Investigation of magnetic order in $\text{Sm}Tr_2\text{Zn}_{20}$ (Tr = Fe, Co, Ru) and $\text{Sm}Tr_2\text{Cd}_{20}$ (Tr = Ni, Pd)

D. Yazici,^{1,2} B. D. White,^{1,2} P.-C. Ho,³ N. Kanchanavatee,^{1,2} K. Huang,^{1,2,4} A. J. Friedman,^{1,2} A. S. Wong,^{1,2} V. W. Burnett,^{1,2} N. R. Dilley,⁵ and M. B. Maple^{1,2,4,*}

¹Department of Physics, University of California, San Diego, La Jolla, California 92093, USA

²Center for Advanced Nanoscience, University of California, San Diego, La Jolla, California 92093, USA

³Department of Physics, California State University Fresno, Fresno, California 93740, USA

⁴Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, USA

⁵Quantum Design, 6325 Lusk Boulevard, San Diego, California 92121, USA

(Received 8 July 2014; revised manuscript received 16 September 2014; published 3 October 2014)

Single crystals of the "cage compounds" $SmTr_2Zn_{20}$ (Tr = Fe, Co, Ru) and $SmTr_2Cd_{20}$ (Tr = Ni, Pd) have been investigated by means of electrical resistivity, magnetization, and specific-heat measurements. The compounds SmFe₂Zn₂₀, SmRu₂Zn₂₀, and SmNi₂Cd₂₀ exhibit ferromagnetic order with Curie temperatures of $T_C = 47.4$, 7.6, and 7.5 K, respectively, whereas SmPd₂Cd₂₀ is an antiferromagnet with a Néel temperature of $T_N = 3.4$ K. No evidence for magnetic order is observed in $\text{SmCo}_2\text{Zn}_{20}$ down to 110 mK. The Sommerfeld coefficients γ are found to be 57 mJ/mol K^2 for SmFe₂Zn₂₀, 79.5 mJ/mol K^2 for SmCo₂Zn₂₀, 258 mJ/mol K^2 for SmRu₂Zn₂₀, 79.5 mJ/mol K^2 for SmRu₂Zn₂₀, 258 mJ/mol K^2 for SmRu₂Zn₂₀, 79.5 mJ/mol K^2 for SmRu₂Zn₂₀, 258 mJ/mol K^2 for SmRu₂Zn₂₀, 79.5 mJ/mol K^2 for SmRu₂Zn₂₀, 258 mJ/mol K^2 for SmRu₂Zn₂₀, 79.5 mJ/mol K^2 for SmRu₂Zn₂₀, 258 mJ/mol K^2 for SmRu₂Zn₂₀, 79.5 mJ/mol K^2 for SmRu₂Zn₂₀, 258 mJ/mol K^2 for SmRu₂Zn₂₀, 79.5 mJ/mol K^2 for SmRu₂Zn₂₀, 70.5 mJ/mol K^2 for SmRu₂Zn₂₀, 70.5 mJ/mol K^2 for SmRu₂Zn₂₀, 70.5 mJ/mol K^2 165 mJ/mol K^2 for SmNi₂Cd₂₀, and 208 mJ/mol K^2 for SmPd₂Cd₂₀. Enhanced values of γ and a quadratic temperature dependence of the electrical resistivity at low temperature for SmRu₂Zn₂₀ and SmPd₂Cd₂₀ suggest an enhancement of the quasiparticle masses due to hybridization between localized 4 f and conduction electron states.

DOI: 10.1103/PhysRevB.90.144406

PACS number(s): 71.27.+a, 72.15.Eb, 75.30.Mb, 75.50.Cc

I. INTRODUCTION

Intermetallic compounds containing Sm have attracted significant interest for displaying a large variety of unusual physical phenomena. For example, SmS undergoes an isostructural first-order electronic phase transition to a collapsed gold phase that exhibits "valence fluctuation" behavior [1,2], the $La_{1-x}Sm_xSn_3$ system displays Kondo anomalies in superconducting and normal-state properties [3,4], and SmB₆ has an intermediate Sm valence and is a hybridization gap semiconductor (Kondo insulator) [5]. Among the Smbased filled skutterudite compounds, SmOs₄Sb₁₂ displays a heavy-fermion state that is robust against applied magnetic field [6-10], SmFe₄P₁₂ exhibits ferromagnetic order [11], and SmRu₄P₁₂ undergoes a metal-insulator transition associated with multipolar order [12].

The class of intermetallic compounds RTr_2X_{20} (R = rare earth, Tr = transition metal, and X = Al, Zn, Cd), crystallizes in the CeCr₂Al₂₀-type (Fd3m space group) cubic structure [13–17]. These RTr_2X_{20} compounds have recently attracted much attention because of their unique crystal structure, in which R ions are encapsulated in the Frank-Kasper cages formed by 16 X ions, and have a larger coordination number of tetrahedral groupings of spheres [18], compared to the filled skutterudites and rare-earth hexaborides [19–30]. This crystal structure provides an opportunity to study strongly correlated electronic states, which can be associated with either f or d electrons, and localized rare-earth magnetic moments that have a large spatial separation.

The only Sm-based RTr_2X_{20} compounds to be characterized in single-crystalline form are $SmTr_2Al_{20}$ (Tr = Ti, V, Cr), which order antiferromagnetically and show heavy-fermion behavior with strong Sm valence fluctuations [31,32]. In order to better understand the $SmTr_2X_{20}$ compounds, we examined the thermodynamic and electrical transport properties of four previously unreported compounds: $SmTr_2Zn_{20}$ (Tr = Fe, Ru) and $\text{Sm}Tr_2\text{Cd}_{20}$ (Tr = Ni, Pd) together with $\text{SmCo}_2\text{Zn}_{20}$. X-ray diffraction (XRD), electrical resistivity, magnetization, and specific-heat measurements revealed a ferromagnetic ground state for SmFe₂Zn₂₀, SmRu₂Zn₂₀, and SmNi₂Cd₂₀ and an antiferromagnetic ground state for SmPd₂Cd₂₀. The formation of heavy quasiparticles in the ordered states of the SmRu₂Zn₂₀ and SmPd₂Cd₂₀ compounds is also observed. Analysis of the low-temperature electrical resistivity data suggests the presence of spin-wave excitations for $SmFe_2Zn_{20}$, SmRu₂Zn₂₀, SmNi₂Cd₂₀, and SmPd₂Cd₂₀.

II. EXPERIMENTAL DETAILS

Single crystals of $SmTr_2Zn_{20}$ (Tr = Fe, Co, Ru), YFe_2Zn_{20} , $SmTr_2Cd_{20}$ (Tr = Ni, Pd), YNi_2Cd_{20} , and $LaNi_2Cd_{20}$ were prepared by the Zn and Cd self-flux methods, respectively. Details of the sample synthesis are described in Refs. [22,33]. Crystal structure and sample quality were primarily characterized through analysis of powder XRD patterns collected by a Bruker D8 x-ray diffractometer. Four-wire electrical resistivity measurements were performed from 300 to ~ 1.1 K in a pumped ⁴He Dewar for SmTr₂Zn₂₀ (Tr = Fe, Co, Ru) and SmPd₂Cd₂₀, and down to 110 mK using a ³He-⁴He dilution refrigerator for SmCo₂Zn₂₀. Electrical resistivity measurements were performed for SmNi₂Cd₂₀ down to 0.36 K using an electrical transport option on the ³He insert for a Quantum Design Physical Property Measurement System (PPMS) equipped with a 9-T superconducting magnet. Magnetization measurements were performed between 300 and 2 K in a Quantum Design Magnetic Property Measurement System (MPMS) equipped with a 7-T superconducting magnet. Specific-heat measurements were performed down to 1.8 K in a PPMS Dynacool using a standard thermal relaxation

^{*}Corresponding author: mbmaple@ucsd.edu

TABLE I. Summary of structural, magnetic, and electrical transport properties for $\text{Sm}Tr_2\text{Zn}_{20}$ (Tr = Fe, Co, Ru) and $\text{Sm}Tr_2\text{Cd}_{20}$ (Tr = Ni, Pd) compounds. Included in the table are the cubic lattice parameter a; Curie-Weiss temperature Θ_{CW} ; effective magnetic moment μ_{eff} ; magnetic ordering temperature T_C or T_N ; saturation magnetic moment μ_{sat} at 5 T along the [111] crystallographic direction; residual resistivity ρ_0 measured at $T \sim 1.2$ K for $\text{Sm}Tr_2\text{Zn}_{20}$ (Tr = Fe, Co, Ru) and $\text{SmPd}_2\text{Cd}_{20}$, and $T \sim 0.5$ K for $\text{SmNi}_2\text{Cd}_{20}$; coefficient of the T^2 term of the electrical resistivity A (with temperature range of fit given in parentheses); residual resistivity ratio $\text{RRR} \equiv R$ (300 K)/R (1.2 K) for $\text{Sm}Tr_2\text{Zn}_{20}$ (Tr = Fe, Ru) and $\text{SmPd}_2\text{Cd}_{20}$ and $\text{SmCo}_2\text{Zn}_{20}$; and spin-wave energy gap Δ_{spw} .

