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Feedback of superconducting fluctuations on charge order in the underdoped cuprates
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Metals interacting via short-range antiferromagnetic fluctuations are unstable to sign-changing superconductiv-
ity at low temperatures. For the cuprates, this leading instability leads to the well-known d-wave superconducting
state. However, there is also a secondary instability to an incommensurate charge-density wave, with a
predominantly d-wave form factor, arising from the same antiferromagnetic fluctuations. Recent experiments in
the pseudogap regime of the hole-doped cuprates have found strong evidence for such a charge-density wave
order and, in particular, the predicted d-wave form factor. However, the observed wave vector of the charge order
differs from the leading instability in Hartree-Fock theory, and is that of a subleading instability. In this paper,
we examine the feedback of superconducting fluctuations on these different charge-density wave states, and find
that over at least a small temperature window, they prefer the experimentally observed wave vector.
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I. INTRODUCTION

The pseudogap (PG) regime of the hole-doped cuprates
is possibly one of the most enigmatic phases of matter. It
has often been described as one of the central problems in
the physics of high-temperature superconductivity (SC). It is
identified by the onset of a large gap (∼50 meV) below a
temperature T ∗, as observed in a number of different probes.
The gap persists down to the superconducting transition
temperature Tc, below which of course the system develops
the usual superconducting gap. The nature of the fermionic
excitations in the PG phase is particularly interesting—the
aforementioned gap is present in the antinodal regions of the
Brillouin zone close to momenta (π,0) and (0,π ); there exists,
however, a region close to the nodes that remains gapless as
has been detected via ARPES experiments [1,2]. These regions
are commonly referred to as the Fermi “arcs.”

A topic of intense debate has been whether in addition
to pairing fluctuations, any other possibly short-ranged and
fluctuating phase with broken symmetry is also present above
T > Tc, and below the onset of the pseudogap. Investigating
the precise nature of this short-range order will likely shed
some light on the “normal” state out of which it emerges.
The different perspectives on this short-range order in the
PG phase can be divided into two classes: (i) the order is
“quantum disordered” and there are fractionalized excitations
and associated topological excitations [3–6], or (ii) the order is
“classically disordered” primarily due to thermal fluctuations.
Here, we shall explore consequences arising from the second
point of view. Implications of these thermal fluctuations on the
phenomenology of the pseudogap phase, with comparison to
various experiments, have also been explored recently [7,8].

A huge leap in our understanding came about with the dis-
covery of quantum oscillations caused by a small electron-like
pocket at very large magnetic fields [9]. This was the first clear
evidence of the “normal” state in the pseudogap phase under
large magnetic fields having some resemblance to a metallic
state. More recently, in a series of remarkable experiments, it
has become clear that the reconstructed electron-like pocket
is caused by an incommensurate charge-density wave (CDW),
competing with superconductivity [10–23]. The wave vector

of this charge-density wave, which is of the type (±Q0,0),
(0,±Q0), appears to be linked to the Fermi surface in the
antinodal regions. Furthermore, diamagnetism measurements
in YBCO show significant fluctuation diamagnetism over
approximately the same range of temperatures where x-ray
experiments measure charge order fluctuations, indicating
that there are significant superconducting fluctuations in this
phase [24,25]. A natural question that needs to be addressed
is whether both SC and CDWs arise out of the same
physics.

In the underdoped cuprates, due to the proximity to an
antiferromagnet (AF) close to half filling, the susceptibility,
χ (q), is peaked around K = ±(π,π (1 − δ)), ± (π (1 − δ),π )
(δ �= 0 when the fluctuations are peaked around an incommen-
surate wave vector) [26]. It is now well understood that a metal
interacting via such antiferromagnetic exchange interactions
is unstable to d-wave superconductivity at low temperatures
[27–29]. However, an interesting consequence of the AF
exchange interactions is that they also give rise to a secondary
instability to a charge-density wave with a predominantly
d-wave form factor [30,31]. Significant recent developments
have been the evidence for the predicted d-wave form
factor in x-ray observations [21], and a direct phase-sensitive
measurement of the d-wave form factor in scanning tunneling
microscopy (STM) experiments [22]. In the present paper we
will turn our attention to the wave vector of this CDW, and in
particular, its connection to the SC fluctuations.

A number of recent works have addressed such issues
[30–42]. In Refs. [30,31], the wave vector of the leading
CDW instability has been found to be of the form ±(Q0,Q0),
±(Q0,−Q0), while the experimentally observed wave vector
was a subleading instability. At this point it is useful to
introduce some new notation. From now on, we shall often
refer to the experimentally observed CDW with wave vectors
(Q0,0) and (0,Q0) as “CDW-a” and the one with wave vectors
(Q0,±Q0) as “CDW-b” (see Fig. 1). More recently, it has
been pointed out that in the presence of strong correlations
arising from on-site and nearest-neighbor Coulomb repulsion,
it is possible to obtain a stable CDW-a phase, with the wave
vectors seen in experiments, in a certain window of parameter
space [37]. Wang and Chubukov [39] examined retardation
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FIG. 1. (Color online) Generic Fermi surface for hole-doped
cuprates, with the filled states shaded in blue. Solid circles, numbered
1, . . . ,8, represent hot spots where the Fermi surface intersects
the magnetic Brillouin zone for a (π,π ) SDW. The purple arrows
represent the CDW-a wave vectors, which closely resemble the ex-
perimentally observed wave vector, while the green arrows represent
the CDW-b wave vectors, which arise as the leading instability in
a HF calculation. The Fermi velocity, (vx,vy), is shown at the hot
spot 1. The wave vectors of CDW-a are (±Q0,0) and (0,±Q0), while
those of CDW-b are (Q0,±Q0). The computation in the present paper
applies for a range of values of Q0, and not just when it is equal to
the separation between hot spots as shown above; for different Q0

we have to consider a corresponding set of 8 points around the Fermi
surface, and our computations proceed unchanged.

effects linked to the damping of spin fluctuations with a long
correlation length, and argued for an extension of CDW-a with
time-reversal symmetry breaking. In this paper, we will show
that upon accounting for the interplay between superconduc-
tivity and charge order in the underdoped cuprates, the CDW
state with the correct wave vector (i.e., CDW-a) appears to
be preferred over CDW-b over at least a small temperature
window, as long as the antinodal regions of the Fermi surface
are reasonably nested with a small curvature (a criterion to
be made more precise later) [43]. In Fig. 1, Q0 represents the
separation between two neighboring “hot spots.” However, our
computations in this paper are applicable for a range of differ-
ent values of Q0 that connect points in the antinodal regions
and can be different from the hot-spot wave vector. Meier et al.
[35] have also recently looked at the effect of superconducting
fluctuations on charge order in a different setup.

We also note our recent work [6], which employs a quantum
disordered model of the pseudogap as a topological metal, and
proposes an alternative mechanism for charge ordering at the
(Q0,0), (0,Q0) wave vectors.

Our paper is organized as follows: In Sec. II A, we intro-
duce the theory of a metal interacting via antiferromagnetic
exchange interactions (henceforth referred to as t-J model,
but without any on-site Coulomb repulsion) and review a

Hartree-Fock analysis for various charge-ordering and pair-
density wave instabilities. Based on the leading instabilities
that occur in a metal, we construct the minimal model in
Sec. II B for a metal with pairing and charge-order fluctuations.
In Sec. III, we take the low-energy limit of this theory
and present the effective theory in the vicinity of special
points—the “hot spots”—where the magnetic Brillouin zone
corresponding to K intersects the Fermi surface. We present the
results of our computation, describing the mutual feedback of
superconductivity and charge order on each other, in Secs. IV A
and IV B. Finally in Sec. V, we summarize the main results
emerging from this analysis. Some of the technical details are
summarized in Appendices A and B.

