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Our development of the self-consistent mean-field (SCMF) kinetic theory for nonuniform alloys leads to
the statement that kinetic correlations induced by the vacancy diffusion mechanism have a dramatic effect
on nanoscale diffusion phenomena, leading to nonlinear features of the interdiffusion coefficients. Lattice rate
equations of alloys including nonuniform gradients of chemical potential are derived within the Bragg-Williams
statistical approximation and the third shell kinetic approximation of the SCMF theory. General driving forces
including deviations of the free energy from a local equilibrium thermodynamic formulation are introduced. These
deviations are related to the variation of vacancy motion due to the spatial variation of the alloy composition.
During the characteristic time of atomic diffusion, multiple exchanges of the vacancy with the same atoms may
happen, inducing atomic kinetic correlations that depend as well on the spatial variation of the alloy composition.
As long as the diffusion driving forces are uniform, the rate equations are shown to obey in this form the
Onsager formalism of thermodynamics of irreversible processes (TIP) and the TIP-based Cahn-Hilliard diffusion
equation. If now the chemical potential gradients are not uniform, the continuous limit of the present SCMF
kinetic equations does not coincide with the Cahn-Hilliard (CH) equation. In particular, the composition gradient
and higher derivative terms depending on kinetic parameters add to the CH thermodynamic-based composition
gradient term. Indeed, a diffusion equation written as a mobility multiplied by a thermodynamic formulation
of the driving forces is shown to be inadequate. In the reciprocal space, the thermodynamic driving force has
to be multiplied by a nonlinear function of the wave vector accounting for the variation of kinetic correlations
with composition inhomogeneities. Analytical expressions of the effective interdiffusion coefficient are given
for two limit behaviors of the vacancy, the latter treated as either a conservative species (fixed concentration) or
a nonconservative species (time-dependent equilibrium concentration). Relying on the same vacancy diffusion
model, we perform kinetic Monte Carlo simulations starting from a sinusoidal composition modulation in binary
model alloys, with no interaction or nearest-neighbor interactions leading to clustering or ordering tendencies,
along the [100] crystallographic direction of a body centered cubic (bcc) lattice. The resulting temporal variation
of the modulation amplitude is compared to the corresponding SCMF equations. Qualitative and satisfying
quantitative agreements systematically strengthen our theoretical conclusions. The model alloys are shown to be
representative enough of some real alloys, so that one may expect these new heterogeneous correlation effects to
be non-negligible in these alloys.
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I. INTRODUCTION

Up to now, there is no satisfying atomic theory of diffusion.
The available ones are dedicated to the calculation of the
phenomenological Onsager coefficients Lij ’s starting from
an atomic scale description of the diffusion mechanism (see
Ref. [1] for an extensive presentation of the various diffusion
theories and recent developments of our self-consistent mean-
field (SCMF) theory presented in Refs. [2–4]). The difficulty
of evaluating the Lij ’s comes from the correlation effects.
Indeed, diffusion in crystalline solids proceeds via the jumps
of a few point defects on a lattice; as a consequence, the
successive jumps of each given atom are kinetically correlated.
Although the coefficients Lij ’s are equilibrium quantities, they
are generally evaluated in systems out of equilibrium with
driving forces assumed to be uniform. In alloys submitted
to nonuniform driving forces, the relationship between the
macroscopic diffusion properties and the atomic jump fre-
quencies has not been established. In particular, the effect of
driving force heterogeneities on the kinetic correlations has not
received due attention. In systems where concentration hetero-
geneities have dimensions close to the interatomic distance,
diffusion processes are expected to be strongly affected by the
heterogeneous correlation effects. Therefore diffusion should
be described at the atomic scale to get a good understanding

of, for example, aging phenomena of nanoscale devices and
bulk materials with nanoscale microstructures. Conventional
diffusion experiments are conducted at spatial scales (decades
of microns), which are too large to highlight the atomic scale
features of diffusion. Instead, a few interdiffusion experiments
performed on nanoscale composition-modulated foils have
been performed. They are perfect for the characterization of
atomic diffusion. A complex variation of the interdiffusion
coefficient D with respect to the periodicity length of a
sinusoidal composition-modulation has been observed—while
at large wavelengths, a linear variation of D with squared wave
vector k2 is observed, at wavelengths smaller than a few lattice
parameters an increasing slowing down of D with k2 leads to
a nonlinear function D(k2) (for a review see Ref. [5]).

Fick’s second law, commonly used to study bulk diffusion,
would predict a constant interdiffusion coefficient. Instead,
phenomenological kinetic models including composition
gradient-energy parameters such as the Cahn-Hilliard (CH)
model lead to a linear variation of the effective interdiffusion
coefficient with k2 at small k [6,7]. Such models are based
on a phenomenological expansion of the free energy of the
solid solution written as a volume integral of a sum of local
bulk and composition gradient energies [8]. They differ from
a Fick’s second law by the inclusion of this composition
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gradient energy. The linear variation of the diffusion coefficient
with k2 is deduced from the k-space representation of the
composition gradient energy, which in the diffusion coefficient
appears as a gradient-energy parameter multiplied by k2. The
nonlinear behavior of the effective interdiffusion coefficient at
short wavelength is not predicted by such phenomenological
kinetic equations although they are used in nanoscale diffusion
analysis, in phase field methods to simulate phase transforma-
tions starting from nanoscale composition fluctuations, and in
spinodal decomposition theories to predict early stage kinetic
laws [6,9,10].

This observation prompted the development of a micro-
scopic version of the CH theory accounting for the atomic
discrete aspect of the free energy, strongly inspired by the
lattice rate kinetic equations introduced by Hillert [11].
Instead of using a coarse graining procedure, ensemble mean-
field averages based on equilibrium statistical theories are
used to calculate the discrete free energy [12–15]. The
mean-field driving force leads to an effective interdiffusion
coefficient nonlinear with k2. Nonlinearity is due to the
replacement of k2 by discrete cosine operators of k associated
with every interaction range and direction of diffusion [16].
Diffusion at the atomic scale is then predicted to be anisotropic
even in a cubic lattice. Nonlinearities and anisotropy were even
used to determine ordering parameters in solid solutions [17].
However, a few applications of this discrete kinetic theory
to specific alloys were not fully convincing. The discrete
driving force deduced from a thermodynamic database could
not provide a clear explanation of the strong nonlinearity
observed in the effective interdiffusion coefficients [18,19].
An alternative approach is to derive the whole atomic fluxes
from ensemble averages not only the thermodynamic driving
forces. The first derivation of the whole interdiffusion flux
has been achieved by Martin [20]. The resulting microscopic
expression has been shown to obey in this form the formalism
of the CH method with a mobility depending on the local
equilibrium composition and composition inhomogeneity.
However, these atomic kinetic equations were derived for
a microscopic direct exchange mechanism, which is a very
rare mechanism in metallic alloys relative to the vacancy
diffusion mechanism. For the vacancy diffusion mechanism,
there have been some atomic derivations of the kinetic fluxes,
though the kinetic correlations produced by the vacancy were
neglected [21]. Eventually, all these microscopic mean-field
theories like the Cahn-Hilliard approach yield an interdif-
fusion flux, which is written as a mobility multiplied by
a thermodynamic formulation of the driving force. Within
a phenomenological approach, the use of thermodynamics
to derive nonequilibrium driving forces is justified by a
local equilibrium hypothesis. This hypothesis leads to the
statement that a thermodynamic expression of the free energy
can describe very different states such as the equilibrium
interface profile between two coexisting phases [8], the critical
nucleus in a two-component metastable solid solution [22],
multilayers and their stability against composition fluctuations
[15,23,24], and also composition fluctuations of uniform sys-
tems and nonuniform systems during a phase decomposition
[6,9].

However, in the case of uniform gradients of chemical
potentials. The path probability method (PPM) and the SCMF

theory showed that the phenomenological coefficients of
the Onsager matrix for the vacancy diffusion mechanism
[2–4,25–29] and the split interstitial diffusion mechanism
[30–33] were correctly reproduced only if deviations of short-
range order parameters from local equilibrium are taken into
account. These deviations have been shown to be related to
the kinetic correlations induced by the diffusion mechanism.
They some time lead to spectacular kinetic phenomena such
as percolation threshold phenomena [29] or solute drag by a
vacancy flux [2–4]. In the specific case of vacancy diffusion
mechanism, the kinetic correlations are produced by the higher
probability of a given atom, after a first exchange with a
vacancy, to exchange again with the same vacancy than
exchange with a new vacancy, due to the small concentration of
vacancy. Hence the jump sequence of an atom is not a random
path and deviations from it correspond to the probability of a
vacancy to make loop paths and a reverse jump with the atom.
On the time scale of atomic diffusion, the effective probability
of forming an exchanging atom-vacancy pair includes the
probability of vacancy loop paths. Such probability related
to the deviation of the exchanging pair probability from local
equilibrium, depends on the kinetic parameters of the vacancy
diffusion model and gradients of chemical potentials. The
kinetic correlations of a composition-modulated foils resulting
from the probability of a vacancy to leave, return and exchange
again with the same atom, are expected to depend on the
concentration field surrounding the atom and then on the
wave vector k of the composition modulation as illustrated in
Fig. 1. Note that PPM did not tackle this kinetic phenomenon
because the few applications of PPM to phase transforma-
tions were restricted to order-disorder transitions, neglecting
the effect of the spatial fluctuations of chemical potential
gradients [34–38].

Our purpose is to start from an atomic scale description of
the vacancy diffusion mechanism and extend the SCMF theory
of diffusion to both nonsteady states and nonuniform gradients
of chemical potential. A nonequilibrium distribution function
represented by an exponential of time-dependent effective
Hamiltonian is employed for the ensemble averaging, allowing
a deviation of the state variables from local equilibrium
values. The time-dependent effective Hamiltonian includes
pair interactions beyond the first nearest-neighbor (1nn) atoms
so that longer paths than the vacancy two-jump return paths
are accounted for in the calculation of kinetic correlations. The
ensemble averaging of the master equation yields nonlinear
kinetic equation of the mean occupancies of a single site
and pairs of sites. Application of a linear stability analysis
should yield wavelength dependent effective interdiffusion
coefficients which will be compared to direct atomic kinetic
Monte Carlo simulations (AKMC). Body centered cubic (bcc)
alloys with vacancy and nearest-neighbor interactions will
be considered although the techniques can be generalized to
any crystallographic structure and interactions among atoms
separated by greater distances and other point defect diffusion
mechanisms.

Section II introduces the SCMF kinetic theory, starting
from a vacancy jump frequency model and yielding a set of
nonlinear lattice rate equations. In Sec. III, the kinetic equa-
tions are explicitly written along the [100] crystallographic
direction of a bcc lattice for various kinetic approximations.
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FIG. 1. (Color online) Spatial variation of the alloy chemical
potential in a two-dimensional system (top), and short sequences
of a two-dimensional walk of vacancy in (a) a uniform and (b) a
nonuniform gradient of chemical potential. Typical loops of vacancy
jump sequences are drawn, with a first jump starting from the dashed
circle (white arrow) followed by a sequence of jumps (red arrows)
exploring the neighboring sites of the dashed circle (white full circles)
and a last jump leading to the dashed circle. For the calculation of
the kinetic correlations, within a (1nn)-shell approximation, the loops
exploring the 1nn sites of the dashed circle are included only, within a
(1nn)2 [respectively (1nn)3] shell approximation, the 1nn of 1nn sites
(respectively, 1nn of 1nn of 1nn) of the dashed circle are visited also.
In (b), the length of vacancy jumps is artificially varied to illustrate
the effect of chemical potential spatial variation on the vacancy
jump frequencies and subsequently on the kinetic correlations. It is
interesting to note that a (1nn)-shell kinetic approximation including
vacancy two-jump paths only leads to kinetic correlations that do
not depend on the spatial inhomogeneities of the chemical potential
gradient.

