller than for the first
time harmonic.

The model developed here deals with ME coupling in
RFO/ferroelectric composites arising from magnetoelastic
excitations associated with DW motion (rather than Joule
magnetostriction mediated coupling under the quasistatic con-
dition in ferromagnetic-ferroelectric composites). Since the
DW motion is a magnetization reversal process (at a field much
lower than �75 kOe required for spin-flip), it gives rise to bulk
magnetoacoustic waves. Our model predicts that this flexural
deformation when coupled with the piezoelectric phase will
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FIG. 4. (Color online) Frequency dependence of the linear ME
voltage coefficient in a bilayer of YFeO3 and PMN-PT for the DW
located at the center of the sample. Results are for the first time
harmonic of the first and third spatial harmonics, αE(1,1) and αE(3,1),
respectively.

result in a strong ME coupling. Variation of the linear ME
voltage coefficient with the equilibrium DW position relative
to the sample center is described by Eq. (13) and is shown in
Fig. 3. The maximum value of αE(1,1) is obtained at the DW
position at the sample center. The linear ME effect vanishes
for the DW position at the sample ends. The quadratic ME
coupling strength is linearly dependent on the equilibrium
position of the DW [Eqs. (17) and (20)]. It vanishes for the
DW position at the sample center. The presence of multiple
DWs will result in a partial cancellation of contributions to
output voltage due to a difference in motion direction for
DWs because of different magnetization directions. Thus, the
ME coupling for multiple DWs is expected to be weaker
compared to a single DW. It should be noted that the generation
of multiple DWs by a dc magnetic field gradient is rather
complicated. An appropriate dc field gradient produces the
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FIG. 5. (Color online) Frequency dependence of the quadratic
ME coefficient αEQ in a bilayer of YFeO3 and PMN-PT for the DW
located at distance L/4 from the center of the sample. Results are for
the first and third spatial harmonics.

single DW which is positioned at the point with zero dc
magnetic field. It is important to compare theoretical estimates
of αE with measured values of αE for strain mediated ME
coupling in ferromagnetic-ferroelectric composites. The low-
frequency αE in Fig. 3 for YFO/PMN-PT compares favorably
with bulk ferrite-ferroelectric composites [3]. The peak values
of αE in Fig. 4 are also comparable to ME voltage coefficients
at bending modes or longitudinal acoustic modes in several
composites of ferromagnets and PZT or PMN-PT [3].

The theory is valid only when the speed of DW motion v

is a linear function of H . Under high mobility and supersonic
speeds, v vs H is nonlinear and shows regions of constant v due
to damping attributed to the Cherenkov emission of phonons
[37]. The DW shows a transition from a straight 1D wall to a
distorted two-dimensional (2D) wall for supersonic speeds. It
is therefore necessary to formulate a theory of ME coupling
under a rich variety of phenomena associated with the DW
motion, such as nonlinearity under high mobility and high H ,
instability of rectilinear DW motion, transition to a 2D wall and
the formation of kinks on a DW under supersonic speed, and
DW dynamics at the critical velocity c [22,24,25–27,40,41].

IV. CONCLUSIONS

A theory is developed for the nature of magnetoelectric cou-
pling due to magnetic DW motion in a bilayer of orthoferrite
and ferroelectric. Orthoferrites that are canted antiferromag-
nets show a weak ferromagnetic moment along the c axis and
a stripe domain structure at room temperature. A single Néel-
type DW in the bc plane can be stabilized with a static magnetic
field gradient along the a axis. The DW can be set in motion
with an ac magnetic field H along the c axis. Domain wall
speeds v could reach a maximum of 20 km/s in orthoferrites
and generate bulk flexural and surface shear magnetoacoustic
waves. Such excitations in a bilayer of orthoferrite and a
ferroelectric will result in a bending motion and an induced
electric field E across the ferroelectric layer thickness. The
model developed here considers ME coupling due to bending
deformation for linear v vs H . It is shown that spatial and time
harmonics of the bending mode lead to (i) a linear ME coeffi-
cient defined by αE = E/H for first time harmonic modes and
(ii) a quadratic ME coefficient αEQ = E/H 2 for the second
time harmonic modes. The coefficient αE shows a peak at the
bending resonance frequency and is found to be dependent
on the DW position with the maximum value expected when
the DW equilibrium position is at the center of the sample. In
YFO/PMN-PT, the maximum value of αE is on the order of
30 mV/cm Oe at low-frequency 1.5 V/cm Oe at the first spatial
harmonic. The quadratic ME coefficient αEQ is predicted to be
rather weak compared to the line ME coefficient.
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