II. MODEL

A. Metal with antiferromagnetic exchange interaction

In this section, we briefly review some of the earlier results
[31] obtained by carrying out a Hartree-Fock (HF) analysis of
the t-J model (without any Gutzwiller projection). Consider the
following model for fermions, ciα , interacting via short-range
antiferromagnetic exchange interactions,

HtJ =
∑
i,j

[
(−tij − μδij )c†iαcjα + 1

2
Jij

�Si · �Sj

]
, (1)

where tij are the hopping amplitudes, μ denotes the chemical
potential, Jij are the AF exchange couplings, and �Si =
c
†
iα �σαβciβ/2.

We are interested in looking at the various instabilities
that can arise in this model in the particle-particle as well
as particle-hole channel. We shall restrict our attention to
pair-density wave (PDW), where the SC condensate carries a
finite momentum, and charge-density wave states. We ignore
the possibility of having spin order, partly motivated by most
experiments on the non-La-based cuprates (e.g., YBCO and
BSCCO), where the region of charge order has hardly any
overlap with that of spin order [15]. For the Hartree-Fock
analysis, we need the best variational estimate for the following
mean-field Hamiltonian,

HMF =
∑

k

⎡
⎣ε(k)c†k,αck,α +

∑
Q

	Q(k)εαβc−k+Q/2,αck+Q/2,β

+
∑

Q

PQ(k)c†k+Q/2,αck−Q/2,α + H.c.

⎤
⎦ . (2)

In the above, ε(k) represents the electronic dispersion. All
the functions 	Q(k),PQ(k) are variational parameters which
will be optimized by minimizing the free energy, F � FMF +
〈H − HMF 〉MF . As mentioned earlier, we have allowed for
a spin-singlet pair-density wave along with a charge-density
wave at a finite wave vector, Q. The pair-density wave at
Q → 0 reduces to the standard BCS state where particles with
opposite spins are paired at ±k.
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Expanding the right-hand side of F in powers of 	Q(k)
and PQ(k), we get

F = 2
∑

k,k′,Q

	∗
Q(k)

√
�S(k)MS(k,k′)

√
�S(k′)	Q(k′)

+
∑

k,k′,Q

P ∗
Q(k)

√
�C(k)MC(k,k′)

√
�C(k′)PQ(k′), (3)

where the kernels MS,C(k,k′) are given by

MS,C(k,k′) = δk,k′ + 3

V
χ (k − k′)

√
�S,C(k)�S,C(k′), (4)

and the polarizabilities are

�S(k) = 1 − f (ε(k + Q/2)) − f (ε(−k + Q/2))
ε(k + Q/2) + ε(−k + Q/2)

, (5)

�C(k) = f (ε(k + Q/2)) − f (ε(k − Q/2))
ε(k − Q/2) − ε(k + Q/2)

, (6)

with f (· · ·) the Fermi function and
χ (k)(=∑

i,j Jij e
iq.·(ri−rj )/4) the AF susceptibility. Note

that for dispersions that satisfy ε(k + Q) = −ε(k),
�S(k) = �C(k). This holds in the vicinity of the hot
spots for certain values of Q and will have important
consequences, which we shall revisit later.

Pair-density wave and charge ordering in the metal occurs
via condensation in the eigenmodes of the operators MS,C

with the lowest eigenvalues. In order to find the leading
instability in the pairing and charge-ordering channel, we need
to solve the following eigenvalue problem,

3

V

∑
k′

√
�S(k)χ (k − k′)

√
�S(k′)φS(k′) = λSφS(k′), (7)

3

V

∑
k′

√
�C(k)χ (k − k′)

√
�C(k′)φC(k′) = λCφC(k′). (8)

Instead of working with the form of χ (k) introduced above,
we assume that the AF susceptibility, χ (q), has the form

χ (q) =
∑

K

χ0

4{ξ−2+2[2 − cos(qx−Kx) − cos(qy−Ky)]} ,

(9)

which is peaked near the antiferromagnetic wave vector, K
(as introduced earlier), with ξ representing the AF correlation
length and χ0 the overall strength of the spin fluctuations. There
is little difference between the results for δ = 0 and δ �= 0.

In Figs. 2(a) and 2(b) we plot the lowest eigenvalues
λS,C/χ0, obtained after diagonalizing Eq. (8) on a dis-
crete Brillouin zone with L2 points. We use the follow-
ing electronic dispersion: ε(k) = −2t1[cos(kx) + cos(ky)] −
4t2 cos(kx) cos(ky) − 2t3[cos(2kx) + cos(2ky)] − μ.

Let us start with a discussion of the pair-density wave state
[Fig. 2(a)]. Not surprisingly, the state with Q = 0 is the leading
instability and in particular, −λS for Q = 0 has a logarithmic
divergence as T → 0. We do not find any other local minima
in phase space; the BCS log for Q = 0 simply overwhelms
any other PDW state that might have otherwise arisen within
this weak-coupling approach. Comparing the numerical values
of the eigenvalues λS and λC in Figs. 2(a) and 2(b), it is
clear that −λS (at Q = 0) is the smallest. Therefore, in the
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FIG. 2. (Color online) Plot of the smallest eigenvalue (a) λS/χ0

and (b) λC/χ0 as a function of Qx and Qy . We use a band structure
with t1 = 1.0,t2 = −0.32,t3 = 0.128,μ = −1.11856 (corresponding
to the same Fermi surface used in Ref. [31]). The other parameters are
ξ = 2,T = 0.1,δ = 1/4, and L = 20. For the pair-density wave, the
global minimum is located at Q = 0 while for the charge order, it is
located at Q = (Q0,Q0) (CDW-b). In (b), note the valleys extending
from (Q0,Q0) to (Q0,0) and (0,Q0) (CDW-a)—the latter are local,
but not global, minima.

presence of short-range AF interactions, the leading weak-
coupling quadratic instability indeed turns out to be to a SC
(with d-wave symmetry; this information is contained in the
structure of φS).

For the charge-ordering instability [Fig. 2(b)], the global
minimum is located at the diagonal wave vector (Q0,Q0). This
corresponds to the CDW-b state introduced earlier. However
notice the “valleys” of local minima extending from this wave
vector to (Q0,0) and (0,Q0), the CDW-a. It is also worth
pointing out that the form factors associated with these CDWs,
φC , primarily have a d-wave component. In real space, this
implies that the charge-density modulation is mostly on the
Cu-Cu links (bonds) rather than on the sites. Hence they are
also referred to as bond-ordered states.

