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Theory of melting at high pressures: Amending density functional theory
with quantum Monte Carlo
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We present an improved first-principles description of melting under pressure based on thermodynamic
integration comparing density functional theory (DFT) and quantum Monte Carlo (QMC) treatments. The
method is applied to address the longstanding discrepancy between DFT calculations and diamond anvil cell
(DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging
for traditional DFT methods. The calculations show agreement with data below 20 GPa and that the high-pressure
melt curve is well described by a Lindemann behavior up to at least 80 GPa, in contrast to DAC data.
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The high-pressure melt line of simple materials carries great
significance in both theoretical and in practical applications.
For instance, the rapid decrease followed by a suspected
increase in the melting temperature of lithium under pressure is
a bellwether for the complex series of solid phases that exist at
lower temperatures [1]. Furthermore, the onset of melt triggers
a dramatic loss of mechanical strength of a material, with
significant changes in dynamic behavior following. In fact,
the point where a material melts under shock compression is
one of the key properties that can distinguish between possible
scenarios for planetary accretion [2]. Although diamond anvil
cell (DAC) experiments remain the most versatile experimental
technique for probing high-pressure melting behavior, they
have also been a source of controversy. Important examples
exist in the literature of melt lines showing an anomalous
change in slope under pressure that were contradicted by either
shock experiments or later DAC experiments [3,4]. An as yet
unchallenged melt line of this type is exhibited by xenon and
other noble gases—which are of particular importance due to
their inert nature. The high-pressure behavior of the noble
gases is a fundamental test of the DAC methodology and
as such deserves special scrutiny. Specifically, we consider
the behavior of xenon and find that the high-pressure melting
behavior is well described by a traditional melting curve.

As alluded to above, the experimentally obtained melting
curve for xenon exhibits an interesting feature when probed
in the diamond anvil cell, abruptly flattening at pressures
above 25 GPa [5]. This observation prompted much theoretical
attention, including the application of quantum mechanical
simulation techniques [6]. These techniques, led by density
functional theory (DFT), are uniquely suited to the study of
extreme conditions as their fundamental approximations are
not affected by the presence of temperature or pressure. If a
calculation is accurate near ambient conditions, the method
is also likely to be accurate at high pressure. DFT applied
to xenon supports a Lindemann melt curve in contrast to
experiments [6].
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The accuracy of DFT calculations of noble gases, however,
is not to be taken for granted since fundamental uncer-
tainties remain regarding calculations of systems where van
der Waals interactions are significant. Standard semilocal
functionals such as the local density approximation (LDA)
tend to overbind the noble gases due to a self-interaction of
the electrons in regions of low density. Second generation
generalized gradient approximation (GGA) functionals such as
the Armiento-Mattsson 2005 (AM05) functional [7] remove
this self-interaction, but as a result do not bind noble gas
solids at all. Despite much progress in the area of disper-
sion corrected DFT [8], cases where dispersion dominated
bonding gives way to covalent or metallic bonding remain a
challenge. Xenon presents a canonical example of this effect
and as a result its behavior is greatly affected by pressure.
Xenon turns metallic under moderate shock compression [9]
and although xenon is a narrow-range cryogenic liquid at
normal pressure with melting and boiling points of 161.4 and
165.0 K, respectively, at 20 GPa the melting point is above
2500 K.

These significant theoretical challenges necessitate the ap-
plication of a complementary technique whose approximations
are not tied to the local behavior of the electrons. A promising
candidate from this point of view is diffusion quantum Monte
Carlo (DMC) [10,11]. Whereas the approximation made in
DFT calculations requires the consideration of an effective
Hamiltonian, DMC treats the Hamiltonian exactly. Therefore,
DMC can accurately study van der Waals interactions and has
been successfully applied to noble gas solids [12,13] and the
interactions between filled shell molecules [14–17].

In order to thoroughly investigate the performance of
DMC for xenon, we focused on the three fundamental
approximations in the calculations. These approximations
are the pseudopotential approximation that is necessary for
computational efficiency, the fixed node approximation which
is necessary to mitigate the fermion sign problem, and the
finite size approximation where calculations on modest sized
supercells are used to determine the properties of xenon in the
thermodynamic limit.