Compound	a (Å)	$\Theta_{\mathrm{CW}}\left(\mathrm{K}\right)$	$\mu_{\mathrm{eff}}\left(\mu_{B}\right)$	T_C or T_N (K)	$\mu_{\rm sat}\left(\mu_B\right)$	$\rho_0 (\mu \Omega \mathrm{cm})$	$A\left(\frac{\mu\Omega\mathrm{cm}}{\mathrm{K}^2} ight)$	RRR	Δ_{spw} (K)
SmFe ₂ Zn ₂₀	14.51	47.8	1.7	47.4	1.05	3.5	$4.41 \times 10^{-3} (T < 4 \text{ K})$	21	4.82
SmCo ₂ Zn ₂₀	14.08	-1.83	0.99			5.8	_	12	
SmRu ₂ Zn ₂₀	14.73	8.62	0.71	7.6	0.47	11.5	$2.9 \times 10^{-2} (T < 3 \text{ K})$	7.2	3.88
SmNi ₂ Cd ₂₀	15.53	56.2	0.71	7.5	0.52	0.11		21	8.79
SmPd ₂ Cd ₂₀	15.56	- 6.88	0.74	3.4		0.06	$4.8 \times 10^{-1} (T < 3 \text{ K})$	80	3.63

technique. The orientation of single crystals was determined using a Bruker D8 Discover x-ray diffractometer.

III. RESULTS AND DISCUSSION

Analysis of powder XRD patterns indicated that the single crystals contained no inclusions of impurity phases. Table I lists the results of Rietveld refinements that were conducted on powder XRD patterns for each sample using GSAS [34] and EXPGUI [35]. The CeCr₂Al₂₀-type cubic crystal structure with space group $Fd\bar{3}m$ was observed for all samples. A representative XRD pattern (for the SmNi₂Cd₂₀ single crystal) is shown in Fig. 1, plotted with its refined pattern for comparison.

Magnetization divided by applied magnetic field M/H data are displayed as a function of temperature in Fig. 2(a). Measurements were performed in applied magnetic fields of

FIG. 1. (Color online) X-ray diffraction pattern for SmNi₂Cd₂₀ measured at room temperature. The black open circles indicate the observed intensity I_{obs} , the red line represents the calculated intensity I_{calc} , and the black line indicates the difference $I_{obs} - I_{calc}$. A broad, featureless hump at low angle comes from the glass slide and petroleum jelly used to mount the powder on the slide. A photograph of a SmNi₂Cd₂₀ single crystal is shown in the inset of the figure where the small squares are 1 mm \times 1 mm for reference.

H = 0.1 T for SmFe₂Zn₂₀, SmRu₂Zn₂₀, and SmPd₂Cd₂₀, H = 0.5 T for SmCo₂Zn₂₀, and in H = 0.05 T for SmNi₂Cd₂₀. The SmFe₂Zn₂₀, SmRu₂Zn₂₀, SmNi₂Cd₂₀, and SmPd₂Cd₂₀ compounds exhibit features in M/H that are consistent with a magnetic phase transition. M/H data as a function of temperature reveal the primary difference between the Fe column members (SmFe₂Zn₂₀ and SmRu₂Zn₂₀) and the Co column member (SmCo₂Zn₂₀): for Fe column members, there is an apparent ferromagnetic (FM) order (with notably high and moderately high Curie temperature of $T_C = 47.4$ and 7.6 K for SmFe₂Zn₂₀ and SmRu₂Zn₂₀, respectively). In contrast, no evidence for magnetic order is observed down to 2 K for SmCo₂Zn₂₀. However, the large increase in M/H below 10 K for SmCo₂Zn₂₀, which does not obey Curie-Weiss law behavior, could in principle be related to magnetic order below 2 K.

Among the RTr_2Zn_{20} compounds, $GdFe_2Zn_{20}$ and GdCo₂Zn₂₀ have attracted special attention due to the distinct magnetic properties exhibited by each compound [21,22,36]. GdFe₂Zn₂₀ is a FM with a remarkably high Curie temperature of $T_C = 86$ K compared with other RFe_2Zn_{20} compounds. However, as Co is substituted for Fe, ferromagnetic order is rapidly suppressed, culminating in antiferromagnetic (AFM) order at $T_N = 5.7$ K in GdCo₂Zn₂₀ [21,36]. Band-structure calculations suggest that the enhanced Curie temperature in $GdFe_2Zn_{20}$ is due to a large *d*-electron contribution to the electronic density of states at the Fermi energy when compared to GdCo₂Zn₂₀, and that the transition from FM to AFM order is associated with the filling of electronic states with two additional electrons/f.u [21,36]. TbFe₂Zn₂₀ and TbCo₂Zn₂₀ also exhibit distinct magnetic behavior according to neutron scattering measurements; TbFe₂Zn₂₀ is a ferromagnet with $T_C = 66$ K and TbCo₂Zn₂₀ orders antiferromagnetically at $T_N = 2.5$ K [37]. The neutron scattering data are consistent with a picture of the RFe₂Zn₂₀ family of compounds in which the high ordering temperatures are associated with the highly polarizable Fe lattice; however, we note that the small magnetic moments on the Fe sites do not order [37]. This distinct magnetic behavior is expected because the rare-earth and transition-metal ions in the RTr_2Zn_{20} compounds are surrounded by Zn cages, preventing direct magnetic exchange interactions between the 4f or 3d levels. Rather, an indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) [38–41] magnetic exchange interaction, mediated by the conduction electrons, provides the mechanism for magnetic order. Therefore, the

FIG. 2. (Color online) (a) Magnetic susceptibility M/H as a function of temperature T measured in an applied magnetic field of H = 0.1 T for SmFe₂Zn₂₀, SmRu₂Zn₂₀, and SmPd₂Cd₂₀, H = 0.5 T for SmCo₂Zn₂₀, and H = 0.05 T for SmNi₂Cd₂₀. Inset: low temperature M/H vs. T data for SmRu₂Zn₂₀, SmNi₂Cd₂₀, and SmPd₂Cd₂₀. The magnetic ordering temperatures T_C and T_N are emphasized by arrows. The M/H vs. T data for SmCo₂Zn₂₀ and SmPd₂Cd₂₀ were scaled by factors of 50 and 100, respectively, for clarity. (b) Inverse magnetic susceptibility data $\chi^{-1} = H/M$ vs. T for Sm Tr_2 Zn₂₀ (Tr = Fe, Co, Ru) and Sm Tr_2 Cd₂₀ (Tr = Ni, Pd). Dashed red lines represent modified Curie-Weiss fits to the data using Eq. (1) and dashed black lines represent the fits to the data using Eq. (2) as described in the text. The $\chi^{-1} = H/M$ vs. T data for SmCo₂Zn₂₀ and SmRu₂Zn₂₀ were scaled by a factor of 50 for clarity. (c) M vs. H data at T = 2 K for the Sm Tr_2 Zn₂₀ (Tr = Fe, Co, Ru) and Sm Tr_2 Cd₂₀ (Tr = Ni, Pd) compounds. The black solid line is a guide to the eye to clarify the separation from the linear behavior of M vs. H data for SmPd₂Cd₂₀ at an applied magnetic field of H = 2.5 T.

conduction electrons play an important role in controlling the magnetic properties of the RTr_2Zn_{20} compounds.

The remarkable differences in magnetic behavior between SmCo₂Zn₂₀ and SmFe₂Zn₂₀ could be associated with the fact that there are two extra electrons per formula unit in SmCo₂Zn₂₀ than in SmFe₂Zn₂₀, in analogy with the R = Gd compounds [21,36]. Interestingly, even though Ni and Pd are in the same column of the periodic table, SmNi₂Cd₂₀ and SmPd₂Cd₂₀ show different magnetic behavior in their ground states; SmNi₂Cd₂₀ has a FM ground state with $T_C = 7.5$ K and SmPd₂Cd₂₀ has an AFM ground state with $T_N = 3.4$ K.