The reason why CDW-b turned out to be the leading CDW
instability is actually related to two features in our problem
above: (i) the absence of a gap in the spectrum at the antinodes,
and (ii) an emergent particle-hole symmetry associated with
the exchange interactions, Jij

�Si · �Sj . This exchange interaction
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is invariant under independent SU(2) rotations on each lattice
site that map particles to holes and vice versa. These rotations
therefore naturally map SC to CDW-b. In the absence of any
Fermi-surface curvature or other interaction terms that break
this symmetry, both of these instabilities would be exactly
degenerate. However, once it is broken, CDW-b becomes a
subleading instability (SC is always guaranteed to remain
the leading instability even in the presence of a curvature
since the points ±k are always “nested”; however, a very
large nearest-neighbor Coulomb interaction term, V ninj , can
suppress superconductivity, for instance). We also note in
passing that CDW-a is mapped to the PDW [44] at the same
wave vector under these rotations; we do not consider this
PDW here because it does not appear as a preferred eigenvalue
of λS in Fig. 2(a).

The above analysis was carried out in the limit where the
different orders were decoupled from each other; i.e., we did
not look at the feedback of one over the other and analyzed
the free energy F to only quadratic order. Let us therefore now
construct a minimal model for SC and CDW fluctuations in a
metal and analyze the effective theory beyond quadratic order
in the next section.

B. Metal with SC and CDW fluctuations

Consider now a model for the fermions with a generic
Fermi surface as shown in Fig. 1. Based on our HF analysis
in the previous section, we know the (sub)leading instabilities
were to a (i) d-wave superconductor, (ii) CDW-b with wave
vectors (Q0,±Q0), and (iii) CDW-a with wave vectors (Q0,0)
and (0,Q0). We can use this information to construct a
model for a metal with strong pairing and CDW fluctuations.
Therefore, we consider the theory for the fermions coupled to
superconducting (�) and CDW (�) fluctuations (which are in
their uncondensed phase, as is the case in the PG regime). The
Hamiltonian is then given by

H = H0 + HS + HB, (10)

where

H0 =
∑

k

(εk − μ)c†k,αck,α, (11)

HS =
∑

k

[	s(k)c†k+q/2,↑c
†
−k+q/2,↓�q + H.c.], (12)

HB =
∑
k,q

⎡
⎣

⎛
⎝∑

Q

PQ(k)�q−Q

⎞
⎠ c

†
k+q/2,αck−q/2,α+H.c.

⎤
⎦ .

(13)

In the above, 	s(k) is the usual form factor associated with
d-wave superconductivity and PQ(k) is the form factor for
CDW with wave vector Q. We would now like to obtain an
effective action in terms of � and � (both CDW-a and CDW-b)
after integrating out the fermions. The aim of this work is to
study the effect of SC fluctuations on these two different CDW
states and to analyze whether the competition between the
different order parameters can preferentially select a particular
state. It will be particularly interesting if this state corresponds
to the one that has been seen experimentally.

III. LOW-ENERGY THEORY

Instead of carrying out the above task with the full Fermi
surface, let us analyze the theory in the vicinity of the hot spots
labeled j = 1, . . . ,8 in Fig. 1. We expand the dispersion close
to the hot spots so that

εk,j = vF,kj
k⊥ + κk2

‖, (14)

with k⊥ (k‖) being the momentum normal (parallel) to the
Fermi surface. The Fermi velocities are given by vF,k1 =
(vx,vy), vF,k2 = (vx,−vy), vF,k4 = (−vy,−vx), and vF,k7 =
(−vy,vx). The other velocities can be obtained similarly by
symmetry. The parameter κ is related to the Fermi surface
curvature.

The bare Lagrangian for the fermions in the vicinity of the
hot spots, ψj (j = 1, . . . ,8), is then given by

L0 =
8∑

j=1

[ψ†
j (iω − εk,j )ψj ]. (15)

The same expansion can be carried out for a set of any
eight points in the antinodal regions, that are not necessarily
connected by the hot-spot wave vectors.

A. Form factor of the CDW

There are two fundamental properties associated with the
CDW orders—the wave vector and the structure of the form
factor. We have explored the wave vectors that can arise in our
HF computation in Sec. II A, while the form factors associated
with the different CDW orders for the full underlying Fermi
surface were already computed in Ref. [31]. In this section,
we shall revisit this issue within our low-energy formulation.

If we go back to Eq. (3) and focus only on the terms
involving charge order, we obtain

FC =
∑

Q

[∑
k

|PQ(k)|2�C(k)

+ 3

V

∑
k,k′

χ (k − k′)�C(k)�C(k′)P ∗
Q(k)PQ(k′)

]
. (16)

We now assume that χ (k − k′) is peaked at k − k′ = K =
(π,π ) and perform the integrations over k and k′ in patches
in the neighborhoods of the hot spots that satisfy the above
constraint. Furthermore, we assume that PQ(k) can be treated
as piecewise constant in the patches and treat χ as static and
noncritical; i.e., χ ≈ χ0/ξ

−2. For CDW-b, let us focus on the
hot-spot pairs {2,6} and {7,3} where PQ(k) takes the values
ϒb

1 and ϒb
2 . Similarly, for CDW-a, we choose to focus on the

pairs {1,2} and {4,7} where PQ(k) takes the values ϒa
1 and ϒa

2 .
It is straightforward to see that for CDW-b, �C(k) evaluated

in the patches {2,6} and {7,3} are equal to each other due to
purely geometric reasons, i.e., �b

1 = �b
2 = �b, so that

FC |b = �b
[∣∣ϒb

1

∣∣2 + ∣∣ϒb
2

∣∣2] + 3χ0

ξ−2
(�b)2

[
ϒb∗

1 ϒb
2 + ϒb∗

2 ϒb
1

]
.

(17)

It is simple to diagonalize the above quadratic form and obtain
the optimum linear combination of ϒb

1 and ϒb
2 . For CDW-b,
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the eigenvector corresponding to the lower eigenvalue has a
purely d-wave form.

We can now do the same computation for CDW-a and
we immediately find that �a

1 �= �a
2 (once again, for purely

geometric reasons), so that

FC |a = �a
1

∣∣ϒa
1

∣∣2 + �a
2

∣∣ϒa
2

∣∣2

+ 3χ0

ξ−2
�a

1�
a
2

[
ϒa∗

1 ϒa
2 + ϒa∗

2 ϒa
1

]
. (18)

We can diagonalize the above quadratic form and find that the
eigenvector corresponding to the lower eigenvalue contains
a mixture of d- and s-wave forms. It is important to note
that there is an ambiguity in choosing the eigenvector of the
quadratic form [31,38]: we can rescale ϒa

1 ,ϒa
2 by different

factors (i.e., perform a similarity transform) before diagonaliz-
ing the quadratic form, and then undo the similarity transform
after the diagonalization. This modifies the eigenvectors except
when the lowest eigenvalue is zero. It was argued [31,38] that
the appropriate similarity transform is determined by looking
at the structure of the particle-hole T matrix, which leads to
the requirement that the diagonal terms in the quadratic form
have equal values. In this manner, we find that the eigenvector
with lower eigenvalue has (ϒa

1 ,ϒa
2 ) ∝ (1/

√
�a

1,−1/
√

�a
2).