As a test of these approximations, the energy versus volume
for the fcc crystal is used as a benchmark. Calculations of a
32-atom supercell, using the finite size correction methods
employed in the rest of this Rapid Communication, with two
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FIG. 1. (Color online) Energy of a unit cell of fcc xenon calcu-
lated with DFT and DMC. The dotted lines correspond to Vinet fits
to the DFT calculations. The solid lines correspond to Vinet fits to
the DMC calculations. The triangles correspond to DFT or DMC
simulations based on the LDA and the circles DFT or DMC based on
AM05.

different starting points are considered. First, pseudopotentials
and nodal surfaces from the LDA are used as the input to
the DMC calculations. Then the processes are repeated with
pseudopotentials and nodal surfaces from AM05, allowing a
sensitivity test to the form of these approximations. The results
of this test are shown in Fig. 1. We find that the DMC results are
independent of the trial wave functions and pseudopotentials to
the level required for this work. Fitting the DMC energy versus
volume curve with a Vinet form [18] gives a lattice constant
varying by only 0.25% ± 0.61% when changing from LDA
to AM05 trial wave functions and a bulk modulus varying by
only 0.4% ± 0.8%. For this reason we conclude that the errors
arising from the nodal and pseudopotential approximations are
small for these DMC calculations of xenon.

Despite this evidence that DMC is ideally suited for the
calculation of the properties of xenon under pressure, an im-
portant wrinkle remains. Direct calculations of melting are not
currently feasible with DMC for anything beyond the lightest
of elements. Fortunately, a solution to this problem has recently
been proposed: Thermodynamic integration can be used to
connect the accuracy of the DMC calculations with the speed
and efficiency of DFT based molecular dynamics [19]. Using
this technique, Sola and Alfè found that DMC calculations
favored the solid phase in calculations of the melting of iron
under pressure. This result was in disagreement with DAC
experiments [20]. A potential concern with this result is that
quantum Monte Carlo (QMC) methods both variational Monte
Carlo (VMC) and DMC being variational tend to produce
relatively lower total energies for more ordered states (in this
case solids versus liquids). This effect is because the trial wave
functions used tend to be rather simple compared to the true
many-body wave functions and typically do not increase in
complexity for the less ordered phases. Thus simpler phases
where the wave function is closer to the many-body wave
function tend to have a smaller positive fixed node error than
more complex phases.

In light of this and because the approach is different, we
elected to null test the method by calculating the melting
temperature of aluminum at 120 GPa. This material and
condition were chosen because shock experiments, diamond
anvil cell experiments, and DFT calculations all agree as to
the melting temperature [21]. If the QMC free energies were
biased towards the solid phase, then the melting temperature
would be overestimated using this method. Relative energies
between the snapshots of the same phase for aluminum agreed
very well between the DMC and DFT, giving confidence that
the DFT dynamics were close to the DMC ones. Additionally,
the shift in free energy between the solid and liquid was very
small, 0.202 ± 0.100 meV/atom, leading to a temperature
shift of only 2.3 ± 1.2 K. This result is well within the errors
of the method and experimental accuracy for melting under
pressure. Furthermore, this test shows that the thermodynamic
integration method does not suffer from notable systematic
errors when the DMC is performed with a relatively simple
trial wave function.

In applying this approach to the melting of xenon we
start by calculating the melting line at two points using DFT
based molecular dynamics. Specifically following the work of
Root et al. [22], we performed calculations using VASP [23]
within the AM05 [7] density functional. These calculations
started with fcc solid in the same simulation cell as liquid
xenon. Care was taken to ensure that nonhydrostatic stresses
were minimized via an equilibration procedure taking over
1000 two femtosecond time steps and 220 eV plane wave
cutoffs. Two densities were selected for these simulations,
7.27 and 10.0 g/cm3. As the finite size of the simulation cell
is a concern with this type of calculation, we performed two
different procedures, one in the NVT ensemble that brackets the
melt line by performing calculations at different temperatures
and looking at whether the cell has frozen or melted after
a period of ≈8 ps, and another one in the NVE ensemble
that establishes a coexistence between the two phases and
measures the temperature of the resulting assembly again over
≈8 ps, which allows the temperature to be determined to within
≈20 K for the larger simulation cells. We found that for the
higher density, calculations with 214 xenon atoms found a
melt temperature of 6000 K in the NVT ensemble, but NVE
yielded a lower value. This suggested that larger simulation
cells were necessary and cells doubled in size in the direction
perpendicular to the interface (428 atoms) found agreement,
yielding two points at which the Gibbs free energy of the two
phases were equal: 24.4 GPa and 3000 K for 7.27 g/cm3 and
74.4 GPa and 5600 K for 10.0 g/cm3.