Inverse dc magnetic susceptibility χ_{dc}^{-1} versus *T* data for SmFe₂Zn₂₀ and SmNi₂Cd₂₀ were fitted using the Curie-Weiss law

$$\chi - \chi_0 = C_0 / (T - \Theta_{\rm CW}), \tag{1}$$

where χ_0 is a temperature-independent contribution from the filled electron shells and conduction electrons, in the temperature range 60–300 K to determine the Curie-Weiss temperature Θ_{CW} and effective magnetic moment of the rareearth site μ_{eff} . The effective moment μ_{eff} was extracted from the Curie constant $C_0 = N_A \mu_{\text{eff}}^2 / 3k_B$, where N_A is Avogadro's number and k_B is Boltzmann's constant. This analysis was performed by fitting Eq. (1) to the data using nonlinear leastsquares regression. The resulting best-fit parameter values for $\mu_{\rm eff}$ and $\Theta_{\rm CW}$ are tabulated in Table I. The theoretical Sm³⁺ free ion magnetic moment is $\mu_{\rm eff} = g_J [J(J+1)]^{1/2} \mu_B =$ $0.845\mu_B/f.u.$, where $g_J = 0.286$ is the Landé g factor and J = $\frac{5}{2}$. The effective moment $\mu_{\rm eff}$ values were determined to be $\overline{1.7}\mu_B/f.u.$ and $\overline{0.71}\mu_B/f.u.$ for SmFe₂Zn₂₀ and SmNi₂Cd₂₀, respectively, which are larger for SmFe₂Zn₂₀ and somewhat smaller for $SmNi_2Cd_{20}$ than the theoretical Sm^{3+} free ion value. It has been reported that DyFe₂Zn₂₀ is a ferrimagnet with a magnetic moment associated with both Dy and Fe via Mössbauer experiments [20]. This might be the reason for the larger μ_{eff} value of SmFe₂Zn₂₀: both Sm and Fe may have magnetic moments in this compound. The positive values of Θ_{CW} = 47.8 K for SmFe₂Zn₂₀ and 56.2 K for SmNi₂Cd₂₀ are consistent with ferromagnetic interactions. However, the magnitude of Θ_{CW} for SmNi₂Cd₂₀ is a factor of ~7.5 larger than T_C . This observation may suggest the presence of magnetic frustration or a competition between FM and another ordered state in this compound.

On the other hand, χ_{dc}^{-1} versus *T* data for SmCo₂Zn₂₀, SmRu₂Zn₂₀, and SmPd₂Cd₂₀ show an extremely weak *T* dependence with distinctly non–Curie-Weiss behavior. This is common in Sm-containing compounds since Sm³⁺ ions have relatively low-energy angular momentum excited states above the Hund's rule $J = \frac{5}{2}$ ground state. A simple Curie-Weiss law was, therefore, unable to adequately describe the data. Although possible reasons for this weak *T* dependence include valence fluctuations of Sm ions, the origin is not yet well understood. Similar weak *T* dependence was also observed in Sm*Tr*₂Al₂₀ compounds with 3*d* transition metals [31,32]. Previous work has shown that $\chi(T)$ for Sm compounds can often be reasonably well described, without considering splitting of the Sm multiplet by the crystalline electrical field (CEF), by the equation [10,42]

$$\chi(T) = \frac{N_A}{k_B} \left[\frac{\mu_{\text{eff}}^2}{3(T - \theta_{\text{CW}})} + \frac{\mu_B^2}{\delta} \right], \quad (2)$$

where μ_B is the Bohr magneton, $\delta = 7\Delta/20$, and Δ is the energy (expressed in units of K) between the Hund's rule J = $\frac{5}{2}$ ground state and the $J = \frac{7}{2}$ first excited state. Equation (2) consists of a Curie-Weiss term due to the $J = \frac{5}{2}$ ground-state contribution and a temperature-independent Van Vleck term due to coupling with the first excited $J = \frac{7}{2}$ multiplet. The best overall fit of Eq. (2) to the $\chi_{dc}^{-1}(T)$ data is shown in Fig. 2(b) (dashed black lines). It can be seen that the free-ion Van Vleck term, without adding a Pauli paramagnetic term, provides an excellent fit to the temperature-independent region at high temperatures. The contribution below 100 K displays Curie-Weiss behavior and fits yield μ_{eff} values of $0.99\mu_B/f.u.$, $0.71\mu_B/f.u.$, and $0.74\mu_B/f.u.$ with Θ_{CW} values of -1.83, 8.62, and -6.88 K for SmCo₂Zn₂₀, SmRu₂Zn₂₀, and SmPd₂Cd₂₀, respectively. The signs of the Θ_{CW} values are consistent with ferromagnetic interactions in SmRu₂Zn₂₀ ($T_C = 7.6$ K) and antiferromagnetic interactions in SmPd₂Cd₂₀ ($T_N = 3.4$ K). The signs of Θ_{CW} for SmCo₂Zn₂₀ imply that there are weak antiferromagnetic interactions in that compound, which is consistent with previous reports [19,22]. However, there are deviations in the μ_{eff} values from the free-ion effective paramagnetic moment of $0.845\mu_B/f.u.$ We obtain a larger value for SmCo₂Zn₂₀ and smaller values for SmRu₂Zn₂₀ and SmPd₂Cd₂₀. The resulting Δ values are 412, 265, and 1488 K for SmCo₂Zn₂₀, SmRu₂Zn₂₀, and SmPd₂Cd₂₀, respectively. These values for SmCo₂Zn₂₀ and SmRu₂Zn₂₀ are much lower than the $\Delta \sim 1500$ K value estimated for free Sm^{3+} ions [43]. However, low values of Δ have previously been inferred from the fits to $\chi_{dc}(T)$ data for other Sm-based compounds such as SmRh₄B₄ ($\Delta = 1080$ K) and SmOs₄Sb₁₂ $(\Delta = 850 \text{ K}) [10,42].$

The nature of the magnetic order in these compounds was further studied by measurements of the isothermal magnetization at low temperatures. Magnetization M versus H data, measured at 2 K with H parallel to the [111] direction, are presented in Fig. 2(c). For SmFe₂Zn₂₀, SmRu₂Zn₂₀, and SmNi₂Cd₂₀, M(H) is consistent with a FM state with a rapid rise and saturation of the ordered moment as the magnetic field increases. By extrapolating the high-field slope of the magnetization curves at 2 K back to H = 0 T, the saturation moment μ_{sat} was determined to be $1.05\mu_B/f.u.$ for SmFe₂Zn₂₀; this value is higher than the theoretical value of $M_{\text{sat}} = g_J J \mu_B = 0.71 \mu_B / \text{f.u.}$ We also obtain values of 0.47 and $0.52\mu_B/f.u.$, for SmRu₂Zn₂₀ and SmNi₂Cd₂₀, respectively, which are $\sim 70\%$ of the theoretical value of the free Sm^{3+} ion. The ratio of the effective magnetic moment to the saturation magnetic moment for these compounds is $\mu_{\rm eff}/\mu_{\rm sat} \sim 1$, indicating that the f electrons associated with the Sm magnetic moments are localized [44]. At 2 K, the remnant magnetization M_R is 0.58, 0.31, and 0.27 μ_B /f.u. for SmFe₂Zn₂₀, SmRu₂Zn₂₀, and SmNi₂Cd₂₀, respectively. The M(H) isotherms at temperatures higher than their respective T_C 's (not shown here) are approximately linear. On the other hand, M versus H data measured at 2 K are hysteretic for SmFe₂Zn₂₀, SmRu₂Zn₂₀, and SmNi₂Cd₂₀; however, negative curvature for $SmCo_2Zn_{20}$, which cannot be described by Brillouin function and approximately linear behavior for $SmPd_2Cd_{20}$ up to H = 2.5 T, is consistent with AFM correlations which can be field stabilized to fully saturated states in large enough applied magnetic fields. A magnetic field of H = 5 T was unable to saturate the magnetic moments of the SmCo₂Zn₂₀ and SmPd₂Cd₂₀ compounds. There is a departure from the linear behavior of M versus H data for $SmPd_2Cd_{20}$ at an applied magnetic field of H = 2.5 T, which may be related with classical spin reorientation in a cubic symmetry coordination (i.e., an incipient metamagnetic phase transition).