In order to estimate the difference between �a
1 and �a

2, we
can do an explicit computation at T = 0 and in the absence of
a Fermi-surface curvature, so that

�a
1 = 2

4π2vxvy

∫ �x

−�x

dx

∫ �y

0
dy

θ (y−x) − θ (−y−x)

2y
, (19)

where �x,y = vx,y�, θ (· · ·) represents the Heaviside step
function, and we are integrating near the hot spots in a
momentum window |k| < �, with � a UV regulator. We are
interested in the limit �y > �x (since vy > vx in the antinodal
regions) and obtain

�a
1 = �

2π2vy

[
1 + ln

(
vy

vx

)]
. (20)

On the other hand,

�a
2 = 2

4π2vxvy

∫ �x

0
dx

∫ �y

−�y

dy
θ (y + x) − θ (y − x)

2x
, (21)

�a
2 = �

2π2vy

. (22)

Therefore, we see that

�a
1 = η�a

2 > 0, (23)

where

η = 1 + ln(vy/vx). (24)

We then conclude from the discussion below Eq. (18) that the
ratio of the s to the remaining bond components in the form
factor of CDW-a is∣∣∣∣ϒa

1 + ϒa
2

ϒa
1 − ϒa

2

∣∣∣∣ =
√

η − 1√
η + 1

, (25)

which can be quite small. We expect the aforementioned
remaining component of the CDW to be d. (Although the
present hot-spot computation does not, strictly speaking,

distinguish between s ′ and d, demanding smooth variation
of the form factor in the antinodal region strongly prefers d).

Wang and Chubukov [39] also analyzed the form factor
of CDW-a by looking at the set of coupled CDW vertices,
retaining the Landau damping terms in the bosonic propagator.
(In particular our η → 1 limit corresponds to ϕ → π/4 in their
notation.)

B. Interplay of charge-order and superconductivity

In Sec. II A, we saw that at quadratic order one does
not obtain the CDW with the experimentally measured wave
vector. Therefore, it is necessary to go to quartic order; our
real interest in this section is to compute these terms and, in
particular, their temperature dependencies.

Let us now write the full low-energy theory in terms
of the (a) fermions, ψj , (b) CDW-a (�a

x , �a
y) with wave

vectors Qa
x = (Q0,0) and Qa

y = (0,Q0), (c) CDW-b (�b
x , �b

y)
with wave vectors Qb

x = (Q0,Q0) and Qb
y = (Q0, − Q0), and

(d) SC (�):

L = L0 + LS + LB, (26)

LS = �(ψ†
1ψ

†
5 + ψ

†
2ψ

†
6) − �(ψ†

7ψ
†
3 + ψ

†
4ψ

†
8) + H.c., (27)

LB = �a
x(ψ†

6ψ1 + ψ
†
5ψ2 − ψ

†
3ψ4 − ψ

†
8ψ7)

−�a
y(ψ†

1ψ2 + ψ
†
6ψ5 − ψ

†
3ψ8 − ψ

†
4ψ7)

+�b
x(ψ†

6ψ2 − ψ
†
3ψ7) − �b

y(ψ†
5ψ1 − ψ

†
8ψ4) + H.c.,

(28)

where we have suppressed the momentum and spin-index
structure above and L0 was already expressed in Eq. (15).
While writing LB , we have ignored the possibility of having a
small s-wave component in the form factors of �a

x,y ; i.e., we
have assumed PQ(k) = cos kx − cos ky . We also choose not to
write any explicit coupling constants as they can be absorbed
into the fields by a redefinition. In the low-energy limit, the
patches 1-2-5-6 and 3-4-7-8 are decoupled from each other.

Once again, we integrate out the fermions in the vicinity of
the hot spots (in a momentum window |k| < �) and compute
the action up to fourth order in �a , �b, and �. All the
four-point diagrams contributing to these terms are shown in
Fig. 3. There is also a three-point diagram, as shown in Fig. 4,
contributing to the effective action, which takes the form

Seff[�
a,�b,�]

=
∫

d2rdτ
[
ra

(∣∣�a
x

∣∣2 + ∣∣�a
y

∣∣2) + rb

(∣∣�b
x

∣∣2 + ∣∣�b
y

∣∣2)
+ rb|�|2 + ua

(∣∣�a
x

∣∣4 + ∣∣�a
y

∣∣4) + ub

(∣∣�b
x

∣∣4 + ∣∣�b
y

∣∣4)
+ub|�|4 + uab

(∣∣�a
x

∣∣2 + ∣∣�a
y

∣∣2)(∣∣�b
x

∣∣2 + ∣∣�b
y

∣∣2)
+wa

∣∣�a
x

∣∣2∣∣�a
y

∣∣2

+ ūab

((
�a

x

)2
�b∗

x �b∗
y + (

�a
y

)2
�b∗

x �b
y + H.c.

)
+ tab

(
�a

x�
a
y�

b∗
x + �a

x�
a∗
y �b∗

y + H.c.
)

+ sa|�|2(∣∣�a
x

∣∣2 + ∣∣�a
y

∣∣2) + sb|�|2(∣∣�b
x

∣∣2 + ∣∣�b
y

∣∣2)]
,

(29)

134516-5



DEBANJAN CHOWDHURY AND SUBIR SACHDEV PHYSICAL REVIEW B 90, 134516 (2014)
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Φa

Φa

Φa
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Φb

Φb

Φb

Φb

(b)

Φb

Φb Φb

Φb

(c) (d)

Φa

Φa

Φa

Φa

Ψ

Ψ

Φa

Φa

(e)

Ψ

Ψ

Φa

Φa

(f)

Ψ

Ψ

Φb

Φb

(g)
Ψ

Ψ

(h)
Φb

Φb

I = J = K = L =

M = N = P = Q =

µ µ µ µ

µ µ µ µ

FIG. 3. Feynman diagrams representing the various 4-point functions that contribute to different terms in Seff. The solid internal lines carry
different hot-spot indices (μ,ν,ρ,δ) depending on the term being evaluated. The dashed, dotted, and double lines represent �a , �b, and �,
respectively. The individual diagrams are labeled (a) Iμνρδ , (b) Jμνρδ , (c) Kμνρδ , (d) Lμνρδ , (e) Mμνρδ , (f) Nμνρδ , (g) Pμνρδ , (h) Qμνρδ .

where ra = a(T − T a
c,0) and rb = b(T − T b

c,0) with a,b > 0
and the bare transition temperatures, T b

c,0 > T a
c,0. Note that we

have already utilized the emergent symmetry of the linearized
hot-spot theory to equate the transition temperatures for SC
and CDW-b, and also equated the coefficients of |�|4 and
|�b

x |4,|�b
y |4. In the presence of terms that break this symmetry,

T b
c,0 < T SC

c,0 ; the exact details are beyond the scope of this work.
It is important to note that the above action is invariant under

all the underlying symmetries (including under rotations;
e.g., Rπ/2 : �a

x → �a
y ; �a

y → �a∗
x ; �b

x → �b∗
y ; �b

y → �b
x).

The terms in the third and fourth lines arise naturally due to the
existence of two types of CDW correlations in the system with
wave vectors that satisfy the following geometric constraints:
Qb

x = Qa
x + Qa

y and Qb
y = Qa

x − Qa
y . Some of these coeffi-

cients were computed for the full Fermi surface in Ref. [40].
Note the absence of a term of the form |�b

x |2|�b
y |2 above, which

is allowed by symmetry but missing due to lack of available
phase space for this kind of a scattering process. The terms that
are of particular interest to us appear in the last line (∼sa,sb),
as will become clear in the next section. Let us now present
the results for the different coefficients that appear above.

FIG. 4. Feynman diagram representing the 3-point function, Yμνρ ,
between �a (dashed lines) and �b (dotted line). The solid internal
lines carry different hot-spot indices (μ,ν,ρ).