The expression of the effective interdiffusion coefficient is
derived from a stability analysis of the kinetic equations for
two limit behaviors of the vacancy, the latter treated as a
conservative species (fixed concentration) or nonconserva-
tive species (time dependent equilibrium concentration). In
Sec. IV, atomic kinetic Monte Carlo (AKMC) simulations
of kinetic decay of sinusoidal composition modulation along
the 〈100〉 crystallographic direction of a bcc binary model
alloy, with no interaction or nearest-neighbor positive and
negative ordering energies, are performed. The resulting
temporal variation of the modulation amplitude and mea-
sured effective diffusion coefficients are compared to the
corresponding SCMF predictions. Then, general behaviors
of the composition gradient and Laplacian terms of the
interdiffusion coefficients are predicted by the SCMF theory.
Eventually, a qualitative comparison of the kinetic properties
between the chosen model alloys and a few real alloys is
performed.

II. THE SELF-CONSISTENT MEAN-FIELD KINETIC
THEORY

A. A vacancy jump frequency model

The large set of jump frequencies associated with species
α in a concentrated alloy is assumed to follow a classical
thermally activated form:

WαV
ij = να exp

⎡
⎣−β

⎛
⎝E(s)

α −
∑
k,ζ

δikVαζ δ
ζ

k

⎞
⎠
⎤
⎦ , (1)

where β is the inverse of the Boltzmann’s constant multiplied
by temperature T . να is the attempt frequency depending on the
jumping atom, and the term in the exponential is the migration
enthalpy, that is, the difference between the total energy of the
system in the initial configuration and when the jumping atom
is at the saddle point. The migration energy is described by
a breaking bond model limited to first nearest-neighbor (1nn)
pair interactions. E(s)

α is the contribution of the exchanging
atom α to the saddle point energy. E(s)

α is symmetric with
respect to i and j so that the jump frequency model satisfies
the detailed balance. The second term in the exponential
corresponds to the sum of interaction energies Vαζ between
the exchanging atom α and its neighbors ζ at the initial state.
δik is equal to 1 if lattice sites i and k are 1 nn. Occupation of
a site i is specified by a set of occupation numbers (δα

i )—δα
i

is equal to 1 if site i is occupied by α and 0 if else. This
type of model was applied to real systems like the austenitic
steels [39], the ferritic steels [40], and the aluminum alloys
[41,42]. The present frequency model determines the transition
probabilities from one alloy configuration to another one of a
master equation, which is solved using AKMC simulations
and the SCMF theory.

B. Atomic mean-field kinetic equations

In the present atomic diffusion theory, the independent
variables used to describe nonuniform alloys include short-
range order parameters in addition to the local concentration
field and temperature, the volume and pressure being fixed
in a rigid lattice model. In the present study, short-range
order parameters are limited to the mean occupancy of
pairs of neighboring sites (pair probability) and the local
concentration field is described at the atomic scale by the mean
occupancy of single sites. The introduction of a nonequilibrium
distribution function yields mean-field kinetic equations for
the mean occupancy of sites as well as for the deviation
of pair probabilities from a local equilibrium relationship.
The nonequilibrium distribution function is written after the
equilibrium distribution function P0 multiplied by a nonequi-
librium distribution function P1 written as an exponential of a
time-dependent effective Hamiltonian h(t) converging to zero
at equilibrium:

h(t) = 1

2

∑
αζ,i �=j

v
αζ

ij (t)δα
i δ

ζ

j . (2)

The effective pair interactions v
αζ

ij between an atom α on
site i and an atom ζ on site j are unknown and must be
obtained solving the master equation. Previous developments
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of the SCMF theory focused on the steady state solutions
of the master equation. It was to calculate the phenomeno-
logical coefficients associated with the vacancy mechanism
[2–4,27–29] and the interstitial mechanism [30–33]. Two
hierarchies of approximations may be explored. The first
one is determined by the number of effective interactions
used to define the nonequilibrium distribution function. It
determines the number of kinetic equations to be solved.
The second level of approximation concerns the statistical
approximation used to calculate the equilibrium ensemble
averages of the jump probabilities. In the present work, three
kinetic approximations are investigated, the first-shell one with
an effective Hamiltonian ĥ restricted to 1nn effective pair
interactions, the second shell one with ĥ restricted to 1nn
and 1nn of 1nn pair interactions [(1nn)2 approximation], and
the third shell one with ĥ restricted to 1nn, 1nn of 1nn and
1nn of 1nn of 1nn pair interactions [(1nn)3 approximation].
For the thermodynamic approximation used to calculate
the jump probabilities, a statistical Bragg-Williams (BW)
point approximation is employed. Same approximations have
already been used to find the steady-state solution of a system
submitted to a uniform chemical potential gradient in Ref. [27].
This work is an extension of Ref. [27] to transitory kinetics
of systems described by nonuniform gradients of chemical
potentials. In that case, the relationship between the effective
interactions and the pair probabilities has to be made explicit.
Starting from the definition of a pair probability occupation of
sites i and j by species α and ζ :〈

δα
i δ

ζ

j

〉 =∑
n

δα
i δ

ζ

j P̂0(n)P̂1(n,t) = 〈δα
i δ

ζ

j P1(n,t)
〉(0)

, (3)

where the exponent (0) indicates that the ensemble average
corresponds to an equilibrium average, which here will
be calculated by means of a mean-field BW approxima-
tion. We deduce an expression of the pair correlator at first
order in the pair effective interactions:

k
αζ

ij = 〈δα
i δ

ζ

j

〉− cα
i c

ζ

j

= cα
i c

ζ

j β

⎛
⎝hα

ij + h
ζ

ji − h
αζ

ij −
∑
αζ

h
αζ

ij cα
i c

ζ

j

⎞
⎠ , (4)

where cα
i = 〈δα

i 〉 is the mean occupation of site i by species α,
the formal derivative h

αζ

ij is equal to v
αζ

ij and hα
ij reads

hα
ij =

∑
ζ

v
αζ

ij c
ζ

j . (5)

Note that Eq. (4) satisfies the normalization condition of the
pair probabilities: the sum over ζ of the pair correlator is zero
hence the sum over ζ of probabilities 〈δα

i δ
ζ

j 〉 is equal to the on-
site mean concentration cα

i . Equation (4) can be used to express
the effective interactions in terms of the pair correlators. The
unknown variables associated with a pair of sites (i,j ) occupied
by species α and ζ are then represented by A

αζ

ij and S
αζ

ij ,

where A
αζ

ij = k
αζ

ij − k
ζα

ij is the antisymmetric pair correlator

and S
αζ

ij = k
αζ

ij + k
ζα

ij is the symmetric pair correlator.
In a binary alloy AB with vacancy V , a pair of sites

can be occupied by (A,A), (A,V ), (B,V ), (A,B), (BB), or

(V V ). However, the normalization of the distribution function
applied to the pair probabilities implies relationships between
the pair correlators and pairs V V are neglected due to the
small vacancy concentration, reducing the set of independent
pair correlators of a given pair of sites (i,j ) to the threefold
ensemble (AAB

ij ,SAB
ij ,SAV

ij ).
Rate equation of the mean occupation of site i by species α

is written at first order in δμ and the effective Hamiltonian ĥ:

d
〈
δα
i

〉
dt

= β
∑

s

δis

〈
Ŵ αV

si δα
s δV

i

(
δμα

s + δμV
i − ĥα

s − ĥV
i

)
− ŴV α

si δV
s δα

i

(
δμV

s + δμα
i − ĥV

s − ĥα
i

)〉(0)
, (6)

where ĥα
i is the formal partial derivative of ĥ with respect to

δα
i . δij is equal to zero unless site i and j are 1nn sites. Due to

the following relation: δα
i δ

ζ

i = δKr
αζ δα

i , where δKr
αζ is equal to 1

if α = ζ and 0 if else (Kronecker symbol), as it is explained
in Refs. [27,29], a Bragg-Williams approximation of Eq. (6)
yields

d
〈
δα
i

〉
dt

= L(0)
ααβ

∑
s

δis

[(
μαV

s − μαV
i

)
− (hα

is + hV
si − hαV

is − hα
si − hV

is + hV α
is

)]
, (7)

where the nonequilibrium chemical potential is defined by
the relation: μαV

s = δμα
s − δμV

s + hα
s − hV

s . The particular
feature to be noted in our previous diffusion papers and the
present one, is that it is not necessary to assume, but rather the
theory derives, that the gradients of local chemical potentials
are the driving forces for the fluxes. Furthermore, these local
non-equilibrium chemical potentials are shown to be related to
the local concentrations through a thermodynamic relationship
[28]. Formal derivatives of the effective hamiltonian appearing
in the second line of Eq. (7) can be interpreted as additional
driving forces to the classical chemical potential ones.

L(0)
αα corresponds to an ensemble average of the jump

frequency calculated in the homogeneous equilibrium state
for which chemical potential gradients are zero and nominal
concentration of species i is ci :

L
(0)
ii = cicV νi exp

⎧⎨
⎩−β

⎡
⎣E

(s)
i − Z

∑
ζ

(Viζ + Viζ )cζ

⎤
⎦
⎫⎬
⎭ , (8)

where Z is the number of 1 nn (equal to eight in a bcc alloy).
By means of Eq. (4), Eq. (7) is written in terms of pair

correlators as

d
〈
δα
i

〉
dt

=L(0)
ααβ

∑
s

δis

(
μαV

s − μαV
i − AαV

is

cαcV

)
. (9)

This rate equation is found to depend on the 1nn antisymmetric
pair correlators only. Note that the detailed balance has been
used to factorize L(0)

αα .
Since the procedure is similar to that for solving the kinetics

of a single site mean occupation, 〈δA
i 〉, we skip some of the

steps and obtain for the antisymmetric pair correlator,

dAAV
ij

dt
= 2δij

(
cBL

(0)
AA∇βμAV

i − cAL
(0)
BB∇βμBV

i

)
− [2q2δij + (Z − δij )q0]AAV

ij
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− q0

2

∑
k

(
δi
jkA

AV
jk − δ

j

ikA
AV
ik

)
− q0

2

∑
k

(δi
jkSjk − δ

j

ikSik), (10)

where δi
jk is equal to zero unless sites j and k are 1nn sites and

k is different from i. ∇ corresponds to the discrete gradient
operator. q parameters are given by

q0 = (L(0)
AA + L

(0)
BB

)/
cV

q1 = (cBL
(0)
AA − cAL

(0)
BB

)
(cAcBcV ) (11)

q2 = (c2
BL

(0)
AA + c2

AL
(0)
BB

)/
(cAcBcV ).