The electrical resistivity ρ versus temperature T data for the Sm Tr_2 Zn₂₀ (Tr = Fe, Co, Ru) and SmNi₂Cd₂₀ compounds are displayed in Fig. 3. Metallic behavior is observed for all of the compounds. The zero-field residual resistivity ratios $RRR \equiv R (300 \text{ K})/R (1.2 \text{ K})$ for $SmTr_2Zn_{20} (Tr = Fe, Ru)$ and $\text{SmPd}_2\text{Cd}_{20}$, $\text{RRR} \equiv R (300 \text{ K})/R (0.05 \text{ K})$ for $\text{SmNi}_2\text{Cd}_{20}$, and RRR $\equiv R (300 \text{ K})/R (0.11 \text{ K})$ for SmCo₂Zn₂₀ were found to be \sim 7–80, which indicates that the single crystals studied are of good metallurgical quality (i.e., low impurity scattering). The values for RRR are given in Table I. A shoulder develops in the zero-field $\rho(T)$ curve for SmFe₂Zn₂₀, SmRu₂Zn₂₀, SmNi₂Cd₂₀, and SmPd₂Cd₂₀, below which $\rho(T)$ exhibits a sharp drop, indicating a transition to an ordered state. A similar shoulder with a gentle rolloff can also be seen in the zero-field $\rho(T)$ curve for SmCo₂Zn₂₀ (indicated by an arrow in the inset of Fig. 3(a) without an accompanying sharp drop. The transition temperatures T_C and T_N at which these drops occur are defined as the intercept of two lines, one of which is a linear fit to the data above the transition, while the other is a linear fit to the data below the transition. Examples of this definition of the T_C values are shown in Fig. 3(b) and the resulting values of T_C and T_N are indicated by arrows in the inset of Fig. 3(a). The T_C value for SmNi₂Cd₂₀ is determined to be 6.6 K in zero magnetic field, which increases to $T_C =$ 7.5 K in an applied magnetic field of H = 5 T. This behavior is consistent with a ferromagnetic ground state in SmNi₂Cd₂₀, in agreement with our magnetic susceptibility results.

In order to analyze the behavior of the electrical resistivity at low temperature, the $\rho(T)$ data were fit with a power law of the form $\rho = \rho_0 + AT^n$. The best-fit parameter values for ρ_0 (selected to maximize the linear region of the $\ln(\rho - \rho_0)$

FIG. 3. (Color online) (a) Electrical resistivity ρ vs. temperature *T* for Sm*Tr*₂Zn₂₀ (*Tr* = Fe, Co, Ru) and Sm*Tr*₂Cd₂₀ (*Tr* = Ni, Pd). Inset: electrical resistivity at low temperatures emphasizing the magnetic ordering temperatures *T_C* and *T_N* (indicated by arrows). For SmCo₂Zn₂₀, the arrow indicates the low-temperature shoulder in $\rho(T)$. (b) Low-*T* ρ vs. *T* data in zero field and an *H* = 5 T applied magnetic field for SmNi₂Cd₂₀. The red dashed lines indicate the method we used to determine *T_C*. (c) Low-*T* ρ vs. *T*³ data in zero field and an *H* = 5 T applied magnetic field for SmNi₂Cd₂₀ with power-law fits (solid black line). (d) Low-*T* ρ vs. *T* data in zero magnetic field for SmFe₂Zn₂₀ with spin-wave scattering fit (solid red line) using Eq. (3).

versus ln*T* fit extending from low *T*) and *A* are listed in Table I. As an example, a best fit for the SmNi₂Cd₂₀ data is plotted as a solid line in Fig. 3(c). The residual resistivity ρ_0 increases with increasing magnetic field. For both H = 0 and 5 T, $n \sim$ 3 indicating that SmNi₂Cd₂₀ exhibits neither typical Fermiliquid (FL) ($n \sim 2$) nor typical non-Fermi-liquid (NFL) (n <2) behavior. On the other hand, the exponent values of $n \sim 2$ for SmFe₂Zn₂₀, SmRu₂Zn₂₀, and SmPd₂Cd₂₀ are consistent with a Fermi-liquid state and $n \sim 0.9$ for SmCo₂Zn₂₀ is consistent with typical NFL behavior [45,46]. We note that these power-law fits were made to maximum temperatures that are less than the respective spin-wave gap temperatures Δ_{spw} (see Table I); therefore, scattering with spin waves should be negligible in this analysis and can safely be neglected.

Since ferromagnetic order occurs below T_C , electron-spinwave scattering at higher temperatures was considered with the form [47]

$$\rho(T) = \rho_0 + B \frac{T}{\Delta_{spw}} \left(1 + 2 \frac{T}{\Delta_{spw}} \right) \exp\left(-\frac{\Delta_{spw}}{T}\right), \quad (3)$$

where Δ_{spw} is the spin-wave energy gap, which may result either from magnetic anisotropy or from broken symmetry due to the presence of a CEF. This formula describes the $\rho(T)$ data in a ferromagnetically ordered state. A FL term AT^2 was added to Eq. (3) for fits to SmFe₂Zn₂₀ and SmRu₂Zn₂₀ data. An example of the best fit for SmFe₂Zn₂₀ is given in Fig. 3(d). As determined from the fits, the spin-wave energy gap values Δ_{spw} for SmFe₂Zn₂₀, SmRu₂Zn₂₀, and SmNi₂Cd₂₀ are 4.8, 3.9, and 8.8 K, respectively. However, SmPd₂Cd₂₀ orders antiferromagnetically so the following expression was used to fit the spin-wave scattering contribution to electrical resistivity [48,49]:

$$\rho(T) = \rho_0 + AT^2 + C\Delta_{spw}^2 \sqrt{\frac{T}{\Delta_{spw}}} \times \left[1 + \frac{2}{3}\left(\frac{T}{\Delta_{spw}}\right) + \frac{2}{15}\left(\frac{T}{\Delta_{spw}}\right)^2\right] e^{-\frac{\Delta_{spw}}{T}}.$$
 (4)

The differences in the values extracted for Δ_{spw} via fits to the low-temperature $\rho(T)$ data using Eqs. (3) and (4) are small because the exponential term that contains the gap in its argument is the dominant term in both expressions. However, the values for Δ_{spw} extracted by using Eq. (4) agree much better with the values for the energy gap obtained from fits of the low-temperature specific-heat data as discussed below. The spin-wave energy gap Δ_{spw} for SmPd₂Cd₂₀ is determined to be 3.6 K. Because magnetic order is not observed for SmCo₂Zn₂₀, it is inappropriate to describe the $\rho(T)$ data with an expression containing spin-wave scattering; therefore, we have limited these fits to the $\rho(T)$ data for SmFe₂Zn₂₀, SmRu₂Zn₂₀, SmNi₂Cd₂₀, and SmPd₂Cd₂₀. The extracted values for Δ_{spw} are reasonably close to one another and are listed in Table I.

Specific heat divided by temperature C/T versus temperature T data are shown in Fig. 4(a). A sharp lambdalike anomaly in C/T is observed at $T_C = 6.76$ K for SmRu₂Zn₂₀, $T_C =$ 6.34 K for SmNi₂Cd₂₀, and $T_N = 3.05$ K for SmPd₂Cd₂₀, indicating a second-order phase transition. However, C/Tversus T data do not manifest a standard lambdalike anomaly for SmFe₂Zn₂₀; rather, they exhibit a broad shoulder around T_C , which is taken to be the midpoint of the region with nearly zero slope, and was determined to be $T_C = 44.4$ K. This broad feature is observed more clearly after a background subtraction as shown in Figs. 4(c)-4(e), which may indicate a distribution of T_C values associated with multiple transitions. All of the magnetic ordering temperatures are indicated by arrows in Fig. 4(a). The upturn in $\text{SmCo}_2\text{Zn}_{20}$ below 10 K may be related to a Schottky anomaly due to splitting of the Hunds's rule ground state of Sm^{3+} by the CEF. Similar results in C(T) data for SmCo₂Zn₂₀ were observed by Jia et al. [19]. Additionally, we observed another upturn at lower temperatures below 2 K which may also be related to a Schottky anomaly due to splitting of the nuclear states. On the other hand, this upturn might be associated with NFL behavior in SmCo₂Zn₂₀, which is supported by the subquadratic temperature dependence of the electrical resistivity below ~ 2 K. Low-temperature specific-heat measurements are necessary to clarify whether SmCo₂Zn₂₀ has a NFL or a FL ground state in which the properties below 10 K are dominated by spin fluctuations. It is of interest to note that a broad shoulder below T_C and T_N is a common feature in compounds such as TbCo₂Zn₂₀, ErFe₂Zn₂₀, and PrTi₂Al₂₀ [19,50]. According to calculations by Fishman and Liu [51], these features arise naturally in a Heisenberg ferromagnet with large spin quantum number; however, it is also possible for quantum fluctuations in the transverse degrees of freedom to produce similar features [51].