From this foundation, we followed Sola and Alfè [19],
adding refinements to the methodology. The change in free
energy of a phase at a given temperature and volume is
calculated by taking snapshots from long DFT based molecular
dynamics simulations and comparing the energy of those
snapshots to energies from DMC calculations. Using this
information, the change in the Helmholtz free energy of each
phase is found using a perturbation series of cumulants in the
energy difference as

�F =
∞∑

n=0

(1/kBT )n−1

n!
κn, (1)
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where the κn’s are cumulants of the difference in internal
energy between the DMC and DFT ensembles:

κ0 = 〈�U 〉λ=0,

κ1 = 〈�U 2〉λ=0 − 〈�U 〉2
λ=0 (2)

...

or directly in terms of the partition function

�F = −kBT 〈e−�U/kBT 〉λ=0, (3)

where �U = UDMC − UDFT with UDMC and UDFT the potential
energies of the DMC and DFT systems, respectively, and 〈 〉λ
represents the thermal average in the ensemble generated by
the potential energy function U (λ) = λUDMC + (1 − λ)UDFT.
The approximation above is valid when UDMC and UDFT are
sufficiently close so that the averages over all of state space can
be approximated using a few configurations sampled from the
ensemble of the reference system. A necessary condition for
this to be valid is that the higher order terms in Eq. (1) are small
and that the two approximations in Eqs. (1) and (3) yield very
similar answers. A test of this condition is found in Fig. 2.
From this figure, it is apparent that the total energies track
each other well, again suggesting that DFT provides a faithful
sampling of the energy landscape. Quantitatively, Eq. (1) bears
this out, with the second term in the cumulant expansion being
1.5% of the first one for the solid at 7.27 g/cm3 and 1.4% for
the liquid. The bottom panel in Fig. 2 shows the differences
between the solid and the liquid snapshots after the average
DMC-DFT energy difference for the solid is subtracted for
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FIG. 2. (Color online) Top: DMC energies corresponding to
configurations representative of solid (blue triangles) and liquid
(red squares) xenon, generated with quantum molecular dynamics
(QMD) on 108-atom systems. The solid lines connect DFT energies
calculated on the same configurations. An independent offset is added
to the DMC and DFT calculations so that the average energy of the
solid snapshots in each method is 0. Bottom: DMC-DFT energy
differences for the same configurations. The average DMC-DFT
energy difference for the solid is subtracted from all points. Lines
represent the average of the energy differences between DMC and
DFT in the solid and the liquid.

all points. This shows visually that the DMC energy is on
average 35.0 meV/atom larger for the liquid snapshots than
the corresponding DFT.

Given that the change in Helmholtz free energy at constant
volume can be calculated for the solid and liquid, how
should this knowledge be used to calculate a change in
melt temperature or pressure? The start of such methods
is the equality of the Gibbs free energy between the solid
and liquid. Following the work of Sola and Alfè [19], for a
given density and temperature, the change in the Gibbs free
energy for a phase when moving from DFT interactions to
QMC is

�G ≈ �F − V �p2/2BT , (4)

with BT the isothermal bulk modulus and �p the change in
pressure as the potential energy is changed from UDFT to UDMC

at constant volume. In previous work on iron [19], it was argued
that the second term on the right hand side of the equation is
small and only the change of free energy was used. Given the
deficiencies of semilocal DFT in treating xenon, we evaluate
these directly.

In order to evaluate the isothermal bulk modulus and the
change in pressure, we used thermodynamic integration to
construct the relative Helmholtz free energies within each
phase using QMD. This was done by calculating the average
pressure in QMD calculations for several densities along an
isotherm and constructing relative free energies using the
following expression:

dF = −
∫ Vf

Vi

P dV + C. (5)

Next, we use the calculated melting pressure at this temper-
ature to determine the relative free energy between the solid
and liquid. The first thing this procedure allows is for the
specific volumes at which the solid and liquid coexist to be
determined. These are the volumes at which the change in
free energy referenced by Eq. (4) should be calculated. Next,
we calculate the shift in the Helmholtz free energy when
changing from DFT to DMC for each phase at three different
volumes along these isotherms. This procedure allows the
volume dependent Helmholtz free energy within the DMC
ensemble to be determined for each phase.