Sik is a symmetric combination of pair correlators defined by

Sik = SAV
ik + q1

q0
cvS

AB
ik . (12)

In the case of a uniform gradient of chemical potential, due to
the translation symmetry of the effective interactions, the pair
correlators of sites i and j depend on the difference (j − i)
only and last sum of Eq. (10) involving the symmetric pairs
Sjk and Sik is null. Then the kinetics of the concentration field
is coupled to the antisymmetric pair correlators AAV

ij only and
solution is derived from the time integration of the reduced
system of equations combining Eqs. (9) and (10). Note that
the coefficients in front of the antisymmetric correlator AAB

ij

are not proportional to cv , which leads to a characteristic
time of the antisymmetric pair cv times smaller than the
characteristic time of the atomic concentration fields. The
relaxation kinetics of the vacancy pair correlators are thus
assumed to be instantaneous with respect to the concentration
field kinetics. The latter approximation is equivalent to
applying an adiabaticity approximation to the rate equation
of the vacancy pair correlators and put Eq. (10) equal to 0.
It is interesting to note that the resulting antisymmetric pair
correlators, i.e., the deviation of short-range order from local
equilibrium, are uniform and proportional to the chemical
potential gradients. Then the replacement of AαV

is in Eq. (9) by
its expression in terms of chemical potential gradients leads to
a discrete version of the TIP rate equations.

In the case of nonuniform gradients of chemical potential,
kinetics of the antisymmetric and symmetric pair correlators
are coupled. First, we consider the time derivative of SAV

ij :

dSAV
ij

dt
= −(Z − δij )Sij + q0

2

∑
k

(
δi
jkSjk + δ

j

ikSik

)
− q0

2

∑
k

(
δi
jkA

AV
jk + δ

j

ikA
AV
ik

)
. (13)

As for the antisymmetric pair correlator, the coefficient in front
of SAV

ij is not proportional to cv and an adiabatic approximation
is applied to Eq. (13) as well. Contrary to the case of uniform
chemical potentials, both the chemical potential gradients and
the set of unknown variables, (cA

i ,cB
i ,AAB

ij ,Sij )ij depend on
their spatial coordinates i and j , and they are fully determined
by the system of equations combining Eqs. (7), (10), and
(13). Note that the rate equation of the third independent
pair correlator SAB

ij is required to describe the kinetics of the

atom-atom pair correlators:

dSAB
ij

dt
= −(Z − δij )S ′

ij + q ′
0

2

∑
k

(
δi
jkS

′
jk + δ

j

ikS
′
ik

)

− q ′
0

2

∑
k

(
δi
jkA

AV
jk + δ

j

ikA
AV
ik

)
, (14)

where

S ′
ik = SAV

ik + q ′
1

q ′
0

cvS
AB
ik (15)

and

q ′
0 = (L(0)

AA − L
(0)
BB

)/
cV

(16)
q ′

1 = (cBL
(0)
AA + cAL

(0)
BB

)
(cAcBcV ).

SAB
ij represents the fluctuations of the symmetric part of the

atomic pair correlator kAB
ij , hence contributing to the concen-

tration fluctuations around a homogeneous solid solution of
nominal concentrations cA and cB :〈(

δA
i − cA

)(
δB
j − cB

)〉 = (cA
i − cA

)(
cB
i − cB

)
+ 0.5

(
SAB

ij + AAB
ij

)
, (17)

where AAB
ij can be neglected because a resolution of Eqs. (10),

(13), and (14) would easily show that AAB
ij is cV times

smaller than SAB
ij . The contribution of SAB

ij is essential when
(cA

i − cA)(cB
i − cB) is small as for instance in the beginning

of a sinusoidal decomposition. If one studies the decay of
a sinusoidal concentration profile with a sufficiently large
amplitude, SAB

ij can be neglected.
To conclude, the evolution of the concentration profile is es-

sentially determined by the kinetics of the mean concentration
field, which is the solution of Eq. (7). The latter depends on the
time-dependent antisymmetric pair correlator AAV

is between
1nn sites i and s. In the case of uniform chemical potential
gradients, the kinetics of AAV

is depends on the antisymmetric
pair correlators (AAV

ij ), which are the solution of Eq. (10). The
resulting antisymmetric pair correlators are uniform. Instead,
in the case of nonuniform chemical potential gradients, in
addition to (AAV

ij ), the 1nn antisymmetric pair correlator AAV
is

depends on the symmetric combinations of pair correlators
(Sik) defined by Eq. (12); the pair variables (AAV

ij ) and (Sik)
being solutions of Eqs. (10) and (13).

III. DIFFUSION EQUATIONS

Diffusion equations are written for a bcc lattice. First, a
nomenclature of pair correlators is introduced to treat the
specific case of a 1D-sinusoidal concentration field along a
given direction. Then a stability analysis with a sinusoidal
concentration fluctuation directed along the [100] direction
of the bcc crystal is presented, first within the first-shell
(1nn) kinetic approximation, then within the second (1nn)2

and third (1nn)3-shell approximations. In the next section, the
rate equations and the resulting interdiffusion coefficient are
derived in the case of nonconservative vacancy. Eventually, a
Taylor expansion of the diffusion coefficient with respect to the
wave vector leads to an interpretation of the kinetic correlations
as correction terms of the Cahn-Hilliard driving force.
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A. Nomenclature of the pair variables

The independent classes of pair variables to be considered
depend on the applied chemical potential and the kinetic
approximation used to solve the rate equations. In the specific
case of a 1D-sinusoidal concentration field along a given
direction (Ox), it is convenient to project the kinetic equations
along (Ox) and use the 1D symmetry to reduce the number
of relevant variables. First, the chemical potential gradient is
aligned along (Ox). Considering a unit vector �u along (Ox),
two pairs of sites ij and i ′j ′ that have the same length and the
same projection on vector �u belong to the same class. However,
in contrast to the case of a uniform chemical potential gradient,
the pair correlators associated with ij and ji are not antisym-
metric and the classes of bonds normal to �u do not cancel out.
Moreover, there is no translational symmetry and the pair i ′j ′
is defined by its belonging to the class ij and its coordinate xi ′

on axis (Ox): x ′
i = ( �Oi ′.�u)/d, where O is a reference point

and d is the interplane distance along (Ox). In the following,
we use �eis to designate the unit vector linking sites i and s and
for any class we choose a representative īj whose projection
on (Ox) is positive. The pair ik will be noted (xi,m̄j ) if the
pair ik belongs to the class of mj and �eik.�u � 0, and (xk,m̄j )
if the pair ik belongs to the class of mj and �eik.�u � 0.

In practice, a finite number of pairs are considered. In the
first (1nn)-shell approximation, a single class associated with
1nn pairs noted 1 is considered. An nn pair occupied by species
(α,ζ ) is then represented by two independent pair correlators:
the antisymmetry correlator A

αζ

i,1 = k
αζ

i,1 − k
ζα

i,1 and the sym-

metric correlator S
αζ

i,1 = k
αζ

i,1 + k
ζα

i,1 . Similarly, the symmetric
combination of 1nn pair correlators defined in Eq. (12) is
represented by Si,1. In the (1nn)2-shell approximation, pairs
between a given site and 1nn sites of its 1nn sites are kept.
In the specific case of a vector �u aligned along the [100]
direction of the bcc crystal, representative members of the
pairs are respectively the first, second, third, fifth nn bonds,
which are noted, 1, 2, 3, and 5. Note that besides these pairs,
pairs lying in planes perpendicular to �u have to be considered.
Representative members of bonds normal to �u between
respectively the second and the third nn sites are noted Pi,2 and
Pi,3, where i is the x coordinate. A schematic representation
of the bonds and pair correlators to be considered in the (1nn),
(1nn)2, and (1nn)3-shell approximations is shown in Fig. 2.

B. Stability analysis

In a binary alloy AB submitted to a local gradient of
chemical potential, the rate equation of the concentration field
[Eq. (9)] is written for cA

i and cB
i along the direction of the

chemical potential gradient (Ox)

dcA
i

dt
= zdL

(0)
AA∇2βμAV

i − zdL
(0)
AA∇ AAV

i,1

cAcV
(18)

dcB
i

dt
= zdL

(0)
BB∇2βμBV

i + zdL
(0)
BB∇ AAV

i,1

cBcV

,

where zd is the number of 1nn sites with same x coordinate.
∇2 corresponds to the discrete Laplacian operator. AαV

i,1 is
then calculated by means of Eqs. (10) and (13) involving the

FIG. 2. (Color online) Representation of the bonds formed by the
atom (black disk with x coordinate i) and one of its neighbors to be
considered in the (1nn), (1nn)2, and (1nn)3-shell approximations.
Letter P is added to the nomenclature of bonds 2 and 3 lying in
the plane perpendicular to the axis (Ox) (direction of the chemical
potential gradient). Letters a and b are added to the nomenclature of
bonds 4 and 7 when their x coordinates are different. The unknown
pair correlators to be calculated are listed on the right column. Note
that there is no antisymmetric contributions to the perpendicular
bonds P 2 and P 3; and within the (1nn)-shell contribution, the
symmetric 1nn pair correlator Si,1 is not listed because it is not
involved in the rate equations to be solved [Eqs. (18) and (19)].

symmetric pair correlators and longer range antisymmetric
pair correlators.

The stability analysis of the rate equations is presented in
detail for the first-shell (1nn) kinetic approximation. Within
a (1nn)-shell approximation, 1nn pairs are considered only.
The time derivative of the 1nn antisymmetric pair correlator is
derived from Eq. (10) as follows:

dAAV
i,1

dt
= 2
(
cBL

(0)
AA∇βμAV

i − cAL
(0)
BB∇βμBV

i

)
− [2q2 + (Z − 1 − Q�)q0]AAV

i,1 . (19)

Application of the adiabatic approximation on Eq. (19) yields
an expression of the nonequilibrium antisymmetric pair corre-
lator AAV

i,1 in terms of the chemical potential gradients. AAV
i,1 is

then governed by the difference between two distinct driving
forces, respectively proportional to ∇βμAV

i and ∇βμBV
i ,

traducing the fact that a vacancy jump sequence is driven
by a competition between A-V and B-V exchanges (the
so-called correlation effects). The larger the competition,
the larger the deviation of antisymmetric pair probabilities
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from the local equilibrium value and the larger the kinetic
correlations. The time variation of the concentration fields
is then fully determined by the closed set of rate equations
formed by Eqs. (18) and (19). When the expression of AAV

i,1 is
introduced into Eq. (18), the rate equations obey in this form
the formalism of thermodynamics of irreversible processes
(TIP) of Onsager (see, for example, Ref. [1]). By identification
with the macroscopic TIP equations, the driving forces are
identified as partial derivatives of the discrete free energy
function and the phenomenological coefficients are equal to

LAB = 2L
(0)
AAL

(0)
BB

cv[q0(Z − 1 − Q�) + 2q2]

LAA = L
(0)
AA

(
1 − cB

LAB

cAL
(0)
BB

)
(20)

LBB = L
(0)
BB

(
1 − cA

LAB

cBL
(0)
AA

)
,

where constant Q� is equal to zero within the present (1nn)-
shell approximation. As observed in Eq. (18), the off-diagonal
phenomenological coefficient LAB is directly related to the
1nn antisymmetric pair correlator and would be equal to zero if
deviations of the 1nn pair probabilities from local equilibrium
were not considered. Within a (1nn)-shell approximation,
kinetic correlations result from the probability of the vacancy
to perform a reverse jump just after a given AV exchange. Such
two-jump loops lead to coefficients Lij , which do not depend
on the shape of the concentration field. Instead, N -jump loops
with N > 2 make the vacancy explore the concentration field
and are expected to produce kinetic correlations depending
on the wave vector of the concentration modulation. The
schematic of Fig. 1 gives a visual idea of the respective
contributions of a two-jump loop and multiple-jump loops
to the kinetic correlations.