IV. RESULTS

We start by presenting the results for the linearized theory
(i.e., set κ = 0) in the vicinity of the hot spots.

A. Linearized hot-spot theory

In this section, we shall list the expressions for the
coefficients in terms of the loop integrals. The details
of the computation are presented in Appendix A. At the outset,
we note the regime that we are working in here—we assume
that T � vx� � vy�; i.e., the temperature is much lower
than any other ultraviolet energy scale in the problem and
furthermore, the regions in the vicinity of the hot spots (and in
the antinodal regions) are almost nested. In the next section,
we will show that the Fermi-surface curvature, κ , introduces
another temperature scale in the problem above which our
analysis remains valid.

We start with ua , representing the coefficient of the
|�a

x |4,|�a
y |4 term [Fig. 3(a)]. Evaluating the contributions

arising from both the patches, we obtain

ua = −(I1616 + I2525 + I3434 + I7878) (30)

= −(I1212 + I3838 + I4747 + I5656), (31)

where it is straightforward to see that I1616 = I2525 = I3838 =
I4747, and I1212 = I3434 = I5656 = I7878. The loop integrals are
given by

I1212 = −1

2

∫
k
G2

1G
2
2 ≈ − 1

16π2v2
xvy�

1(
1 + (

πT
vx�

)2) , (32)

I2525 = −1

2

∫
k
G2

2G
2
5 = 0, (33)

where we use the notation
∫

k ≡ T
∑

m

∫
dkxdky/(2π )2 and

all the internal Green’s functions carry the same argument:
(iωm,k), with ωm = (2m + 1)πT . Note that in the limit of
T � vx�, I1212 → −1/(16π2v2

xvy�); i.e., it is nonsingular
and approaches a constant independent of temperature.
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The competition term between �a
x and �a

y , described by wa

[also, Fig. 3(a)], is given by

wa = −(2S + V), (34)

where

S = I2565 + I5212 + I2161 + I1656, (35)

V = 4I1256. (36)

In the above, S,V represent the self-energy and vertex-
correction type diagrams. Furthermore, it is straightforward to
see that I2565 = I5212 = I2161 = I1656. The explicit expressions
are given by

I2565 = −
∫

k
G2G

2
5G6 ≈ − 1

8π2v2
xvy�

ln

(
vx�

πT

)
, (37)

I1256 = −
∫

k
G1G2G5G6 = − 1

32vxvyT
, (38)

where the second integral has been evaluated in the limit
vx� → ∞. Therefore, we see that the most singular contribu-
tion to wa comes from I1256 and is ∼1/T . This has interesting
consequences, as will be discussed at the end of this section,
and has also been pointed out by a recent work [39].

Similarly, the contributions to the |�b|4 terms arise from
[Fig. 3(b)]

ub = −(J2626 + J3737) = −(J1515 + J4848), (39)

where due to the underlying symmetries, all the diagrams
turn out to be equal; i.e., J1515 = J2626 = J3737 = J4848. The
integral evaluates to

J1515 = −1

2

∫
k
G2

1G
2
5 = −7ζ (3)

32π4

�

vyT 2
, (40)

where ζ (n) is the Riemann-zeta function. The singularity here
is much stronger than what we encountered before in the
case of the |�a|4 terms. However, the T −2 behavior is not
at all surprising—recall that there is a perfect SU(2) symmetry
between CDW-b and SC within our linearized theory and the
coefficient of the |�b|4 term should therefore be identical to
that of |�|4, which is known to be of the same T −2 form. In the
presence of a finite curvature, this symmetry will be broken
below some temperature scale set by κ , as we shall see in the
next section.

Let us now shift our focus to terms that describe the
competition between the different components of the charge
orders, �a and �b. There are two types of four-point functions
between these orders, denoted uab and ūab. Let us focus on uab

first [Fig. 3(c)]. If we focus only on the coefficient of, let us say,
the |�a

x |2|�b
x |2 term (the overall form in which the different

order parameters appear is strongly constrained by various
symmetries), we get

uab = −2(K1626 + K4373), (41)

where K4373 = K6515 by symmetry under Rπ/2 (and the latter
appears in the coefficient of |�a

y |2|�b
y |2). Evaluating these loop

integrals gives

K1626 = −
∫

k
G1G2G

2
6 = − 1

64vxvyT
, (42)

K6515 = −
∫

k
G1G

2
5G6 = − 1

64vxvyT
. (43)

Similarly, while evaluating ūab [Fig. 3(d)], if we focus only on
the coefficient of (�a

x)2�b∗
x �b∗

y (the overall form of the terms
is once again constrained by symmetry),

ūab = −(L2516 + L3784), (44)

where L3784 = L2516 and the explicit form is given by

L2516 = −
∫

k
G1G2G5G6 = − 1

32vxvyT
. (45)

It is interesting to note that the leading singularities in all of the
above diagrams (with the exception of ua,ub) are of the form
∼1/T . This is something that we can understand by applying
standard power-counting arguments. In (2 + 1)-dimensions
for such 4-point functions, the singular structure in the IR
(with a cutoff, k0 ∼ T ) will be obtained as

∫
d3k/k4 ∼ 1/k0,

where k ≡ (iω,k). However, there are obviously exceptions
to this naive argument, which arise due to the interesting pole
structure of the propagators involved in the different diagrams.

We now move over to the terms that actually describe the
competition between CDW and SC—these will be responsible
for some of the interesting results to come out of our analysis.
We start by evaluating the diagrams contributing to sa , which
describes competition between �a and � [Figs. 3(e), 3(f)],

sa = 2S̄ + V̄ , (46)

where

S̄ = M2515 + M6151 + M7848 + M4373

= M1262 + M6515 + M8373 + M4737, (47)

V̄ = N2615 + N8437 = N2651 + N8473. (48)

In the above, S̄ and V̄ represent the self-energy and vertex
correction contributions, respectively. We have written the
coefficients of both |�a

x |2|�|2 and |�a
y |2|�|2 above, which are

of course equal. Moreover, some of the symmetry-related dia-
grams are individually equal as well, such as M1262 = M7848 =
M6515 = M4373 and M2515 = M8373 = M4737 = M6151. Sim-
ilarly, N2651 = N2615 = N8437 = N8473. The explicit expres-
sions for the (distinct) diagrams are given by

M2515 = −
∫

k
G2G

2
5G

′
1 = 1

64vxvyT
, (49)

M1262 = −
∫

k
G1G

2
2G

′
6 = 1

64vxvyT
, (50)

N2651 = −
∫

k
G1G2G

′
5G

′
6 = − 1

32vxvyT
. (51)

The “primed” Green’s functions have arguments (−iωm,−k).
Once again, the leading singularity is of the form 1/T .
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Finally, the coefficient sb, which describes the competition
between �b and � [Figs. 3(g) and 3(h)] is given by

sb = 2(P2626 + P3737) + (Q2626 + Q3737) (52)

= 2(P1515 + P4848) + (Q1515 + Q4848), (53)

where all the self-energy type diagrams, P1515 = P2626 =
P3737 = P4848, are equal and the vertex-correction type di-
agrams are equal and opposite in sign to the self-energy
type ones; i.e., Q1515 = Q2626 = Q3737 = Q4848 = −P1515.
We therefore only need to evaluate one such integral—the
corresponding expression is given by

P2626 = −
∫

k
G2G

2
6G

′
2 = 7ζ (3)

16π4

�

vyT 2
. (54)

The 1/T 2 behavior is to be expected by the same reasoning
that was presented earlier—the coefficients of |�|4,|�b|4 and
|�b|2|�|2 should have an identical (singular) structure arising
from the emergent SU(2) symmetry.