The electronic and phonon contributions to specific heat, characterized by γ and β , respectively, were determined by linear fits to the data plotted as C/T versus T^2 using the expression $C/T = \gamma + \beta T^2$. The fits were performed in the 100–250 K² temperature range to avoid contributions from magnetic order below 10 K or Schottky anomalies for SmCo₂Zn₂₀, SmRu₂Zn₂₀, SmNi₂Cd₂₀, and SmPd₂Cd₂₀. The γ values of SmCo₂Zn₂₀, SmRu₂Zn₂₀, SmRu₂Zn₂₀, SmNi₂Cd₂₀, and

FIG. 4. (Color online) (a) Specific heat divided by temperature, C/T, for Sm Tr_2Zn_{20} (Tr = Fe, Co, Ru) and SmNi₂Cd₂₀ in zero magnetic field. Arrows refer to magnetic phase transition temperatures. Inset: C/T for SmCo₂Zn₂₀ emphasizing the upturn at low temperatures below 2 K (indicated by the arrow). (b) C/T vs. T^2 for SmFe₂Zn₂₀. The solid line represents a fit to the data using the equation $C/T = \gamma + \beta T^2$. (c) Logarithmic plot of power-law fit (blue solid line) and anisotropic spin-wave fit (red solid line) to the magnetic contribution to the specific heat, $\Delta C(T)$, for SmFe₂Zn₂₀ after electronic and lattice contributions have been subtracted. (d) Magnetic entropy, S_{mag} , vs. T for Sm Tr_2Zn_{20} (Tr = Co, Ru) and SmNi₂Cd₂₀. (e) Magnetic contribution to specific heat, ΔC , (corresponds to left axis) and the magnetic entropy, S_{mag} , (right axis) vs. T for SmFe₂Zn₂₀.

TABLE II. Summary of characteristic quantities and ratios for RTr_2Zn_{20} (R = Y, La, Sm, Tr = Fe, Co, Ru) and RTr_2Cd_{20} (R = Y, La, Sm, Tr = Ni, Pd). Included in the table are the Sommerfeld coefficient of the specific heat γ ; Sommerfeld-Wilson ratio SWR; and Kadowaki-Woods ratio KWR.

Compound	$\gamma \left(\frac{mJ}{mol K^2}\right)$	SWR	KWR $\left(\frac{\mu\Omega \text{ cm mol}^2 \text{ K}^2}{\text{mJ}^2}\right)$
YFe ₂ Zn ₂₀	53		
YNi ₂ Cd ₂₀	22.9		
LaNi ₂ Cd ₂₀	25.9		
SmFe ₂ Zn ₂₀	57		
SmCo ₂ Zn ₂₀	79.5		
SmRu ₂ Zn ₂₀	258	2.0	4.4×10^{-7}
SmNi ₂ Cd ₂₀	165		
$SmPd_2Cd_{20}$	208	0.7	1.1×10^{-5}

SmPd₂Cd₂₀ are listed in Table II together with γ values for nonmagnetic YFe₂Zn₂₀, YNi₂Cd₂₀, and LaNi₂Cd₂₀ reference compounds [30,33]. These values of γ are upper limits, and their precise values are subject to some uncertainty because of experimental constraints imposed by the low-temperature upturn of *C*/*T* for SmCo₂Zn₂₀ and the sharp lambdalike anomalies for SmRu₂Zn₂₀, SmNi₂Cd₂₀, and SmPd₂Cd₂₀. An example of the linear fit for SmFe₂Zn₂₀ is shown in Fig. 4(b) as a solid line; the fit was performed in the 4–25 K² temperature range. Sommerfeld coefficient values of $\gamma \sim 57$ mJ/mol K² for SmFe₂Zn₂₀, ~ 79.5 mJ/mol K² for SmCo₂Zn₂₀, ~ 258 mJ/mol K² for SmRu₂Zn₂₀, ~ 165 mJ/mol K² for SmNi₂Cd₂₀, and ~ 208 mJ/mol K² for SmPd₂Cd₂₀ were obtained.

In general, γ is proportional to the total density of states at the Fermi energy $D(E_f)$. The observed differences between γ values probably simply reflect differences in the electronic structure of these compounds. On average, the compounds with X = Cd appear to have larger values of γ than when X = Zn, and the γ values also seem to increase when we go from 3d to 4d transition-metal elements. For clarity, it would be helpful to perform band-structure calculations. Since there are 23 atoms per formula unit in these 1-2-20 compounds, the electronic states coming from the transition metal and Zn or Cd ions could produce a fairly large contribution to $D(E_f)$ without considering any Sm contributions. We have, therefore, compared the γ values we measure for the Sm-based compounds with values obtained from suitable nonmagnetic reference compounds where R =Y or La. The difference between these values is a measure of the contribution of Sm and its interactions with itinerant electron states (i.e., any quasiparticle resonances) to $D(E_f)$. The electronic specific-heat coefficient γ (see Table II) for SmFe₂Zn₂₀ and SmCo₂Zn₂₀ is not very different from the γ value of nonmagnetic YFe₂Zn₂₀. However, there is an enhancement of the γ value for SmRu₂Zn₂₀, SmNi₂Cd₂₀, and SmPd_2Cd_{20} relative to the γ value of YRu_2Zn_{20} (γ \sim 34 mJ/mol K²) [22], YFe₂Zn₂₀, YNi₂Cd₂₀, and LaNi₂Cd₂₀, indicating an enhancement of $D(E_f)$ associated with Sm ions. The Debye temperature Θ_D was calculated using the relation $\Theta_D = [23 * 1944 * 1000(1/\beta)]^{1/3}$ K. For all of the compounds studied, Θ_D values are roughly the same near \sim 214 K.

Figure 4(c) displays the magnetic contribution to specific heat $\Delta C(T)$ of SmFe₂Zn₂₀ as a representative example. $\Delta C(T)$ is obtained after the specific heat of nonmagnetic YFe₂Zn₂₀, LaNi₂Cd₂₀ (used to estimate the lattice contribution to specific heat for SmFe₂Zn₂₀ and SmNi₂Cd₂₀, respectively) is subtracted from the specific heat of SmFe₂Zn₂₀ and SmNi₂Cd₂₀, respectively, and $\gamma T + \beta T^3$ (estimated electronic and lattice contribution terms) is subtracted from the specific heats of SmRu₂Zn₂₀ and SmPd₂Cd₂₀. The low-temperature data for SmFe_2Zn_{20}, SmRu_2Zn_{20}, and SmNi_2Cd_{20} were fit with a spin-wave formula $\Delta C(T) \propto T^n$, which is appropriate for magnetically isotropic metals. Fits were made using $\Delta C(T) \propto$ $T^{3/2} \exp(-\Delta_{spw}/T)$ for magnetically anisotropic metals, and $\Delta C(T) \propto T^3 \exp(-\Delta_{spw}/T)$ for SmPd₂Cd₂₀ [52]. From the first formula, we obtained exponent values of $n \sim 3.1$, 3.11, 2.8, and 2.9 for SmFe₂Zn₂₀, SmRu₂Zn₂₀, SmNi₂Cd₂₀, and SmPd₂Cd₂₀, respectively. These values for SmFe₂Zn₂₀, $SmRu_2Zn_{20}, \mbox{ and } SmNi_2Cd_{20}$ are in disagreement with predictions from theoretical calculations involving ferromagnetic spin waves which yield a $T^{3/2}$ dependence, but they are consistent with a calculation for the specific heat that involves antiferromagnetic spin waves which gives $C \propto T^3$ [53]. The spin-wave energy gap Δ_{spw} values were determined from the second formula to be 7.0, 4.9, 10.8, and 5.7 K for $SmFe_2Zn_{20}$, SmRu₂Zn₂₀, SmNi₂Cd₂₀, and SmPd₂Cd₂₀, respectively. These values are consistent (i.e., of the same order of magnitude) with the values of 4.8, 3.9, 8.8, and 3.6 K, which were determined from the zero-field electrical resistivity data.