Following the CH approach, Eqs. (18) and (19) are lin-
earized at first order in concentration fluctuations and Fourier
transformed to get a system of linear equations. The Fourier
transform of the composition fluctuation [cα(x,t) − cα] around
the average composition cα at wave vector k is noted δcα(k).
The linearization of the chemical potentials at first order in
concentration fluctuations reads

δμAV (k) = T F
{
μAV

i − μAV

}
= TAA(k)δcA(k) + TAB(k)δcB(k), (21)

where μAV is the chemical potential difference (μA − μV )
in the homogeneous equilibrium state. The resulting kinetic
equations in the reciprocal space become then a linear system
of equations:

dδcA(k)

dt
= −�(k)LAA(TAAδcA + TABδcB)

−�(k)LAB(TBAδcA + TBBδcB)
(22)

dδcB (k)

dt
= −�(k)LBB(TBAδcA + TBBδcB)

−�(k)LBA(TAAδcA + TABδcB).

A linear stability analysis of these microscopic TIP equa-
tions provides the atomic on-site concentrations depending on
two exponentials. The first exponential is related to the vacancy

relaxation kinetics with a frequency RV = −�(k)(LAA +
LBB + 2LAB)/cV . The second exponential frequency R is
found to be the product of a mobility M multiplied by a discrete
CH driving force ��

CH:

R = −M���
CH, (23)

where

��
CH = cV (TAATBB − TABTBA). (24)

When interactions are limited to 1nn interactions, the
driving force can be written as ��

CH = f ′′ + κE�(k), where
f ′′ is the second derivative of the binary alloy free energy
with respect to concentration and κE is the gradient energy
coefficient [8]. Mean-field approximations of these parameters
are presented in Appendix A. The squared wave number
(ak)2 (where a is the lattice parameter) of the continuous CH
equation is replaced by the wave-vector discrete operator

�(k) = −zd (2 cos kd − 2), (25)

where d is the interplanar spacing [d = a/2 in the [100]
direction of the bcc crystal]. �(k) tends to (ak)2 at small
(ak) and �(k) = 16 when ak = 2
 and wavelength λ = a.
Inside the spinodal region, f ′′ is negative and the frequency
R is positive for all wave vectors smaller than a critical
wave vector kc. kc is the wave vector at which �(kc) =
�c, �c being deduced from the equality f ′′ + κE�c = 0.
Concentration fluctuations with a wave vector below kc will be
amplified exponentially with aging time. However, except for
the example plotted in Fig. 14, the application of the present
theory is restricted to homogeneous equilibrium solid solutions
with positive f ′′. Thus R is negative whatever the wave vector
and a sinusoidal concentration profile decays with aging time.

Mobility M is found to be equal to

M = LAALBB − L2
AB

LAA + LBB + 2LAB

, (26)

where, the coefficients Lij correspond to the first-shell kinetic
approximation of the phenomenological Onsager coefficients
as given by Eq. (20). The mobility M is not the interdiffusion-
related mobility that is currently used in the phase field method.
The present effective interdiffusion coefficient is equal to

D = −R

�
= M��

CH. (27)

Note that in Eq. (27), the pulsation R is chosen to be divided
by the dimensionless wave-vector operator � instead of the
squared wave vector k2, leading to units of D equal to (s−1)
instead of the classical units (m2.s−1).

The kinetics of the atomic concentration fields is mainly
controlled by the atomic pulsation R because the latter is cV

times smaller than the vacancy relaxation rate RV . Therefore,
when a vacancy is treated as a conservative species, the
reaction is controlled by a single diffusion coefficient defined
in Eq. (27). Differences between conservative and nonconser-
vative vacancy diffusion will be described in Sec. III D.

C. Beyond the first-shell kinetic approximation

A first-shell (1nn) kinetic approximation implies the
calculation of a single effective pair interaction, the 1nn
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antisymmetric pair correlator Ai,1, from Eq. (10). Beyond
this approximation, both symmetric and antisymmetric con-
tributions of pair correlators are involved as they both appear
in Eq. (10). In addition to Eq. (10) associated with the
antisymmetric pair derivative, Eq. (13) associated with the
symmetric pair derivative is then needed to get a closed system
of equations SE. As explained in Appendix B, expressions of
the unknown symmetric and antisymmetric pair correlators are
a solution of SE. Every pair correlator is a linear combination
of gradients of chemical potential and participates to the
deviation of pair probabilities from their local equilibrium
values. The resulting kinetic equations for the concentration
fields are similar to Eq. (22) except that the parameter Q�

entering Eq. (20) is different from zero and is a function of
the wave vector �. The coefficients Lij defined in Eq. (20) are
then replaced by the wave vector dependent coefficients L�

ij .
Within a (1nn)2-shell kinetic approximation, the calculation of
Q� detailed in Appendix B leads to

Q� = 7 − 1269

10� + 216
. (28)

The same parameter calculated within the third shell [also
called (1nn)3-shell] kinetic approximation reads

Q� = 7 − 11 190 404 097

333 389 461� + 2 008 131 183
. (29)

As k tends to zero, � tends to zero and the kinetic coefficients
L�

ij tend to the phenomenological kinetic coefficients Lij of
the Onsager matrix. At finite �, L�

ij is a function of the wave
vector of the driving force and should not be interpreted as
a phenomenological transport coefficient. The contribution of
� to the kinetic correlations and L�

ij arises from long-range
vacancy loops (cf. Fig. 1). In a (1nn)-shell approximation,
the 1nn pair correlator describes the two-jump vacancy loops
corresponding to a series of first and reverse jumps between the
initial sites of the exchanging pair. These two-jump loops make
the vacancy explore local gradients of chemical potential. In a
(1nn)2-shell approximation, the vacancy loops corresponding
to a series of jumps starting from the first site, reaching 1nn
of 1nn of the initial site and ending on the first site, make
the vacancy explore the local curvature of chemical potentials.
The exploration of �-dependent curvature and higher-order
derivatives of chemical potentials yields the �-dependent L�

ij

(as illustrated in Fig. 1). However, this contribution due to an
interplay between kinetic correlations and the spatial variation
of driving forces could also be interpreted as a deviation
of driving forces from a thermodynamic formulation. The
effective local chemical potential gradient of unstable solid
solutions would depend not only on the local concentration
but also on new independent state variables, the atomic
pair correlations. Whatever the interpretation we have of
these wave-vector dependent kinetic correlations, the resulting
atomic mean-field equations do not obey the formalism
of TIP: fluxes are no more written as linear combinations
of Lij-chemical potential gradient products. Each product
is now multiplied by a wave-vector dependent correlation
coefficient (L�

ij /Lij ). Note that the resulting fluxes are still
vanishing at equilibrium, i.e., when the thermodynamic driving
forces are null. Moreover, in the case of uniform chemical
potential gradients, the TIP formalism is recovered. Indeed, the

wave-vector contribution to the kinetic correlations arises
with the heterogeneities of the chemical potential gradients.
Therefore when the chemical potential gradients are uniform,
the L�

ij coefficients are equal to L�
ij (� = 0) = Lij .

As for the (1nn)-shell approximation, the atomic relaxation
rate R is deduced from Eq. (23) in which the phenomenological
Onsager coefficients Lij are replaced by wave-vector depen-
dent coefficients L�

ij . For the sake of clarity, the wave-vector
dependent contribution to the effective mobility is introduced
as a heterogeneous correlation coefficient:

f� = M(�)

M
, (30)

where M(�) (respectively, M) is derived from Eq. (26) at finite
� (respectively, at � = 0). Note that the coefficients Lij used
to calculate the mobility M correspond either to the (1nn)2- or
to the (1nn)3-shell approximation of the macroscopic Onsager
coefficients. The variation of the effective interdiffusion
coefficient D and the corresponding pulsation R against �

are then determined by the thermodynamic driving force ��
CH,

as well as the heterogeneous correlation coefficient f�,

D = Mf���
CH

R = −�Mf���
CH. (31)

Whatever the kinetic approximation and the wave vector,
Q� is positive and f� is below one. Therefore, in a stable
solid solution with positive ��

CH, the heterogeneous correlation
coefficient systematically lowers D and increases R. Note
that in the case of uniform chemical potential gradients, the
heterogeneous correlation coefficient is equal to f�(k = 0) =
1 and a CH-like formulation of D is regained.

D. Vacancy as a conservative or nonconservative species

Up to now, the vacancy was considered a conservative
species, meaning that the nominal vacancy concentration of
the system is fixed and does not vary with time. In the
classical models for diffusive phase transformations, it is
usually assumed that the vacancy is a nonconservative species
that is at local equilibrium, meaning that its local concentration
is instantaneously modified to reach the equilibrium vacancy
concentration of a homogeneous alloy with a nominal compo-
sition equal to the local atomic composition. Conservative and
nonconservative vacancy limit cases as well as intermediate
cases are encountered in real systems. Below, the difference
between both limit cases is investigated.

When the vacancy is treated as a conservative species, the
number of sites is conserved and the vacancy concentration
fluctuation is related to the atomic ones: δcV = −δcA − δcB .
Applying the same relationships for the time derivatives, the
vacancy rate equation is deduced from Eq. (22). Application
of the adiabatic approximation to the vacancy rate equation
relates the vacancy concentration fluctuation to the atomic
concentration fluctuation of species A:

δcV

cV

=
(
L�

AA + L�
AB

)
(TAA − TAB)

L�
AA + L�

BB + 2L�
AB

δcA

−
(
L�

BB + L�
AB

)
(TBB − TBA)

L�
AA + L�

BB + 2L�
AB

δcA. (32)
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The vacancy concentration field is then predicted to be
sinusoidal, with a wavelength similar to the atomic one and a
relative amplitude of the same order of the atomic one. The
vacancy fluctuation results from a Kirkendall effect: the larger
the difference between the diffusion coefficients of A and B

[roughly equal to, respectively, the first and second numerator
of Eq. (32)], the larger the fluctuation. If A is the most rapid
species, the vacancy and species A concentration profiles are
in phase, otherwise they are in antiphase.

In classical models for phase transformations, it is often
assumed that a population of vacancy sinks and sources
such as dislocations is efficient enough to guarantee a local
equilibrium of vacancy. The deviation of the vacancy chemical
potential from zero, δμV , does not produce fluxes, since
it is assumed that elimination and production of vacancy
can be achieved locally. Fluxes of atoms and vacancies are
induced by the atomic chemical potential gradients. From the
Gibbs-Duheim relationship, cAδμA + cBδμB + cV δμV = 0,
the local equilibrium status of vacancy (δμV = 0), and the
assumption that cV is very small compared to cA and cB , we
easily show that

−δμA

cB

= δμB

cA

= δ(μB − μA) = ��
CH

β
δcB, (33)

where the relationship between the alloy chemical potential
driving force and the discrete CH driving force is a direct
consequence of the definition of the latter (cf. Appendix A).
Inspection of Eq. (22) reveals that the rate equations of dcA/dt

and dcB/dt are controlled by a single driving force, the alloy
driving force ∇βδ(μB − μA). Instead, the vacancy kinetics
is controlled by two driving forces, the alloy driving force
and the vacancy chemical potential excess βδμV . The local
variation of the lattice site number resulting from the local
elimination or production of vacancies leads to a lattice motion
with a Kirkendall speed equal to the vacancy flux JV [1].
The referentials of the lattice and the laboratory are thus
not equivalent anymore. In the laboratory, a Kirkendall speed
correction cαJV has to be added to the lattice atomic flux of
chemical species α, which is equivalent to adding −cα∇JV to
the RHS of dδcα(k)/dt :(

dδcα

dt

)
lab

= dδcα

dt
− cα∇JV , (34)

∇JV corresponds to the sum of A and B time derivatives
detailed in Eq. (22):

∇JV = −�
[(

L�
AA + L�

AB

)
βδμA + (L�

BB + L�
AB

)
βδμB

]
= −�

[
cA

(
L�

BB + L�
AB

)− cB

(
L�

AA + L�
AB

)]
��

CHδcB,

(35)

where chemical potentials have been expressed with respect to
the CH driving force after Eq. (33). In Eq. (34), the replacement
of ∇JV by Eq. (35), combined with Eqs. (34) and (33) leads
to a single rate equation for the atomic concentration field
obeying the form of Eq. (23), with an effective mobility M

related to the interdiffusion coefficient D̃:

M(�) = cAcB

[
cB

(
L�

AA

cA

− L�
AB

cB

)
+ cA

(
L�

BB

cB

− L�
AB

cA

)]
,

(36)

with M(� = 0) = D̃/f ′′. The L�
ij coefficients are deduced

from Eqs. (20) and (29) and the corresponding heterogeneous
correlation coefficient is deduced from Eqs. (30) and (31).