Now that we have evaluated all the four-point functions
allowed by symmetry, let us also evaluate the three-point
functions between �a,�b that contribute to tab (Fig. 4). Once
again, we remind the reader that such a term is allowed because
of purely geometric reasons associated with the wave vectors
of the various CDWs: Qb

x = Qa
x + Qa

y and Qb
y = Qa

x − Qa
y . If

we focus on the coefficient of the ∼�a
x�

a
y�

b∗
x term (and the

rest just follows by symmetry), we get

tab = (Y261 + Y265 + Y374 + Y378), (55)

where it is easy to see that Y265 = Y261 = Y374 = Y378. If we
choose to evaluate just one of these,

Y261 = −
∫

k
G1G2G6 = 0. (56)

It is very interesting to see that within our linearized theory,
the integral evaluates exactly to 0. However, in the presence of
a finite curvature, this term assumes a nonzero value, as will
be shown in the next section.

Assembling all the expressions that we have computed
above, the leading (singular) behavior of the coefficients in
the effective action, Seff[�a,�b,�], are given by

ua = 1

8π2v2
xvy�

, wa = 1

8vxvyT
, ub = 7ζ (3)�

16π4vyT 2
, (57)

uab = 1

16vxvyT
, ūab = 1

16vxvyT
, tab = 0, (58)

sa = 1

16vxvyT
, sb = 7ζ (3)�

8π4vyT 2
. (59)

At this point, it is worth pointing out some of the interesting
features associated with the above terms. First of all, notice
that depending on the nature of the term, we have obtained two
different types of singularities—there are terms that go as 1/T ,
and others that go as 1/T 2—in addition to the nonsingular
term. This has two interesting consequences. In the presence of
only the terms involving CDW-a, the competition between the
x,y components, wa , far exceeds ua; i.e., wa/ua ∼ �vx/T �
1. The implication is that at low enough temperatures, CDW-a
would necessarily have a tendency to form stripelike, instead
of checkerboard, order [39], which would spontaneously break

(a) (b)

(c) (d)

Φa Φa Φa Φa

Φb Φb Φb Φb

FIG. 5. Contracting the � fields (solid double lines) in (a) Mμνρδ ,
(b) Nμνρδ renormalize the |�a|2 term, and (c) Pμνρδ , (d) Qμνρδ

renormalize the |�b|2 term.

the underlying C4 symmetry of the lattice. On the other hand,
with only CDW-b order, due to the absence of any competition
between its x,y components, there will not be any tendency to
break the C4 symmetry. There is indication for the CDW being
unidirectional and stripelike in the absence of a magnetic field
in various experiments.

Let us now discuss an important feature of our analysis,
involving the sa,sb terms that describe the competition of the
different CDWs with SC. We find that sb/sa ∼ �vx/T � 1,
implying that at low enough temperatures, SC competes with
CDW-b much more strongly than with CDW-a. However, this
is not surprising for the following reason: In our linearized
hot-spot theory, there is no fundamental difference between
CDW-b and SC due to the SU(2) symmetry. In fact both of
these orders are strongly coupled to each other and compete
for density of states on the Fermi surface in the vicinity of the
same hot spots. Therefore, it is natural for them to compete
with each other more strongly. The same is not true about
CDW-a and SC, which compete for density of states along
different portions of the Fermi surface. Note that CDW-a and
CDW-b also compete mutually, so suppressing one naturally
makes it favorable for the other one to emerge.

To summarize, the results of this section indicate that at
very high temperatures, there is an almost perfect symmetry
between CDW-b and SC (in fact, this symmetry persists even in
the presence of a finite curvature, as we shall show in the next
section), which makes it unfavorable for CDW-a to appear in
the scene. However, as a function of decreasing temperature,
as the strength of superconducting fluctuations increase, the
CDW-b fluctuations are preferentially suppressed compared
to CDW-a, which could possibly allow CDW-a to emerge.
The exact crossovers, if any, are beyond the scope of this
work. The net effect of the SC fluctuations is to effectively
renormalize the quadratic terms in the action for �a and �b,
as shown in Fig. 5. At low temperatures, the coefficient of |�b|2
is renormalized more strongly compared to the coefficient
of |�a|2. In order to extract an estimate of the relative
renormalizations, let us compute 	ra and 	rb for CDW-a,b
due to purely thermal and Gaussian fluctuations associated
with superconductivity, 〈|�q|2〉 ∼ (q2 + σ 2)−1. This approxi-
mation is valid sufficiently far away from the superconducting
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Tc. The renormalizations are then given by

	ra ≈ sa

∫
d2q

(2π )2

1

q2 + σ 2
≈ − sa

2π
ln

(
σ

�

)

= − 1

32πvxvyT
ln

(
σ

�

)
, (60)

	rb ≈ sb

∫
d2q

(2π )2

1

q2 + σ 2
≈ − sb

2π
ln

(
σ

�

)

= − 7ζ (3)�

16π5vyT 2
ln

(
σ

�

)
. (61)

Hence, the relative renormalizations 	rb/	ra ∼ �vx/T �
1, which indicates that within our simplified theory, there exists
an intermediate range of temperatures where the transition
temperature for CDW-b gets suppressed more than the one for
CDW-a.

The only caveat in the calculations presented in this section
is that all of them were performed in the limit of κ → 0. Of
course, in the actual problem, the curvature is finite (albeit
small, in the antinodal region). Therefore, we revisit the whole
problem with a nonzero curvature in the next section and
analyze the consequences numerically.

We would like to remind the reader that at the level of
approximation that we have used in this section, the CDW-a
state is degenerate with the corresponding PDW state and
the two compete strongly with each other. However, in the
presence of a curvature or other features that break the SU(2)
symmetry, the PDW state is destroyed completely, at least
within the weak-coupling picture (unlike the other states, as
we saw in Fig. 2). Moreover, as we shall see in the next section,
the competition effects between CDW-a,b and SC discussed
above survive even in the presence of curvature as long as the
temperature is higher than a scale set by κ .

B. Effect of Fermi-surface curvature

In the previous section we ignored the effect of the Fermi-
surface curvature completely and analyzed the linearized
theory in the vicinity of the hot spots. Most of the graphs
that we evaluated were singular in the limit of T → 0 (though
we intend to apply our results to the metallic state at strictly
T > 0). The question we would now like to address is, to what
extent do these results remain valid and what is the regime
of validity, in the presence of a finite curvature. In fact, it
is possible that the curvature sets a temperature scale above
which our analytical results for the linearized theory continue
to hold. We shall denote all the previously evaluated integrals
by Ĩ ,J̃ , . . . ,Q̃,Ỹ , to distinguish them from the symbols used
earlier. This time around, we shall perform the Matsubara sums
first and then evaluate the momentum integrals numerically as
a function of temperature for various fixed values of curvature,
κ , and α = vy/vx .

The aim of this computation is twofold. First of all,
in the limit of κ → 0, we should recover the temperature
dependencies of the different terms obtained earlier. Second,
we would like to have an approximate estimate of the
functional form of T0(κ,α), the temperature scale above which
our analytical results for the κ = 0 problem continue to hold,
assuming such a scale exists.