The magnetic contribution to specific heat $\Delta C(T)$ of $SmCo_2Zn_{20}$, $SmRu_2Zn_{20}$, $SmNi_2Cd_{20}$, and $SmPd_2Cd_{20}$ is displayed in Fig. 4(d) (left axis). The magnetic contribution to the entropy $S_{\text{mag}} = \int (\Delta C/T) dT$ (extrapolating a power-law T dependence of $\Delta C/T$ to 0 K to estimate the magnetic entropy below 1.8 K) is displayed in Fig. 4(d) (corresponding to the right axis). The entropy $S_{\rm mag}$ attains a value of $S_{\rm mag} \sim$ 5.95 J mol⁻¹ K⁻¹ for SmRu₂Zn₂₀, $S_{mag} \sim 12.8$ J mol⁻¹ K⁻¹ for SmNi₂Cd₂₀, and $S_{mag} \sim 7.81$ J mol⁻¹ K⁻¹ for SmPd₂Cd₂₀ at their respective magnetic ordering temperatures. Then, S_{mag} reaches a value of 9.14 J mol⁻¹ K^{-1} and 8.1 J mol⁻¹ K^{-1} by 15 K and saturates for SmCo₂Zn₂₀ and SmRu₂Zn₂₀, respectively. These values are lower than expected for Sm³⁺ with $J = \frac{5}{2} (S_{\text{mag}} = R \ln(2J + 1) = 14.9 \text{ J mol}^{-1} \text{ K}^{-1})$ with full degeneracy, but S_{mag} reaches $\sim R \ln 2$ at $T_C = 6.76$ K, which suggests that the ground state of Sm for SmRu₂Zn₂₀ could be a Γ_7 doublet; however, low-temperature specific-heat measurements are necessary to identify the ground state for SmCo₂Zn₂₀ because of the low-temperature upturn below 10 K. On the other hand, $S_{\text{mag}} \sim 14.7 \text{ J mol}^{-1} \text{ K}^{-1}$ at 15 K for SmNi₂Cd₂₀ nearly reaches $R \ln 6$, indicating that the expected magnetic entropy is completely recovered by this temperature. A value of $S_{\text{mag}} \sim 11.7 \text{ J mol}^{-1} \text{ K}^{-1}$ at 15 K for SmPd₂Cd₂₀ and a value of 7.81 J mol⁻¹ K⁻¹ at $T_N = 3.4$ K suggests that the ground state of Sm in this compound is probably a Γ_8 quartet [54]. Thus, our check demonstrates that the estimated $\Delta C/T$ curves for the SmTr₂Zn₂₀ (Tr = Fe, Co, Ru) and $SmTr_2Cd_{20}$ (Tr = Ni, Pd) compounds are reasonable. The sizable release of magnetic entropy indicates that the valence of Sm ions is close to 3+. On the other hand, S_{mag} versus T for $SmFe_2Zn_{20}$, displayed in Fig. 4(e), attains a value 18.7 J mol⁻¹ K⁻¹ above the ferromagnetic transition. This is a larger value than expected for Sm³⁺, which may be due to a contribution from Fe ions to the magnetic entropy. Such a scenario is in concert with the larger μ_{eff} value for SmFe₂Zn₂₀ than expected for the Sm³⁺ ion alone.

IV. DISCUSSION

The magnetic, electrical transport, and thermodynamic properties of SmFe₂Zn₂₀, SmRu₂Zn₂₀, and SmNi₂Cd₂₀ reveal ferromagnetic order below $T_C = 47.4, 7.6, \text{ and } 7.5 \text{ K}, \text{ respec-}$ tively. Antiferromagnetic order is observed below $T_N = 3.4$ K for SmPd₂Cd₂₀, but no evidence for magnetic order is observed down to 110 mK for SmCo₂Zn₂₀. Magnetic order with low transition temperatures or no ordering at all might be expected in the *RTr*₂Zn₂₀ series of compounds due to their very low rareearth ion concentrations and large spatial separations between neighboring *R* ions. However, $SmFe_2Zn_{20}$ exhibits a relatively high Curie temperature of $T_C = 47.4$ K. In the RTr_2Zn_{20} compounds, the rare-earth and transition-metal ions are surrounded by Zn cages preventing direct magnetic exchange interactions between the 4f or 3d electrons; however, 3d electrons from Fe sites in RFe_2Zn_{20} act as important mediators via the RKKY interaction and the indirect magnetic exchange interaction between Fe 3d electrons enhances the magnetic interactions between R^{3+} localized magnetic moments, resulting in the remarkably high T_C for RFe_2Zn_{20} compounds. It has also been suggested that the magnetic exchange interaction between the two R ions is weaker than that between R and Fe ions [55]. In this scenario, the T_C of RFe_2Zn_{20} compounds is enhanced by the magnetic exchange interaction between R and Fe ions [55]. The T_C values in the RFe_2Zn_{20} series of compounds with R =Gd-Lu are reported to scale with the de Gennes factor [56], and the relatively high T_C value we observe for SmFe₂Zn₂₀ fits in with this scaling behavior of the heavier rare-earth ion members. We note that RTr_2Zn_{20} compounds with Tr = Ru, Os, which are both in the same column as Fe, are characterized by significantly lower T_C values compared to those for Tr = Fe [19]. In the neighboring column, the RTr_2Zn_{20} compounds with Tr = Co, Rh, Ir are known to order antiferromagnetically [19]. Therefore, it appears that the number of conduction electrons from the transition-metal *d*-electron shell plays an important role in determining the magnetic properties of the RTr₂Zn₂₀ compounds. However, this conclusion does not appear to apply for all the RTr_2Cd_{20} compounds because, even though Ni and Pd both reside in the same column of the periodic table, SmNi₂Cd₂₀ orders ferromagnetically with $T_C = 7.5$ K while SmPd₂Cd₂₀ has an antiferromagnetic ground state with $T_N = 3.4$ K. Calculations of the electronic band structure would be helpful to understand why the magnetic structures for SmNi₂Cd₂₀ and SmPd₂Cd₂₀ are different.

The electronic specific-heat coefficient γ (see values of γ listed in Table II) for SmFe₂Zn₂₀ and SmCo₂Zn₂₀ is not significantly larger than the γ value for nonmagnetic YFe₂Zn₂₀ and YCo₂Zn₂₀ ($\gamma \sim 18.3 \text{ mJ/mol K}^2$) [22]. This observation suggests that the electronic structure and the well-localized nature of 4*f* electrons are quite similar in these compounds. However, an enhancement of the γ value for SmRu₂Zn₂₀, SmNi₂Cd₂₀, and SmPd₂Cd₂₀, relative to the γ

values for YRu₂Zn₂₀ ($\gamma \sim 34 \text{ mJ/mol K}^2$) [22], YNi₂Cd₂₀, and LaNi₂Cd₂₀, suggests that heavy quasiparticles form at low temperature or that there is a peak in the electronic density of states D(E) near E_F contributed by Sm states. Since we were unable to prepare nonmagnetic reference compounds for SmPd₂Cd₂₀, we assumed that the density of states of YNi₂Cd₂₀, LaNi₂Cd₂₀, YPd₂Cd₂₀, and LaPd₂Cd₂₀ are similar. Values of γ that are significantly enhanced relative to those of nonmagnetic analogues imply that the f electrons are strongly admixed with conduction-electron states and have developed delocalized character. However, the value $n \sim 3$ of the exponent from the power-law fit of the electrical resistivity data for SmNi₂Cd₂₀ and the localized character of f electrons (determined from $\mu_{eff}/\mu_{sat} \sim 1$) [44] in SmRu₂Zn₂₀ and SmNi₂Cd₂₀ are inconsistent with typical heavy-fermion (HF) physics. Localized f electrons in $SmRu_2Zn_{20}$ and $SmNi_2Cd_{20}$ participate in their respective FM ground states via the RKKY interaction [39-41], which competes with the heavy-fermion state in a generic Doniach model context. This contradictory behavior of SmRu₂Zn₂₀ and SmNi₂Cd₂₀ suggests that these compounds may be near a ferromagnetic quantum critical point (QCP). Due to the possible proximity to a ferromagnetic QCP, SmRu₂Zn₂₀ and SmNi₂Cd₂₀ compounds represent potential new model systems for studying the break down of Fermi-liquid behavior near a ferromagnetic QCP. Even though there are extensive studies on HF systems that focus on antiferromagnetic (AFM) QCP's, there are a limited but increasing number of HF ferromagnets (FMs). In particular, Sm-based HF FMs are rare and include SmFe₄P₁₂ ($\gamma \sim 350$ mJ/mol K²) [11], SmOs₄Sb₁₂ ($\gamma \sim 880$ mJ/mol K²) [9], and SmPtSi ($\gamma \sim 250$ mJ/mol K²) [57]. We also note that a few other Sm-based compounds with the CeCr₂Al₂₀-type structure are considered to be heavy fermions with $\gamma \sim 100 \text{ mJ/mol K}^2$ for SmTi₂Al₂₀, $\gamma \sim 720 \text{ mJ/mol } \text{K}^2$ for SmV₂Al₂₀, and $\gamma \sim 1000 \text{ mJ/mol } \text{K}^2$ for SmCr₂Al₂₀, which all have AFM ground states [31,32]. The investigation of other FM compounds near a QCP is therefore highly desirable for a more complete understanding of quantum criticality. An enhanced electronic specific-heat coefficient for SmPd₂Cd₂₀, which has as an exponent value of $n \sim 2$, an AFM ground state, and a possible metamagnetic transition at T = 2 K and $H \sim 2.5$ T supports an interpretation that this compound is near a QCP with a FL ground state. We want to emphasize that there is no evidence for a coherence temperature in the electrical resistivity data, as would be expected for typical HF compounds. On the other hand, this lack of distinct features in the electrical resistivity $\rho(T)$ has been observed in other Sm-based HF compounds such as SmFe₄P₁₂ and SmOs₄Sb₁₂ [9,11], and may indicate that the HF composite quasiparticles in these compounds develop through a route different from the standard Kondo-lattice mechanism.