In conclusion, whatever the behavior of the vacancy
population, the atomic concentration fluctuation is governed
by an exponential with a frequency proportional to a mobility
multiplied by the discrete CH thermodynamic driving force
and a heterogeneous correlation coefficient f�, which is a non-
linear function of �. The difference in vacancy behaviors leads
to a difference of mobilities and heterogeneous correlation
coefficients, which increases with the ratio LAA/LBB . When
LAA is larger than LBB and cA and cB are of the same order, the
mobility in the case of a conservative vacancy is controlled by
the slow species, M � L�

BB , while the interdiffusion related
mobility is controlled by the rapid species, M � c2

BL�
AA.

The mobility, the heterogeneous correlation coefficient, and
subsequently the rate of fluctuation decay will then depend
on the experimental protocol. In some cases, the vacancy can
be assumed to be at local equilibrium, and in some cases not.
Dislocations can usually be assumed to be perfect point defect
sinks and sources, homogeneously distributed in the sample
with a density of the order of μ−3. The characteristic length
of diffusion is then respectively the nanometer for the atoms
and the micrometer for the vacancy leading to a ratio of char-
acteristic times between vacancies and atoms equal to cV 106.
Since in most of the cases, the vacancy concentration is several
orders of magnitude smaller than 10−6, the characteristic time
for vacancies to diffuse toward point defect sinks is negligible
with respect to the atom characteristic time. A more relevant
question is to know whether vacancies can be eliminated
at point defect sinks by taking diffusion directions different
from that associated with the local atomic chemical potential
gradient. If this is not verified, the relaxation kinetics of a
vacancy toward local equilibrium cannot be decoupled from
the kinetics of the atomic concentration fields and vacancies
cannot be assumed to be at local equilibrium. For example,
nonpercolated nanoscale microstructures resulting from a two-
phase decomposition restrict the possible elimination paths of
vacancy to a set of two-phase crossing paths along which
atomic chemical potential gradients are nonzero. In that case,
the vacancy should be treated more like a conservative species
whose deviation from local equilibrium slows down the kinet-
ics of atoms. Then the more appropriate definition for the mo-
bility is given by Eq. (26). Like in Ref. [43], a complete study
of the coupling regime between the chemical species kinetics
and the relaxation of the vacancies would have been possible.

E. Heterogeneous correlation coefficient

In order to estimate the importance of the heterogeneous
correlation coefficient f� introduced by the SCMF theory
[Eq. (30)], we perform a Taylor series expansion of the
coefficient with respect to the wave-vector discrete operator
�. First-order and second-order terms are respectively iden-
tified as a composition gradient-correlation parameter and a
Laplacian-correlation parameter. The former parameter is then
compared to the composition gradient-energy parameter of the
CH thermodynamic driving force.

It is easy to show that the deviation from one of the
wave-vector heterogeneous correlation coefficients defined
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in Eq. (30) is directly proportional to the square of the
off-diagonal Onsager coefficient LAB :

f� − 1 = − 1

Mm1
q�(LAB)2, (37)

with q� = Q� − Q�=0. The expressions of mobility M and
m1 depend on the behavior of the vacancy. In the case of a
conservative vacancy, M is deduced from Eq. (26) and an
approximation of m1 at zero order in LAB is deduced from
Eqs. (20), (29), and (26):

m1 = cAcB

(
L

(0)
AA + L

(0)
BB

)
. (38)

In the case of nonconservative vacancy, M is deduced from
Eq. (36) and an approximation of m1 at zero order in LAB is
deduced from Eqs. (20), (29), and (36):

m1 = cAcBL
(0)
AAL

(0)
BB(

c2
AL

(0)
BB + c2

BL
(0)
AA

)2 L
(0)
AAL

(0)
BB

L
(0)
AA + L

(0)
BB

. (39)

Therefore the effect of wave vector on the heterogeneous
correlation coefficient increases with the kinetic correlations
or equivalently with the off-diagonal Onsager coefficient LAB

of the reference homogeneous solid solution. The resulting
effective interdiffusion coefficient is deduced from Eq. (31):

D(�) = M

[
1 − 1

m1M
q�(LAB)2

]
��

CH. (40)

The effective interdiffusion coefficient can be approximated
by a second-order expansion in �:

D(�) = Mβ
[
f ′′ + (κE + κ1

C

)
� + κ2

C�2
]
. (41)

The expression of the so-called composition gradient-
correlation parameter κ1

C reads

κ1
C = −f ′′q1

�(LAB)2/(m1M). (42)

As composition Laplacian-correlation parameter is defined as
well:

κ2
C = κ1

C

(
q2

�

q1
�

+ κE

f ′′

)
, (43)

where q1
� and q2

� are the coefficients of the Taylor expansion
q� = q1

�� + q2
��2.

Note that a CH-like formulation of the effective interdif-
fusion coefficient is regained when the composition gradient-
correlation parameter κ1

C is neglected. While a gradient-energy
term arises as soon as 1nn thermodynamic interactions are con-
sidered, the gradient-correlation term arises only if nonequilib-
rium effective interactions beyond 1nn are considered. Within
a BW approximation, κE does not vary with temperature
and composition (cf. Appendix A). It is positive for an alloy
with a clustering tendency and negative for an alloy with an
ordering tendency. Instead, the gradient-correlation parameter
κ1

C is a complex function of temperature and composition and
is systematically negative for a reference state chosen to be
an equilibrium solid solution. Kinetic correlations are then
expected to decrease the total effective gradient parameter and
make it vary with temperature. Both features were observed
in Cu-Au alloys although the deviations from the theoretical
value were attributed to experimental inaccuracy [18].

Up to now, it was argued that nonlinearity of D against
� was due to long-range thermodynamic interactions. Indeed,
thermodynamic interactions beyond 1nn interactions involve
new discrete operators in addition to � and produce some
nonlinearities of the effective interdiffusion coefficient. The
wave-vector dependent parameter Q� entering the mobility
[see Eqs. (26) and (29)] systematically leads to nonlinearities
of D because it is not a linear function of �. Moreover,
Q� increases with �. As explained in Refs. [12,18], the
nonlinearity of D against � due to thermodynamics should
vary with the direction of the sinusoidal fluctuation, while the
one due to kinetic correlations depending on � only should be
isotropic in a cubic crystal. However, note that the correlation
contribution to D against wave vector k is direction dependent
as � against k is direction dependent [cf. Eq. (25)]. At high
temperature, the alloy tends to an ideal solid solution and
nonlinearities due to thermodynamics should vanish, while
some nonlinearities due to kinetic correlations could remain.

Note that a plot of D versus � can be used to obtain a value
of the combination of Onsager coefficients (LAB)2/(m1M) by
measuring κ1

C . In general, an estimation of the free energy
second derivative f ′′ can be obtained from thermodynamic
databases. In the case of an alloy for which interaction
energies beyond 1nn can be neglected, both the gradient-
kinetic parameter κ1

C and the gradient-energy parameter κE can
be extracted from a nanoscale diffusion experiment. Indeed,
the use of Eq. (41) to fit the effective interdiffusion coefficient
leads to D(� = 0), κE and κ1

C . If elastic interactions induced
by coherency strains were accounted for, the picture would be
more complex. Indeed, these interactions, which are direction
dependent [12], should interplay with the kinetic correlations
and hence contribute to both linear and nonlinear variation of D

with �. This coupling effect is expected to be non-negligible if
the variation of coherency strain and the resulting variation of
vacancy exchange frequency with respect to local composition
is large.

IV. RESULTS

In order to validate the main results obtained with the SCMF
diffusion theory, a systematic comparison between the SCMF
predictions and the Monte Carlo simulations is performed. The
model alloys introduced to highlight the theoretical advances
are then compared to some real alloys.

A. Monte Carlo simulation

Starting from the same atomic jump frequency model,
AKMC simulations based on a time residence algorithm are
performed [44]. The periodic simulation box is a bcc lattice
with a total number of sites equal to Ns = 5123/4. Sites
are occupied by either A or B atoms except one empty site
representing a vacancy. Several model alloys are studied: ideal
solid solutions with different values of attempt frequencies
νA and νB and solid solutions with interactions equal to zero
except VAB such that the resulting ordering energy W = VAB

is either positive or negative.
Initial state of every simulation is a 1D sinusoidal

composition-modulated solid solution along a [100] direction
of the bcc lattice with an amplitude δcB = 0.01 and a
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wavelength λ [associated with � = −8(cos 
a/λ − 1) after
Eq. (25)]. At a given temperature, one performs a metropolis
algorithm [45] with direct exchange between atoms A and B

belonging to the same plane perpendicular to the 1D sinusoidal
direction. This way, a stationary short-range order under the
constraint of a 1D sinusoidal concentration modulation is
reached. The solid solution is then annealed, the concentration
fluctuation decaying and the system evolving towards its
equilibrium state. The temperature T is chosen to be above the
critical temperature Tc (Tc � 0.2|2ZW |/kB [46]) so that the
equilibrium state corresponds to a uniform solid solution. At a
given time, the sinusoidal average amplitude δci of species i is
obtained from the λ component of the Fourier transformed 1D-
concentration field. As discussed in Sec. III D, the vacancy is
not expected to be at local equilibrium. It is then not possible to
apply the rescaling time procedure used to predict the kinetics
of systems including a nonconservative vacancy from AKMC
simulations performed at a fixed number of vacancies [47].
Therefore, in the following AKMC simulations, the vacancy is
considered as a conservative species. One introduces a reduced
time τ = t × cV νB , where t is the physical time measured
in the AKMC simulation at a vacancy concentration equal
to cV = 1/Ns . Even though the simulation box contains a
single vacancy, a vacancy 1D-concentration profile can be
measured by calculating the relative time spent by the vacancy
in each plane perpendicular to the 1D direction (details of the
averaging procedure are given in Ref. [47]).

We present first a practical example of the procedure
used to measure the interdiffusion coefficient D in AKMC
simulations. It is observed in Fig. 3 that the atomic artificial
concentration wave introduced at the initial time in an
ideal solid solution with a jump frequency ratio νA/νB = 10
remains, the amplitude decaying with time. Although the
equilibrium vacancy concentration of this ideal solid solution
is uniform and does not depend on local concentration,
the vacancy concentration profile measured between two
successive times is close to a sinusoidal profile in antiphase
with the profile of atoms B. This is in agreement with the
SCMF theory [see Eq. (32) of Sec. III D]. Note that symmetry

breaking of the vacancy concentration profile naturally occurs
in a stochastic Monte Carlo method. In particular, an excess
of vacancies in the A-rich regions is predicted because the
jump frequency of atoms A is larger than the one of atoms
B. The logarithm of the atomic and vacancy fluctuation
amplitude plotted in Fig. 4 is observed to be linear with time.
A good quantitative agreement between the SCMF results
and the AKMC simulations is obtained over a large range of
modulation wavelengths λ, both for vacancies and atoms. Note
that although the vacancy concentration oscillations measured
in AKMC simulations are not perfectly sinusoidal, an average
in space achieved by a Fourier transform yields a temporal
evolution of the average amplitude in good agreement with
the SCMF predictions. The effective interdiffusion coefficient
D(t) plotted in Fig. 6 is extracted from a fit of the logarithm
of δcB(t) versus time, assuming a linear behavior with a slope
equal to −�D [see Eq. (27)].