In the presence of a finite curvature, the modified disper-
sions are now given by

ε1(k) = vxkx + vyky + κ
(
k2
x + k2

y

)
, (62)

ε2(k) = vxkx − vyky + κ
(
k2
x + k2

y

)
, (63)

with ε5(k) = ε1(−k), ε6(k) = ε2(−k), and so on.
We only present the main findings of this analysis in the

present section. The technical details of the computations
along with plots of the numerical results are provided in
Appendix B.

Let us start by analyzing the temperature dependence of
diagrams (Ĩ1212) contributing to ua . We found that (i) at a
fixed value of α, but for κ �= 0, Ĩ1212 goes to a constant value
in the limit of T → 0. Moreover, in the limit of κ → 0, this
constant is nearly identical to what we had computed earlier for
I1212 [Eq. (33)]. (ii) On the other hand, for T → vx�, there
is a power-law fall-off going as ∼1/T 2 for all considered
values of κ , which again matches with our analytical result for
I1212 [Eq. (33)]. (iii) Finally, Ĩ1212 scales as ∼1/α, which was
apparent from the perfect scaling collapse that we observed
for αĨ1212 (not shown). This agrees with our analytical results
from earlier, even though they were computed with κ = 0. The
numerically evaluated results for Ĩ1212 are shown in Fig. 6(a).

We next computed the leading diagrams contributing to
wa , giving rise to competition between x and y components
of CDW-a. We came across the following interesting results:
(i) irrespective of the value of the curvature, the diagrams
all asymptote to a 1/T behavior at low temperatures (up to
T/vx� ∼ 10−4). (ii) There were however deviations at higher
temperatures. (iii) Finally, this particular diagram also scales
as 1/α (not shown). The plots as a function of temperature are
shown in Fig. 6(b).

It is especially interesting to see that even in the presence
of a small curvature, wa continues to scale as 1/T down to
very low temperatures. However, as a function of decreasing
temperature, there will be a preemptive instability to super-
conductivity, which in turn will cut off the 1/T behavior to
1/	, where 	 is the superconducting gap.

Let us now revisit the terms that turned out to be the
most singular in our earlier analysis, which includes ub (J1515)
and sb (P2626,Q2626), and went as ∼1/T 2. As a reminder, in
the linearized theory, we obtained 2J1515 = −P2626 = Q2626.
However, a finite curvature breaks this symmetry. We first
focused on the temperature dependence of these diagrams at
a fixed α but different values of κ and noticed the following
common features: (i) The limit of κ → 0 computation agrees
perfectly with the analytical computation from the previous
section. (ii) With an increasing κ , we note that the results for
the different computations (i.e., with and without κ) only agree
with each other above a characteristic temperature, T0 = Cκ ,
with C different for each diagram (this is determined by noting
the temperature, T0, at which the deviation starts; these are
marked by the dotted vertical lines in Fig. 7). To investigate
whether C is α dependent, we computed the same diagrams
as a function of temperature at a fixed κ �= 0 and vx , but for
different values of α. Remarkably, the value of T0 remains
unaffected by changing α, which shows that C is independent
of α. (iii) We also observed them to scale as ∼1/α, just like
in all the previous cases. Therefore, to summarize, ub and sb
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FIG. 6. (Color online) Absolute values of diagrams contributing to ua and wa as a function of temperature T for (a), (b) different values of
κ but fixed α = 10.0. Other parameters are � = 2.0 and vx = 0.5. Note the almost perfect agreement of the analytical result for κ = 0 (dashed
green line) with the numerical results for small curvature at low temperatures.

continue to behave as 1/T 2 above a temperature scale that is set
by curvature, T0 ∼ κ . Therefore, at high enough temperatures
compared to this scale, the degeneracy between CDW-b and
SC is maintained and the competition is sufficiently weak
that it is unlikely that CDW-a will be a preferred state, based
on our arguments from the previous section. It is however
important to remind ourselves that the coefficient of |�|4,
which also goes as ∼1/T 2, survives even in the presence of a
finite curvature but is eventually cut off by 	. The numerically
evaluated results are shown as a function of temperature in
Figs. 7(a)–7(f).

Finally, we also evaluated the term responsible for compe-
tition between SC and CDW-a. Recall that in the linearized
theory, 2M2515 = −N2651 = −N2615 and where the leading
singularities were all ∼1/T . However, in the presence
of a finite κ these degeneracies are lifted. However, all
the diagrams continue to behave as ∼1/T down to tem-
peratures of T/vx� ∼ 10−4, even in the presence of a
reasonably large κ . However, as a function of decreasing
temperature, the system will go superconducting thereby
cuting off the singularity. We have also checked that
just like all the other diagrams considered so far, these

FIG. 7. (Color online) Absolute values of diagrams contributing to ub and sb as a function of temperature T for (a)–(c) different values of κ

but fixed α = 10.0 and (d)–(f) different values of α but fixed κ = 0.05. (a) J̃1515, (b) P̃2626, (c) Q̃2626. (d)–(f) plot the same diagrams scaled with
α. Other parameters are � = 2.0 and vx = 0.5. The vertical black dotted lines represent the approximate temperature where the computation
in the presence of a nonzero κ starts deviating from the one with κ = 0. Note that in panels (a)–(c), the green dashed curves (representing the
analytical results) overlap almost perfectly with the blue solid curves for κ = 0.
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FIG. 8. (Color online) Absolute values of diagrams contributing to sa as a function of temperature T for (a) M̃1262, (b), Ñ2615, (c) Ñ2651 for
different values of κ but fixed α = 10.0. Other parameters are � = 2.0 and vx = 0.5. Note the almost perfect agreement of the analytical result
for κ = 0 (dashed green line) with the numerical results for small curvature at low temperatures.

diagrams also scale as ∼1/α. The results are shown in
Figs. 8(a)–8(c).

Towards the end of Sec. IV A, we saw that the three-
point functions between CDW-a and CDW-b turned out to
be identically zero. However, when we evaluated the same
diagrams in the presence of a finite curvature, they turned out
to be nonzero. In fact, based on the numerically evaluated
results, we were able to guess an analytical functional form
for Ỹ261, which is as follows,

Y(T ,κ,α) ≈ κ�

π2αvx

1

π2T 2 + v2
x�

2
. (64)

Note that it indeed reproduces the κ → 0 limit correctly and
approaches a constant in the limit of T → 0 otherwise. The
numerically evaluated results and a comparison with Y are
shown in Figs. 9(a) and 9(b).

To conclude this section, we found that at sufficiently
high temperatures, our results from the previous section
continue to hold even in the presence of a finite, but small,
curvature. The terms that we found to be most singular
in our earlier computation (∼1/T 2) continue to have the
same form as long as T > T0 ∼ Cκ . On the other hand, the
terms that went as ∼1/T continue to do so down to very
low temperatures compared to the scales set by the Fermi
velocities. However, as a function of decreasing temperature,
these singularities are cut off eventually by the preemptive

instability to superconductivity. It is therefore safe to conclude
that our computations in Sec. IV A are applicable in the
window max{Tc,T0} < T < vx� � vy�.