In order to elucidate the character of the HF behavior, we calculated the Kadowaki-Woods ratio KWR = A/γ^2 , where γ is the coefficient of the electronic specific heat and A is the coefficient of the T^2 contribution to the electrical resistivity [58]. Calculations were performed for the compounds that have a quadratic T dependence at low temperature in electrical resistivity data. Calculated KWR values are given in Table II. In the original treatment [58], KWR $\approx 10^{-5} \frac{\mu\Omega \text{ cm mol}^2\text{K}^2}{\text{ml}^2}$, which is almost the same value we calculate for SmPd₂Cd₂₀. More recently, it has been found that a number of HF compounds based on lanthanide or actinide ions other than Ce (e.g., Sm, Eu, Yb, U) exhibit KWR values closer to $A/\gamma^2 = 1.0 \times 10^{-6} \frac{\mu\Omega \operatorname{cm} \operatorname{mol}^2 \mathrm{K}^2}{\mathrm{mJ}^2}$, which can be explained by taking into account the degeneracy N of the lanthanide or actinide ions [59]. For SmRu₂Zn₂₀, KWR is close to $0.36 \times 10^{-6} \frac{\mu \Omega \text{ cm mol}^2 \text{K}^2}{\text{mJ}^2}$ when we assume N = 8, supporting the formation of a magnetic FL ground state. Moreover, we consider the Sommerfeld-Wilson ratio SWR $= [\pi^2 k_B^2/(\mu_{\rm eff})^2]\chi_0/\gamma$, where k_B is the Boltzmann constant, $\mu_{\rm eff}$ is the effective magnetic moment, and χ_0 is the enhanced Pauli susceptibility [60]. SWR values are tabulated in Table II. A SWR ratio value of 0.7 is calculated for SmPd₂Cd₂₀; this value is very close to 1, which is expected for a free-electron gas [61]. We calculate a value of 2 for SmRu₂Zn₂₀, which is consistent with a Kondo system and has been observed in many HF systems. The f-electron spin fluctuations presumably enhance χ_0 relative to γ , which leads to a larger value for the SWR [61,62].

Low-temperature electrical resistivity data suggest the presence of spin-wave excitations below T_C for SmFe₂Zn₂₀, SmRu₂Zn₂₀, and SmNi₂Cd₂₀, and below T_N for SmPd₂Cd₂₀. The uncertainty in the ground state of the Sm multiplet energy-level scheme and the microscopic properties of spin-wave excitations may be resolved by performing neutron scattering experiments. However, for such an experiment, it should be noted that both Sm and Cd are strong neutron absorbers; therefore, samples would need to be synthesized using one of the less-absorbing Sm isotopes such as ¹⁵²Sm or ¹⁵⁴Sm and a Cd isotope such as ¹¹⁴Cd [63].

V. SUMMARY

Measurements of electrical resistivity, magnetization, and specific heat have been performed for single crystals of the caged compounds $SmTr_2Zn_{20}$ (Tr = Fe, Co, Ru) and $SmTr_2Cd_{20}$ (Tr = Ni, Pd). $SmFe_2Zn_{20}, SmRu_2Zn_{20}$, and SmNi₂Cd₂₀ exhibit ferromagnetic order with Curie temperatures of $T_C = 47.4$, 7.6, and 7.5 K, respectively, while SmPd₂Cd₂₀ is an antiferromagnet with $T_N = 3.4$ K. No evidence for magnetic order is observed in SmCo₂Zn₂₀ down to 110 mK. Sommerfeld coefficients γ of 57 mJ/mol K² for $SmFe_2Zn_{20}$, 79.5 mJ/mol K² for $SmCo_2Zn_{20}$, 258 mJ/mol K² for $SmRu_2Zn_{20}$, 165 mJ/mol K² for $SmNi_2Cd_{20}$, and ${\sim}208~mJ/mol\,K^2$ for $SmPd_2Cd_{20}$ are obtained. Enhanced Sommerfeld coefficients relative to nonmagnetic reference compounds and the exponent $n \sim 2$ from the power-law fits of electrical resistivity data for SmRu₂Zn₂₀ and SmPd₂Cd₂₀ suggest an enhancement of the quasiparticle masses related due to hybridization between localized 4f and conduction electron states. Therefore, we suggest that SmRu₂Zn₂₀ is a new addition to the rare class of Sm-based HF ferromagnet with a KWR value of 4.4 \times 10^{-7} $\frac{\mu\Omega\,cm\mbox{ mol}^2K^2}{mJ^2}$ and a SWR value of 2, which have been observed in many HF Kondo lattice systems.

ACKNOWLEDGMENTS

Research at UCSD was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences and Engineering under Grant No. DE-FG02-04-ER46105 (sample synthesis and physical properties measurements above 1 K), and the National Science Foundation under Award Grant No. DMR 1206553 (physical properties measurements below 1 K). Research at California State University, Fresno is supported by the National Science Foundation under Grant No. DMR 1104544. Helpful discussions with Professor T. Yanasigawa are gratefully acknowledged.

- A. Jayaraman, V. Narayanamurti, E. Bucher, and R. G. Maines, Phys. Rev. Lett. 25, 1430 (1970).
- [2] M. B. Maple and D. Wohlleben, Phys. Rev. Lett. 27, 511 (1971); *Magnetism and Magnetic Materials*, AIP Conference Proceedings No. 18, edited by C. D. Graham Jr. and J. J. Rhyne (AIP, New York, 1974), p. 447.
- [3] S. Bakanowski, J. Crow, and T. Mihalisin, Solid State Commun. 22, 241 (1977).
- [4] L. De Long, R. McCallum, W. Fertig, M. Maple, and J. Huber, Solid State Commun. 22, 245 (1977).
- [5] A. Menth, E. Buehler, and T. H. Geballe, Phys. Rev. Lett. 22, 295 (1969).
- [6] H. Kotegawa, H. Hidaka, Y. Shimaoka, T. Miki, T. C. Kobayashi, D. Kikuchi, H. Sugawara, and H. Sato, J. Phys. Soc. Jpn. 74, 2173 (2005).
- [7] S. Sanada, Y. Aoki, H. Aoki, A. Tsuchiya, D. Kikuchi, H. Sugawara, and H. Sato, J. Phys. Soc. Jpn. 74, 246 (2005).
- [8] A. Yamasaki, S. Imada, H. Higashimichi, H. Fujiwara, T. Saita, T. Miyamachi, A. Sekiyama, H. Sugawara, D. Kikuchi, H. Sato *et al.*, Phys. Rev. Lett. **98**, 156402 (2007).