B. AKMC simulations versus SCMF theory

Before discussing numerical predictions of the interdiffu-
sion coefficient, we briefly indicate the relationship of the
SCMF diffusion equation to the microscopic CH model [16].
If the contribution of the heterogeneous correlation coefficient
to the general driving force is neglected [which is equivalent
to put κ1

C = 0 in Eq. (41)], the SCMF equation becomes
equivalent to a CH equation. The interdiffusion coefficients D

obtained from the SCMF theory, the CH model, and the AKMC
simulations are compared, first in an ideal solid solution then
in interacting alloys.

In ideal solid solutions, the jump rate WiV = νi is inde-
pendent of the environment of the jumping atom i. Every
configuration of atoms on the lattice sites has the same energy
so that the distribution of atoms is random at thermodynamic
equilibrium and the BW statistical mean-field approxima-
tion becomes exact. In that case, the discrepancies of the
SCMF results are only due to the truncation of the effective
Hamiltonian used to calculate the kinetic correlations. The
convergence of the diffusion coefficient D against the kinetic

FIG. 3. (Color online) Temporal evolution of concentration profiles started from an initial sinusoidal concentration profile of solute B with
wavelength equal to 16(a/2) and amplitude equal to 0.01, and a single vacancy in the simulation box. Profiles are plotted against plane numbers
along the [100] direction with a distance d = a/2 between planes. They are extracted from AKMC simulations of a noninteracting alloy AB at
composition cB = 0.9 with an exchange frequency ratio νA/νB = 10, at two successive reduced times, τ1 = 0.6 (left) and τ2 = 1.2 (right) in
dimensionless units (cV νBt). δcV /cV is represented by a magenta thin line and δcB by a black thick line.
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FIG. 4. (Color online) Temporal variation of the logarithm of the maximum of the sinusoidal concentration field associated with solute
atoms (left) and a vacancy for which δcV /cV is represented (right). Circles represent the AKMC simulations and solid lines the SCMF
predictions for a noninteracting alloy AB at composition cB = 0.9 with an exchange frequency ratio νA/νB = 10 and various wavelengths λ

expressed in units of lattice parameter a. The corresponding values of the wave-vector discrete operator � are indicated on the left figure. Time
is in dimensionless units (cV νBt).

approximation is illustrated in Fig. 5 for an ideal solid solution
of atoms A and tracer atoms B = A∗ with the same jump
frequencies and in Fig. 6 for an ideal solid solution with a
large jump frequency ratio νA/νB = 10. Note that in AA∗
solutions, the interdiffusion coefficient D does not depend on
the nominal composition of atoms A∗, thereby the � variation
of the resulting diffusion coefficient is totally determined
by the crystal geometry. Instead, in the AB solid solution
with νA = 10νB , D strongly depends on cB . The convergence
study is chosen to be presented for cB = 0.9, a composition at
which the kinetic properties of the alloy are strongly affected
by the kinetic correlations. As a general trend, a (1nn)-shell
approximation of the SCMF theory completely fails to predict
the variation of D against �. As explained in Sec. III, the
latter approximation does not produce gradient-correlation
parameters κ1

C . Moreover, the gradient-energy parameter κE

is null in ideal solutions, explaining the constant value of D

against wave vector. When � is very small, the convergence
of D is mainly controlled by the convergence of the Onsager

FIG. 5. Diffusion coefficient in dimensionless units [D/(cV νB )]
with respect to wave-vector operator � (the corresponding wave-
length λ in units of lattice parameter a is indicated on the top axis),
measured in the AKMC simulations (filled symbols) and predicted by
successive kinetic SCMF approximations for a noninteracting alloy
with νA = νB .

phenomenological coefficients Lij . In the AA∗ solution, at
� < 5, the convergence is achieved with a (1nn)3 kinetic
shell approximation, in agreement with what is observed for
the self-diffusion correlation factor studied in Ref. [27]. In
the large jump-frequency ratio solid solution, at � � 0.15
(corresponding to λ = 16a), we observe in Fig. 6 that the
present SCMF calculation of D does not converge toward the
AKMC value, although the (1nn)2 and (1nn)3 values are very
close to each other. A previous study of model alloys with
large jump-frequency ratios, demonstrated that an effective
Hamiltonian limited to pair interactions is not adequate for
an accurate estimation of the Lij [29], hence explaining the
discrepancy of the present pair effective SCMF calculation at
small �.

In the AA∗ solution at � > 5, the decrease of D against
� is underestimated by the (1nn)2 approximation and overes-
timated by the (1nn)3 approximation as illustrated by Fig. 5.
Moreover, the large difference observed between the (1nn)2

FIG. 6. Diffusion coefficient in dimensionless units [D/(cV νB )]
with respect to wave-vector operator � (the corresponding wave-
length λ in unit of lattice parameter a is indicated on the top axis),
measured in the AKMC simulations (filled symbols) and predicted by
successive kinetic SCMF approximations for a noninteracting alloy
with νA = 10νB at composition cB = 0.9.
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FIG. 7. (Color online) Interdiffusion coefficient in dimensionless
units [D/(cV νB )] with respect to wave-vector operator � measured
in AKMC simulations (filled symbols) and predicted by SCMF
predictions (empty symbols) for a noninteracting alloy with νA/νB =
10 and at various nominal compositions cB . For the sake of clarity, 1
has been added to the values associated with cB = 0.9. Lines represent
the results of the CH like model.

and (1nn)3 approximations prompts us to think that the conver-
gence of the pair-effective SCMF calculation is not achieved
yet. If longer range effective pair interactions than the ones in-
cluded in the (1nn)3 were considered, we could expect a better
agreement with the AKMC simulations. Surprisingly, in the
ideal solution with a large jump-frequency ratio, a good agree-
ment is observed between the (1nn)3 SCMF predictions and the
AKMC results at � > 1 (cf. Fig. 6). It seems that when there
is a strong interaction between kinetic correlations and the
modulation wavelength, the convergence of the SCMF results
with respect to the kinetic shell approximation is more rapid.

Note that the present CH model is almost similar to the
(1nn)-shell approximations presented in Figs. 5 and 6. In
the former, a (1nn)3-shell approximation is used to calculate
mobility M as opposed to the (1nn) approximation of M used
in the latter. In what follows, we systematically compare the
results of the CH model, the SCMF theory within the highest
(1nn)3 kinetic shell approximation and the AKMC simulations.
A way to estimate the kinetic correlation contribution is to
measure the difference between the CH and SCMF plots.

In Fig. 7, the interdiffusion coefficient is plotted for
three nominal compositions of the ideal solution AB with

FIG. 9. (Color online) Interdiffusion coefficient in dimensionless
units [D/(cV νB )] with respect to wave-vector operator � measured
in AKMC simulations (filled symbols) and predicted by SCMF for
alloys with a clustering tendency (W > 0, circles) and an ordering
tendency (W < 0, squares), νA = 10νB , at T/Tc = 2.4 and cB = 0.9.

νA/νB = 10. As expected, the CH model fails in describing the
variation of D against �. However, in the dilute alloy A(B), the
mismatch between the CH and AKMC results is very small,
indicating that the � variation of the kinetic correlations is
negligible. As explained in Sec. III E, this variation is related to
the off-diagonal Onsager coefficient, which is smaller in dilute
alloys [LAB/(νBcV ) = 0.033 at cB = 0.1] than in concentrated
alloys [LAB/(νBcV ) = 0.062 at cB = 0.9]. When wavelength
distances reach 1–2 lattice parameters, D becomes nonlinear
with �, a feature which is well reproduced by the SCMF
theory. It is demonstrated here, that a nonlinear behavior of
D may occur in systems with short range thermodynamic
interactions, due to kinetic correlations.

In an interacting alloy, the ensemble averages calculated by
means of the BW approximation are not exact anymore. Then
both the kinetic correlations and the thermodynamic averages
are approximated. Nevertheless, an examination of Figs. 8
and 9 demonstrates that a qualitative and semiquantitative
agreement with the AKMC results is obtained. The predicted
sign of the � variation of D is systematically the right one.
For instance, in solid solutions with a clustering tendency,
due to the positive gradient-energy parameter κE , an increase
of D against � is expected as shown by the CH plot, while

FIG. 8. (Color online) Interdiffusion coefficient in dimensionless units [D/(cV νB )] with respect to wave-vector operator � measured in
AKMC simulations (filled symbols) and predicted by successive kinetic SCMF approximations for a alloys with a clustering tendency (W > 0)
and an ordering tendency (W < 0), νA = νB , at T/Tc = 2.4 and cB = 0.1 (left), and cB = 0.5 (right).
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FIG. 10. (Color online) Composition gradient-energy and
gradient-correlation parameters in eV, κE (green dotted line), and κ1

C

(dashed and solid lines), with respect to the nominal composition in
a noninteracting alloy for two different ratios of attempt frequencies
νA = 10νB and νB . Dashed (respectively, solid) lines are for
a nonconservative (respectively, conservative) treatment of the
vacancy.

both AKMC and SCMF results exhibit a negative variation of
D. The latter is observed when the negative gradient-kinetic
parameter is dominant over the gradient-energy parameter.
Therefore a negative slope of the effective interdiffusion coef-
ficient against � does not imply an ordering tendency of the
alloy. This statement should modify the analysis of previous
nanoscale diffusion experiments. For instance, a negative com-
position gradient parameter is measured in Cu-Ni alloys, while
these alloys are known to have a clustering tendency [19]. It
is worth noticing that a spinodal decomposition theory relying
on the present SCMF diffusion equation would predict new ki-
netic behaviors. A nonstable solid solution with a negative sec-
ond derivative of the free energy f ′′ and a dominant gradient-
correlation parameter over the gradient-energy parameter,
would exhibit a negative D at any wavelength and an associated
structure factor with no peak, monotonously decreasing from
the shortest to the largest wavelength [6]. As a general trend,
the kinetic correlations are expected to shift the peak position
of the structure factor toward smaller wavelengths.

In alloys with an ordering tendency, plots of D in Fig. 8 are
observed to be less affected by the kinetic correlations because
the CH results are very close to the AKMC values. However,

when the attempt frequency νA is different from νB , a kinetic
correlation effect appears in Fig. 9.

Note that the AKMC simulations by themselves bring sig-
nificant conclusions. Indeed, the simulations of noninteracting
or interacting alloys associated with the same ordering energy
and different attempt frequency ratios show a different varia-
tion of the effective interdiffusion coefficient. This is a proof
that the variation of D is affected by the kinetic parameters
at variance with the usual statement of the phenomenological
kinetic models.

C. SCMF predictions

Now that the SCMF theory has been validated against the
AKMC simulations, we use it to predict general behaviors
of the composition Laplacian parameter κ2

C and gradient
parameter decomposed into gradient-energy κE and gradient-
correlation κ1

C parameters. These parameters plotted against
the nominal composition provide with an indication of their
relative contribution to the variation of the diffusion coefficient
D against �. The results obtained with a nonconservative
and conservative treatment of vacancies are systematically
compared.