Having constructed the relative free energies of the solid
and liquid with a DFT determined interaction and a DMC
determined one, we determine the change in the melting
conditions in two ways. The first is to use the Gibbs
construction to determine the melting pressure in the DFT
ensemble as illustrated in Fig. 3. This yields a shift in the
melting pressure at 3000 K from 24.4 to 23.4 GPa and at
5600 K from 74.4 to 66.0 GPa. Alternatively, we can calculate
the shift in the Gibbs free energy at the density of coexistence
in each phase. The change in temperature necessary to restore
the equality of the Gibbs free energy is

�T m � Gls/Sls
DFT. (6)

This procedure shifts the melting temperature at 24.4 GPa from
3000 to 3155 K and at 74.4 GPa from 5600 to 5810 K.
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FIG. 3. (Color online) Relative Helmholtz free energy of the
solid and liquid phases at 5600 K determined by DFT calculations to
establish the melt pressure and thermodynamic integration to find the
relative free energies. A common tangent to the QMC curves is also
shown, establishing a melt pressure of 66 GPa.

It is particularly instructive to note what would have
happened if we had assumed that the shift to the free energy
as a function of volume was constant, as was argued for
iron in Ref. [19]. With this simplifying assumption, it is
no longer necessary to determine the correction to the free
energy at the specific volumes of the coexistence, rather, it
can be done at a convenient density (the density where the
Helmholtz free energy of the two phases is equal is a typical
choice). This, however, proves to be a poor assumption for
high-pressure xenon, with considerably larger shifts to the
melting temperature (at 24.4 GPa, the temperature shifts is
315 K instead of 155 K and at 74.4 GPa it is 530 K instead
of 210 K). Similarly, the Gibbs construction can be used to
calculate the change to the melting pressure but now with the
DFT values being shifted by a volume independent constant.
Again, this results in a much larger shift to the pressure, going
from 24.4 GPa at 3000 K to 17.7 GPa and from 74.4 GPa at
5600 K to 51.7 GPa.

Our results for the high-pressure melting of xenon are
summarized in Fig. 4. Our DFT calculated values are shown
as green triangles, which agree well with earlier values
calculated by Belonohsko et al. [26]. The values from using
the thermodynamic integration to DMC are shown as solid
diamonds, with open diamonds the values from assuming that
the shift is constant as a function of volume. The net effect
of these corrections is to increase the disagreement between
the melting at high pressure and the DAC experiments. At
lower pressures, our results appear to be in slightly better
agreement with the DAC experiments. However, it should be
noted that the DAC experiments likely are not isobaric during
the heating as their pressure measurements would imply. If we
instead assume that they are isochoric, we can calculate the
thermal pressure at the melting temperature for each density
using an equation of state [28], resulting in corrected pressures
as shown in Fig. 4. These results for xenon suggest that
the high-pressure DAC experiments should be reexamined
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FIG. 4. (Color online) Melting of xenon as a function of pressure
obtained with various theoretical [6,24–26] and experimental [5,27]
techniques. Experimental points are solid squares, classical molecular
dynamics circles, DFT based molecular dynamics triangles, and
QMC diamonds. A correction of the experimental points including an
estimate of thermal pressure from SESAME 5191 [28] is shown with
solid pentagons. Horizontal error bars on the QMC points include the
statistical uncertainty in the pressure shift technique, and the vertical
error bars from the temperature shift technique.

to rule out either surface effects, nonhydrostatic stresses, or
melting from a different phase as the cause of the reported flat
melting line [29]. This result might be achieved by exploiting
a bulk probe of the xenon structure such as x-ray diffraction
rather than the speckle field technique that was previously
used [5].

We have presented an extension of the methodology
of using thermodynamic integration to determine melting
conditions, improving the accuracy for compressible materials
and showing that considering the volume dependence of the
free-energy shift is crucial. This high-accuracy procedure can
be used to further explore the melting behavior of a wide
variety of materials, thereby contributing to the ability of
hydrodynamic simulations to predictively model a wide range
of phenomena from inertial confinement fusion to planetary
science.
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