- [9] M. Mizumaki, S. Tsutsui, H. Tanida, T. Uruga, D. Kikuchi, H. Sugawara, and H. Sato, J. Phys. Soc. Jpn. 76, 053706 (2007).
- [10] W. M. Yuhasz, N. A. Frederick, P.-C. Ho, N. P. Butch, B. J. Taylor, T. A. Sayles, M. B. Maple, J. B. Betts, A. H. Lacerda, P. Rogl *et al.*, Phys. Rev. B **71**, 104402 (2005).
- [11] N. Takeda and M. Ishikawa, J. Phys.: Condens. Matter 15, L229 (2003).
- [12] M. Yoshizawa, Y. Nakanishi, M. Oikawa, C. Sekine, I. Shirotani, S. R. Saha, H. Sugawara, and H. Sato, J. Phys. Soc. Jpn. 74, 2141 (2005).
- [13] S. Niemann and W. Jeitschko, J. Solid State Chem. 114, 337 (1995).
- [14] T. Nasch, W. Jeitschko, and U. C. Rodewald, Z. Naturforsch. B 52, 1023 (1997).
- [15] V. M. Thiede, W. Jeitschko, S. Niemann, and T. Ebel, J. Alloys Compd. 267, 23 (1998).
- [16] P. Kripyakevich and O. Zarechnyuk, Dopov. Akad. Nauk Ukr. RSR Ser. A, 364 (1968).
- [17] O. Moze, L. Tung, J. Franse, and K. Buschow, J. Alloys Compd. 268, 39 (1998).
- [18] F. C. Frank and J. S. Kasper, Acta Crystallogr. 11, 184 (1958).

- [19] S. Jia, N. Ni, S. L. Bud'ko, and P. C. Canfield, Phys. Rev. B 80, 104403 (2009).
- [20] Y. Isikawa, T. Mizushima, K. Kumagai, and T. Kuwai, J. Phys. Soc. Jpn. 82, 083711 (2013).
- [21] S. Jia, S. L. Bud'ko, G. D. Samolyuk, and P. C. Canfield, Nat. Phys. 3, 334 (2007).
- [22] S. Jia, N. Ni, S. L. Bud'ko, and P. C. Canfield, Phys. Rev. B 76, 184410 (2007).
- [23] T. Onimaru, K. T. Matsumoto, Y. F. Inoue, K. Umeo, Y. Saiga, Y. Matsushita, R. Tamura, K. Nashimoto, I. Ishii, T. Suzuki *et al.*, J. Phys. Soc. Jpn. **79**, 033704 (2010).
- [24] A. Sakai and S. Nakatsuji, J. Phys. Soc. Jpn. 80, 063701 (2011).
- [25] A. Sakai, K. Kuga, and S. Nakatsuji, J. Phys. Soc. Jpn. 81, 083702 (2012).
- [26] T. J. Sato, S. Ibuka, Y. Nambu, T. Yamazaki, T. Hong, A. Sakai, and S. Nakatsuji, Phys. Rev. B 86, 184419 (2012).
- [27] Y. Saiga, K. Matsubayashi, T. Fujiwara, M. Kosaka, S. Katano, M. Hedo, T. Matsumoto, and Y. Uwatoko, J. Phys. Soc. Jpn. 77, 053710 (2008).
- [28] K. Matsubayashi, T. Tanaka, A. Sakai, S. Nakatsuji, Y. Kubo, and Y. Uwatoko, Phys. Rev. Lett. 109, 187004 (2012).
- [29] P. C. Canfield, S. Jia, E. D. Mun, S. L. Bud'ko, G. D. Samolyuk, and M. S. Torikachvili, Physica B (Amsterdam) 403, 844 (2008).
- [30] M. S. Torikachvili, S. Jia, E. D. Mun, S. T. Hannahs, R. C. Black, W. K. Neils, D. Martien, S. L. Bud'ko, and P. C. Canfield, Proc. Natl. Acad. Sci. USA 104, 9960 (2007).
- [31] A. Sakai and S. Nakatsuji, Phys. Rev. B 84, 201106 (2011).
- [32] R. Higashinaka, T. Maruyama, A. Nakama, R. Miyazaki, Y. Aoki, and H. Sato, J. Phys. Soc. Jpn. 80, 093703 (2011).
- [33] V. W. Burnett, D. Yazici, B. D. White, N. R. Dilley, A. J. Friedman, B. Brandom, and M. B. Maple, J. Solid State Chem. 215, 114 (2014).
- [34] A. C. Larson and R. B. Von Dreele, General Structure Analysis System (GSAS).
- [35] B. H. Toby, J. Appl. Crystallogr. 34, 210 (2001).
- [36] S. Jia, N. Ni, G. D. Samolyuk, A. Safa-Sefat, K. Dennis, H. Ko, G. J. Miller, S. L. Bud'ko, and P. C. Canfield, Phys. Rev. B 77, 104408 (2008).
- [37] W. Tian, A. D. Christianson, J. L. Zarestky, S. Jia, S. L. Bud'ko, P. C. Canfield, P. M. B. Piccoli, and A. J. Schultz, Phys. Rev. B 81, 144409 (2010).
- [38] J. J. M. Franse and R. J. Radwanski, in *Handbook of Magnetic Materials*, Vol. 7, edited by K. H. J. Buschow (Elsevier, Amsterdam, 1993).
- [39] M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
- [40] T. Kasuya, Prog. Theor. Phys. 16, 45 (1956).

- [41] K. Yosida, Phys. Rev. 106, 893 (1957).
- [42] H. Hamaker, L. Woolf, H. MacKay, Z. Fisk, and M. Maple, Solid State Commun. 32, 289 (1979).
- [43] J. H. Van Vleck, *The Theory of Electric and Magnetic Susceptibilities* (Oxford University Press, London, 1932).
- [44] P. Rhodes and E. P. Wohlfarth, Proc. R. Soc. A 273, 247 (1963).
- [45] M. B. Maple, Physica B (Amsterdam) 215, 110 (1995).
- [46] M. B. Maple, M. C. de Andrade, J. Herrmann, Y. Dalichaouch, D. A. Gajewski, C. L. Seaman, R. Chau, R. Movshovich, M. C. Aronson, and R. Osborn, J. Low Temp. Phys. 99, 223 (1995).
- [47] N. H. Franse, in *Crystalline Electrical Field and Structural Effects in f-Electron Systems*, edited by J. E. Crow, R. P. Guertin, and T. W. Mihalisin (Plenum, New York, 1980).
- [48] N. Hessel Andersen and H. Smith, Phys. Rev. B 19, 384 (1979).
- [49] M. B. Fontes, J. C. Trochez, B. Giordanengo, S. L. Bud'ko, D. R. Sanchez, E. M. Baggio-Saitovitch, and M. A. Continentino, Phys. Rev. B 60, 6781 (1999).
- [50] M. J. Kangas, D. C. Schmitt, A. Sakai, S. Nakatsuji, and J. Y. Chan, J. Solid State Chem. **196**, 274 (2012).
- [51] R. S. Fishman and S. H. Liu, Phys. Rev. B **40**, 11028 (1989).
- [52] A. Mackintosh, Phys. Lett. 4, 140 (1963).
- [53] J. Van Kranendonk and J. H. Van Vleck, Rev. Mod. Phys. 30, 1 (1958).
- [54] K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962).
- [55] Y. Isikawa, T. Mizushima, S. Miyamoto, K. Kumagai, M. Nakahara, H. Okuyama, T. Tayama, T. Kuwai, and P. Lejay, J. Kor. Phys. Soc. 63, 644 (2013).
- [56] P. G. De Gennes, J. Phys. Radium 23, 510 (1962).
- [57] S. Ramakrishnan, K. Ghosh, A. D. Chinchure, V. R. Marathe, and G. Chandra, Phys. Rev. B 52, 6784 (1995).
- [58] K. Kadowaki and S. Woods, Solid State Commun. 58, 507 (1986).
- [59] N. Tsujii, H. Kontani, and K. Yoshimura, Phys. Rev. Lett. 94, 057201 (2005).
- [60] P. Gegenwart, J. Custers, Y. Tokiwa, C. Geibel, and F. Steglich, Phys. Rev. Lett. 94, 076402 (2005).
- [61] Z. Fisk, H. R. Ott, and G. Aeppli, Jpn. J. Appl. Phys. 26, 1882 (1987).
- [62] Z. Fisk, H. R. Ott, and J. L. Smith, Nature (London) 320, 124 (1986).
- [63] J.-H. Chung, M. Matsuda, S.-H. Lee, K. Kakurai, H. Ueda, T. J. Sato, H. Takagi, K.-P. Hong, and S. Park, Phys. Rev. Lett. 95, 247204 (2005).