The first three figures illustrate the variation of the gradient
energy parameters with respect to the nominal composition
at two temperatures and two attempt frequency ratios, in ideal
alloys (Fig. 10), clustering alloys (Fig. 11), and ordering alloys
(Fig. 12). As a general trend, κE remains constant against cB

and temperature, κ1
C is dominant at small compositions of

A or B, and the nonconservative treatment of the vacancy
leads to larger gradient-correlation parameters than the ones
associated with the conservative vacancy. In alloys with equal
attempt frequencies, gradient parameters are symmetric. A
ratio νA/νB larger than one increases the contribution of the
gradient-correlation parameter at a large solute concentration
cB and decreases the same contribution at a small cB . In
interacting alloys, the relative contribution of κ1

C to the total
composition gradient parameter increases with temperature.
In clustering alloys, the kinetic correlation effect is more
pronounced and affects a larger composition range of the alloy.
The change of sign of κ1

C occurring at T/Tc = 0.8 is due to
the change of sign of the second derivative of the free energy
f ′′. Between both spinodes associated with κ1

C = 0, f ′′ is

FIG. 11. (Color online) Gradient-energy and gradient-correlation parameters in reduced units [κE/W (green dotted line) and κ1
C/W (dashed

and solid lines)], with respect to the nominal composition in an alloy with a clustering tendency (W > 0) at two temperatures T/Tc = 2.4
and 0.8. Attempt frequencies are equal (left) and νA = 10νB (right). Dashed (respectively, solid) lines are for a nonconservative (respectively,
conservative) treatment of the vacancy.
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FIG. 12. (Color online) Gradient-energy and gradient-correlation parameters in reduced units [κE/(−W ) (green dotted line) and κ1
C/(−W )

(dashed and solid lines)], with respect to the nominal composition in an alloy with an ordering tendency (W < 0) at two temperatures
T/Tc = 2.4 and 0.8. Attempt frequencies are equal (left) and νA = 10νB (right). Dashed (respectively, solid) lines are for a nonconservative
(respectively, conservative) treatment of the vacancy.

negative and the solid solution is unstable. Within a classical
spinodal decomposition theory, the corresponding gradient
energy parameters determine the kinetics of fluctuation decay
at wave vectors larger than a critical value kc and of fluctuation
growth at wave vectors smaller than kc. As long as the attempt
frequencies are equal and the homo-atomic interactions are
equal, the contribution of the gradient-correlation parameter is
small compared to the gradient-energy parameter.

The gradient parameters divided by f ′′ provide a quantita-
tive estimation of the relative variation of D with respect to
its value at zero wave vector [as shown in Eq. (41)]. Therefore
the latter are plotted in the last three figures (Figs. 13–15). In
addition to the gradient parameters, the Laplacian correlation
parameters κ2

C are plotted. As a general trend, we observe
that κ2

C has the same kind of variation against � as the
corresponding gradient parameter κ1

C . Its magnitude is roughly
one order of magnitude below except inside the spinodal as
shown in Fig. 14. However, when the wave vector � is larger
than 10 (equivalent to have λ < 2a), the contribution κ2

C�

is greater than κ1
C and a nonlinear variation of D appears. It

is interesting to note that inside the spinodal as displayed by

FIG. 13. (Color online) Composition gradient and Laplacian pa-
rameters divided by the second derivative of the free energy f ′′, κE/f ′′

(dotted green line), κ1
C/f ′′ (dashed and solid red lines), and κ2

C/f ′′

(dashed and solid blue lines) with respect to the nominal composition
in a noninteracting alloy for the attempt frequency ratio νA =
10νB . Dashed (respectively, solid) lines are for a nonconservative
(respectively, conservative) treatment of the vacancy.

Fig. 14, while κ1
C is small with respect to κE , the contribution of

κ2
C� to the coefficient D and the rate of phase decomposition

is expected to be at least as important as κE . The single κ2
C

parameter induces a decrease of around 40% of the diffusion
coefficient in the alloy at � = 10. Part of the strong linearity
of D measured in most of the alloys during a spinodal phase
decomposition might be due to these kinetic correlation effects
[48].

In the clustering solid solution represented in Fig. 14 at
T/Tc = 2.4, the maximum of the relative variation of D is
roughly 15% due to κE and −20% due to κ1

C + �κ2
C at � = 10.

In Fig. 15, displaying ordering alloys, D is less affected by the
composition gradient parameters. At both T/Tc = 2.4 and 0.8
the relative variation of D due to κ1

C reaches a maximum
of 9% and is around the same for κ2

C at � = 10. The total
relative variation of D at T/Tc = 2.4 in both the clustering
and ordering alloys can also be measured in Fig. 8.

D. Model alloys versus real alloys

Experimentally, the kinetic properties of concentrated solid
solutions AB are mainly characterized by the tracer diffusion
coefficients D∗

A and D∗
B [49]. Within the BW approximation

of the SCMF theory, the tracer diffusion ratio D∗
A/D∗

B like
the heterogeneous correlation coefficient (see Ref. [27] and
Eq. (30)), depend on a unique kinetic parameter, the ratio
of the average exchange frequencies, L

(0)
AA/L

(0)
BB . The tracer

diffusion ratio is thus chosen to be a kinetic signature and it
is used for the comparison between the model and real alloys.
The theoretical tracer diffusion ratios plotted against the alloy
composition in Fig. 16 are deduced from the SCMF theory
within the same BW approximation (the analytical formulas
are presented in Ref. [27]). The experimental tracer diffusion
data are mainly obtained from a diffusion database [49] in
which for a few binary systems tracer diffusivities of both
elements are available. The phase diagrams are then used to
get a thermodynamic characterization of the solid solutions.
An estimation of the sign of the ordering energy W is obtained
from the phase diagram: a solid solution which at lower
temperature is separated in two phases is associated with
a clustering tendency (W > 0), instead a solid solution that
forms an ordered phase at a lower temperature is associated
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FIG. 14. (Color online) Composition gradient and Laplacian parameters divided by the second derivative of the free energy f ′′, κE/f ′′

(dotted green line), κ1
C/f ′′ (dashed and solid red lines), and κ2

C/f ′′ (dashed and solid blue lines) with respect to nominal composition in
a clustering alloy (W > 0) with equal attempt frequencies, at T/Tc = 2.4 (left) and 0.8 (right). Dashed (respectively, solid) lines are for
a nonconservative (respectively, conservative) treatment of the vacancy. Divergence of κE/f ′′ and κ2

C/f ′′ is occurring at the spinodal line
(compositions at which f ′′ = 0) and plots inside the spinodal are for unstable solid solutions.

with an ordering tendency (W < 0). A rough estimation of the
critical temperature Tc is extracted as well.

In the case of a clustering tendency (W > 0), three
examples of well characterized bcc solid solutions have been
found. The first example is the concentrated paramagnetic
Fe-Cr solid solution. The diffusion experiments performed
at temperatures above 1100 K � 1.2Tc show that the Fe
and Cr tracer diffusion coefficients are very close, with Cr
diffusing slightly faster than Fe [49,50]. The Fe-Cr system
is then not so far from the clustering model alloy with equal
attempt frequencies νA = νB leading to a tracer diffusion ratio
close to one (see the right figure in Fig. 16). Instead, the
tracer diffusion ratio associated with the solid solution Ti-V
is large: D∗

Ti/D
∗
V � 5 at T = 1500 K � 2Tc and cV = 0.9

[49]. This system is closer to the clustering model alloy
with a large attempt frequency ratio νA = 10νB leading to
a tracer diffusion ratio around 6 at cB = 0.9 (see the left
figure in Fig. 16 at cB = 0.9). The system Nb-Ti in which
D∗

Ti = 2 − 3D∗
Nb at cTi = 0.64−0.80 and T = 1250–1400 K,

and Tc = 800 K, is between both clustering model alloys. The
ordering model alloy with equal attempt frequencies, leading
to a tracer diffusion ratio very close to one should be a good
representative of the system Fe-Ni (see the right figure in
Fig. 16). Indeed, in Fe-Ni, the tracer of Fe is slightly faster

than the Ni one at temperatures around T � 1300 K � 1.8Tc

[49].
To conclude, the main correlation effects analyzed in the

previous section should happen in these real alloys. In partic-
ular, a change of sign of the composition gradient parameter
and strong nonlinearities of the interdiffusion against � are
expected in Ti-V (see the right figure in Fig. 11).

Some measurements of nanoscale diffusion coefficients
have been performed in face centered cubic solid solutions
by using x-ray diffraction on crystalline metals deposited in
epitaxial layers with wavelengths below a few nanometers
[5]. Composition gradient effects are systematically observed.
Although the present diffusion theory is applied to bcc alloys,
the same behavior is expected for fcc alloys. For this reason,
some of the available nanoscale interdiffusion coefficients
are analyzed within the framework of the SCMF theory.
Mainly one system was observed to behave as predicted by
a CH-like model: the ordering Ag-Au alloy at temperatures
T = 460–550 K and compositions cAu = 18–27 at.% [16].
The measured composition gradient effects could be explained
by an elastic energy model combined with a regular solution
model of κE , and it was found to be fairly independent of
temperature and composition, as expected from the regular
solution model. In this system, the tracer diffusion ratio is

FIG. 15. (Color online) Composition gradient and Laplacian parameters divided by the second derivative of the free energy f ′′, κE/f ′′

(dotted green line), κ1
C/f ′′ (dashed and solid red lines), and κ2

C/f ′′ (dashed and solid blue lines) with respect to the nominal composition in
an ordering alloy (W < 0) with equal attempt frequencies, at T/Tc = 2.4 (left) and 0.8 (right). Dashed (respectively, solid) lines are for a
nonconservative (respectively, conservative) treatment of the vacancy.
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FIG. 16. (Color online) Ratio of tracer diffusion coefficients against the alloy composition at T/Tc = 2.4, with (left) νA = 10νB and (right)
νA = νB for a clustering alloy (W > 0), an ordering alloy (W < 0) and an ideal solid solution W = 0. The values are predicted by the SCMF
theory [27].

D∗
Ag/D

∗
Au = 3 for cAu < 0.25 and the critical temperature is

Tc � 160 K. A comparison with the ordering model alloy with
νA = 10νB leading to a slightly larger tracer diffusion ratio
(see the left figure in Fig. 16) shows that a SCMF prediction
for this system would lead to a non-negligible contribution
of kinetic correlations and a resulting composition gradient
parameter different from a CH prediction (see the right figure
in Fig. 12 at cB < 0.3). Moreover, the correlation contribution
should vary with temperature and composition. However, it
is interesting to note that a conservative treatment of vacancy
leads to a very different kinetic behavior: the composition
gradient-correlation parameter becomes negligible over a
large range of composition and temperature. Although, the
interaction model and the present SCMF approximations
should be improved to get a clear conclusion on this system,
the role of sinks and sources in the elimination and production
of vacancy in this system should be studied in details as
well.

As already mentioned, the alloy Ni-Cu was recognized to be
a system departing from a CH model [19]. Indeed, although a
positive composition gradient parameter was expected for this
clustering system, the effective composition gradient measured
in Ni- 50 at.% Cu at T = 675 K � 1.1Tc was observed to
be negative. An introduction of long-range interactions into
the calculation of the composition-gradient energy parameter
could explain the change of sign, but the predicted amplitude
was an order of magnitude below the experimental value.
The tracer diffusion ratio measured at T = 1133 K � 1.9Tc

is around 3 on the whole composition range of Cu which is
a little smaller than what is obtained for a clustering model
alloy and jump frequency ratio equal to 10 (see the left figure
in Fig. 16). For this kind of diffusivity behavior, the SCMF
theory predicts an important contribution of the heterogeneous
kinetic correlations, which potentially may change the sign of
the effective composition gradient parameter (see the right
figure in Fig. 11).

Another interesting example is the ordering alloy Cu-
16 at.% Au [18]. A calculation based on the regular solution
model combined with an elastic model leads to a value in
fairly good agreement with the measured gradient parameter.
However, the observation of an increase of the composition

gradient between T = 400 and 435 K is in contradiction with
the temperature free composition gradient-energy parameter
predicted by the regular solution model. In Cu-Au, the
tracer diffusion ratio is roughly equal to D∗

Cu/D
∗
Au � 1.5 at

cAu = 0.1–0.3 and at T = 1133 K = 1.6Tc, a value which
is comparable to what is obtained in the ordering model
alloy with equal attempt frequencies (see the right figure in
Fig. 16). For this type of alloy, the SCMF theory predicts
a strong variation of the composition gradient-correlation
parameter with respect to temperature (see the left figure in
Fig. 12 at cB < 0.3). To conclude, some of the qualitative
features of the heterogeneous correlation effects seem to be
in agreement with the kinetic behavior of a few fcc multi-
layer alloys characterized at the nanoscale, for example, the
negative composition gradient parameter κ observed in some
clustering alloys, the variation of κ against temperature and
composition and the nonlinearities of D at short wavelengths
(�1–2 nm).

V. CONCLUSION

Atomic kinetic equations of the concentration fields in a
nonuniform gradient of chemical potential are derived from
the SCMF theory. The phenomenological TIP equations are
obtained as a limit of the atomic equations when wave vector
is tending to zero (i.e. when chemical potential gradients
are uniform). At finite wave vector, general driving forces
including deviations of the free energy from a local equilib-
rium thermodynamic formulation have to be defined. These
deviations are related to the variation of vacancy motion due
to the spatial variation of the alloy composition. During the
characteristic time of atomic diffusion, multiple exchanges
of the vacancy with the same atoms may happen, inducing
atomic kinetic correlations, which depend as well on the spatial
variation of the alloy composition. The AKMC simulations
of model alloys associated with the same thermodynamic
parameters and different attempt frequencies yield different
variation of D against � proving that a model of composition
gradient parameter defined in terms of thermodynamic con-
stants only is not valid. The effect of wave vector on the kinetic
correlations can be larger than the composition-gradient
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energy contribution. In demixting alloys with large kinetic
correlations, the corresponding gradient-correlation parameter
may change the sign of the total composition gradient
parameter. A clear indication of the importance of the kinetic
correlations is the nonlinear behavior of the AKMC diffusion
coefficient at large wave vector, which is not predicted by
the CH model. The SCMF theory within a BW statistical
approximation and a third-shell (1nn3) kinetic approximation
is shown to be able to reproduce the change of sign of the total
composition gradient parameter, the nonlinear behavior of the
effective interdiffusion coefficient, and yields diffusion coef-
ficient values in semiquantitative agreement with the AKMC
values.

A particular striking feature of the present theory is to show
that in addition to the thermodynamic driving force such as
the one defined by Cahn-Hilliard, a heterogeneous correlation
coefficient should be considered. The latter includes a gradient-
kinetic parameter as well as nonlinear kinetic contributions.
The resulting effective interdiffusion coefficients D are pre-
dicted to be lowered by the kinetic correlations. Although
the analysis of kinetic correlations is performed on model
alloys, the values of the key kinetic and thermodynamic
parameters are demonstrated to be close to the ones of some
real bcc binary alloys. Therefore the heterogeneous kinetic
correlation effects highlighted here should happen in real
alloys.

The same theory can be combined with better statis-
tical approximations. An extension of the SCMF theory
to multicomponent alloys and other diffusion mechanisms
should yield the same qualitative features. Indeed, the ki-
netics of pair probabilities is independent from the one of
the concentration field as soon as nonequivalent transition
frequencies are available to exit a pair configuration. The
deviations of the asymmetric pair probabilities from local
equilibrium values represent the kinetic correlations, while
the deviations of the symmetric pair probabilities from local
equilibrium values represent the thermal fluctuations of the
concentration field. Therefore a deterministic approach such
as the SCMF mean-field theory should then be able to include
the effects of thermal fluctuations on a spinodal decomposition
kinetics.
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APPENDIX A: DRIVING FORCES

Within the Bragg-Williams approximation, the expression
of the chemical potential difference corresponds to the solution
of the regular solid solution:

βμAV
i = ln

cA
i

cv
i

+
∑
s,ζ

δisζ (VAζ − VV ζ )cζ
s . (A1)

The resulting expression of Tαζ (k) defined in Eq. (21) is then

Tαζ = β
∂μαV

∂cζ

+ �(k)β(Vαζ − VV α) (A2)

and

β
∂μαV

∂cζ

= δKr
αζ

1

cα

+ 1

cV

+ Zβ(Vαζ − VαV ), (A3)

where δαζ is equal to 1 if α = ζ and 0 if else.
The CH driving force ��

CH is defined as the second
derivative of the binary alloy AB free energy with respect
to the solute concentration cB . In the reciprocal space, it is
given by

��
CH = βf ′′ + �(k)βκ. (A4)

f ′′ corresponds to the first derivative of the alloy chemical
potential μAB = μA − μB with respect to cB ,

βf ′′ = β
∂μAB

∂cB

= 1

cAcB

− 2ZβW, (A5)

and κE is the gradient-energy parameter

κE = 2W. (A6)

W is the ordering energy which is equal to W = −0.5(VAA +
VBB − 2VAB) and Z is the number of 1nn sites.

Note that some combinations of the coefficients of the T

matrix lead to expressions corresponding to ��
CH at zero order

in cV :

��
CH = cV (TAATBB − TABTBA) = TAA + TBB − 2TAB. (A7)

APPENDIX B: KINETIC EQUATIONS OF THE PAIR
CORRELATORS

Along the [100] direction, pair correlators considered in
the 1nn1nn shell are grouped together in the vector Ui =
(AAV

i,1 ,SAV
i,1 ,AAV

i,2 ,Si,2,Pi,2,A
AV
i,3 ,Si,3,Pi,3,A

AV
i,5 ,Si,5). Within the

1nn1nn1nn shell, pair correlators are the ones of the 1nn1nn
shell plus the first nn of the 1nn1nn sites, leading to four
4th nn effective interactions (AAV

i,4a,Si,4a,A
AV
i,4b,Si,4b), four 7th

nn effective interactions (AAV
i,7a,Si,7a,A

AV
i,7b,Si,7b), and two 10th

effective interactions (AAV
i,10,Si,10). The whole set of pair

correlators are grouped together in the vector Ui and ordered by
their distance, from the first to the 10th nn. In Fig. 2, the bonds
and corresponding pair correlators are represented for the
(1nn), (1nn)2, and (1nn)3 kinetic shell approximations. From
the adiabatic approximation applied to the pair correlators SAV

i,n

and P AV
i,n with (n = 1,2,3,4a,4b,5,7a,7b,10) and the use of

Eqs. (10) and (13), we deduce that the Fourier transforms of the
pair correlators are a solution of the linear system of equations

q0T Uk = −B, (B1)

where Uk is the Fourier transform of vector Ui . All coordinates
of vector B are null but the first one,

B1 = 2cBL
(0)
AAλ(k)δμAV − 2cAL

(0)
BBλ(k)δμBV . (B2)

144101-18



ATOMIC DIFFUSION THEORY CHALLENGING THE CAHN- . . . PHYSICAL REVIEW B 90, 144101 (2014)

The matrix T is equal to T = R + Diag(D) with R given by⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 λ1
k λ2

k 4λ4
k 2λ1

k 2λ2
k 2λ4

k 0 0 0 0 λ1
k λ2

k 0 0 0 0 0 0
0 0 λ2

k λ1
k 4λ3

k 2λ2
k 2λ1

k 2λ3
k 0 0 0 0 λ2

k λ1
k 0 0 0 0 0 0

4λ3
k 4λ4

k 0 0 0 0 0 0 0 0 4λ1
k 4λ2

k 0 0 0 0 0 0 0 0
4λ4

k 4λ3
k 0 0 0 0 0 0 0 0 4λ2

k 4λ1
k 0 0 0 0 0 0 0 0

4λ2
k 4λ1

k 0 0 0 0 0 0 4λ2
k 4λ1

k 0 0 0 0 0 0 0 0 0 0
2λ3

k 2λ4
k 0 0 0 0 0 0 2λ3

k 2λ4
k 2λ1

k 2λ2
k 0 0 0 0 2λ1

k 2λ2
k 0 0

2λ4
k 2λ3

k 0 0 0 0 0 0 2λ4
k 2λ3

k 2λ2
k 2λ1

k 0 0 0 0 2λ2
k 2λ1

k 0 0
2λ2

k 2λ1
k 0 0 0 0 0 0 4λ2

k 4λ1
k 0 0 0 0 2λ2

k 2λ1
k 0 0 0 0

0 0 0 0 2λ4
k λ1

k λ2
k 2λ4

k 0 0 0 0 λ1
k λ2

k 0 0 0 0 0 0
0 0 0 0 2λ3

k λ2
k λ1

k 2λ3
k 0 0 0 0 λ2

k λ1
k 0 0 0 0 0 0

0 0 λ3
k λ4

k 0 2λ3
k 2λ4

k 0 0 0 0 0 λ3
k λ4

k 0 0 0 0 0 0
0 0 λ4

k λ3
k 0 2λ4

k 2λ3
k 0 0 0 0 0 λ4

k λ3
k 0 0 0 0 0 0

λ3
k λ4

k 0 0 0 0 0 0 2λ3
k 2λ4

k λ1
k λ2

k 0 0 λ3
k λ4

k 2λ1
k 2λ2

k λ1
k λ2

k

λ4
k λ3

k 0 0 0 0 0 0 2λ4
k 2λ3

k λ2
k λ1

k 0 0 λ4
k λ3

k 2λ2
k 2λ1

k λ2
k λ1

k

0 0 0 0 0 0 0 2λ4
k 0 0 0 0 λ1

k λ2
k 0 0 0 0 0 0

0 0 0 0 0 0 0 2λ3
k 0 0 0 0 λ2

k λ1
k 0 0 0 0 0 0

0 0 0 0 0 λ3
k λ4

k 0 0 0 0 0 λ3
k λ4

k 0 0 0 0 0 0
0 0 0 0 0 λ4

k λ3
k 0 0 0 0 0 λ4

k λ3
k 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 λ3
k λ4

k 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 λ4

k λ3
k 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B3)

where the coefficients λk are

λ1
k = (1 + e−ikd )/2 λ2

k = (1 − e−ikd )/2 λ3
k = (1 + eikd )/2 λ4

k = (1 − eikd )/2,

corresponding to the Fourier transforms of the spatial operators

λ1
i (f ) = (fi + fi−1)/2 λ2

i (f ) = (fi − fi−1)/2 λ3
i (f ) = (fi + fi+1)/2 λ1

i (f ) = (fi − fi+1)/2, (B4)

where fi is the value of function f at site i.
The coordinates of vector D are

D1 = −2
q2

q0
− (z − 1) D2 = −(z − 1) Di = −z, ∀i � 3. (B5)
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