V. DISCUSSION

Over the past few years, we have learned a great deal about
the nature of the various symmetry-broken states that arise
in the pseudogap regime of the underdoped cuprates. This
has largely been possible due to the enormous number of
remarkable experiments performed on these materials. Most of
these experiments point toward the existence of a fluctuating
and short-ranged charge-density wave in a metallic state;
the onset of the CDW happens below a characteristic scale
Tcdw � T ∗, as deduced from x-ray scattering measurements
[7]. There is a considerable amount of evidence suggesting
that the CDW competes with superconductivity. It is therefore
essential to understand the true nature of the CDW and its
relation to superconductivity, as this might be the key to
gaining a complete understanding of the pseudogap phase out
of which both orders emerge [8].

Theoretically, we have now started to realize that the
cuprates are a model system where the Fermi surface geometry,
the strong interactions between the constituent electrons and
the quasi-two-dimensional structure conspire to give rise to
some remarkable consequences. One of these is the universal
feature that in the presence of strong antiferromagnetic

FIG. 9. (Color online) Absolute value of Ỹ261 as a function of temperature and comparison with Y (a) at fixed α = 10, (b) at fixed κ = 0.1.

134516-11



DEBANJAN CHOWDHURY AND SUBIR SACHDEV PHYSICAL REVIEW B 90, 134516 (2014)

interactions, superconductivity and charge order are tied to
each other; this has been highlighted by the observation [21,22]
of the predicted [30,31] d-wave form factor of the CDW.
While SC and CDW necessarily arise as dual instabilities of
the same normal state, they also compete with each other.
One of the puzzling features, on the theoretical side, has been
the discrepancy between the wave vector of the CDW seen
experimentally and the one obtained from the leading CDW
instabilities in various models. The primary purpose of this
paper has been to address one interesting ingredient that could
be partly responsible for resolving this discrepancy over at
least an intermediate window of temperature. The primary
motivation for invoking the effect of d-wave superconducting
fluctuations was to suppress density of states in the antinodal
regions.

In this work, we studied the interplay of fluctuating charge
order and superconductivity. Our starting point was the t-J
model (without Gutzwiller projection) for a metal interact-
ing via short-range antiferromagnetic exchange interactions,
where the various instabilities at the Hartree-Fock level are
to SC and CDWs with different sets of wave vectors (a t-J-V
model with an infinite on-site Hubbard U also leads to similar
instabilities, in addition to a staggered flux state [37]). The
leading CDW-b state was found to have a wave vector of the
form ±(Q0,±Q0), while there was a subleading instability to
the CDW-a with wave vectors (±Q0,0) and (0,±Q0). It is the
latter that is closely related to the state seen in the experiments.
In order to study the minimal model with all the necessary
ingredients, we then considered the theory of a metal with
pairing fluctuations and both types of CDW correlations and
computed the effective Ginzburg-Landau (GL) theory up to
the quartic order in the low-energy limit.

We obtained a number of interesting results for the
temperature dependencies of the coefficients in the GL theory.
In particular, one of the central results of this paper is the nature
of the competition between CDW-a and CDW-b with SC. We
observed that SC competes with CDW-b much more strongly
than with CDW-a at low enough, but nonzero, temperatures. In
the low-energy limit, we attributed this to the emergent SU(2)
symmetry between SC and CDW-b, which really does not
distinguish between the two different phases, and the absence
of a gap in the spectrum at the antinodes. At low temperatures,
we presented hints that the SC fluctuations might make it more
favorable for CDW-a to arise and CDW-b to be suppressed

preferentially. In fact, we showed that even in the presence
of a finite Fermi-surface curvature, the results for the mutual
competition between CDW-a,b and SC continue to hold above
a temperature scale that is set by the curvature (T0 ∼ κ).
However at the same time, it is important to note that in the
κ → 0 limit, CDW-a is related by SU(2) symmetry to the PDW
state with the same wave vectors and these two orders would
therefore compete strongly with each other. However when the
SU(2) symmetry is broken explicitly by a finite Fermi-surface
curvature (or by a nearest-neighbor Coulomb repulsion term),
the fragile PDW state disappears completely, as witnessed in
our HF computation for the t-J model. It would be interesting
to explore the interplay between SC, CDW, and PDW orders
beyond weak coupling, starting from a microscopic model in
the near future.

Finally, if it is indeed the superconducting fluctuations that
are responsible for giving rise to the experimentally observed
wave vector, then it is possible that the CDW-b state would
show up in experiments if one were to suppress these SC
fluctuations completely. Furthermore, the CDW-b order should
have a tendency to form checkerboard order, unlike CDW-a,
which has a tendency to form stripelike order [39,45]. This is
a direction worth exploring in STM experiments at very high
magnetic fields, for instance, and repeating phase-resolved
analysis similar to what has been carried out recently to look
for signatures of the CDW-a state [22]. However, if the CDW-b
state continues to be absent, then it is likely that there are other
factors at play here in addition to the SC fluctuations. One such
factor has already been considered recently, which arises from
strong correlation effects due to Coulomb repulsion [37].
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APPENDIX A: FEYNMAN DIAGRAMS FOR LINEARIZED HOT-SPOT THEORY

In this Appendix, we provide details of the calculations for some of the loop integrals evaluated earlier. The momentum
integrals will all be done with a cutoff �, since we only want to restrict ourselves to the neighborhood of the hot spots. We start
with the diagrams that contribute to ua ,

I2525 = −T

2

∑
m

∫
|k|<�

1

[iωm − (vxkx − vyky)]2

1

[iωm − (−vxkx − vyky)]2
, (A1)

I1212 = −T

2

∑
m

∫
|k|<�

1

[iωm − (vxkx + vyky)]2

1

[iωm − (vxkx − vyky)]2
. (A2)
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It is useful to change the coordinates to x = vxkx , y = vyky so that �x,y = �vx,y . We are in the regime where �y � �x � T .
The above integrals then become

I2525 = − T

8π2vxvy

∑
m

∫ �x

−�x

dx

∫ �y

−�y

dy
1

(iωm − x + y)2

1

(iωm + x + y)2
, (A3)

I1212 = − T

8π2vxvy

∑
m

∫ �x

−�x

dx

∫ �y

−�y

dy
1

(iωm − x − y)2

1

(iωm − x + y)2
. (A4)

We shall always evaluate the ky integral first and use
∫ �y

−�y
dky = ∫ ∞

−∞ dky − ∫
|ky |>�y

dky = I1 − I2.
The contribution to I2525 from I1, i.e., I2525|1 = 0 (poles on same side). From I2, we get

I2525

∣∣∣∣
2

≈ T �x

4π2vxvy

∑
m

∫ ∞

�y

dy

[
1

(y + iωm)4
+ 1

(y − iωm)4

]
= 0. (A5)

Therefore, we have I2525 = 0. For I1212, we get

I1212

∣∣∣∣
1

= − iT

16πvxvy

∑
m

sgn(ωm)
∫ �x

−�x

dx

(x − iωm)3
= − T

8πvxvy

∫ �x

−�x

dx
∑
m>0

ω3
m − 3x2ωm(
ω2

m + x2
)3

= − �xT

4πvxvy

∑
m>0

ωm(
ω2

m + �2
x

)2 ≈ − 1

16π2vxvy

�x

�2
x + π2T 2

. (A6)

I1212

∣∣∣∣
2

≈ − T �x

2π2vxvy

∑
m

∫ ∞

�y

dy
1

(y2 + ω2)2
≈ − 1

16π2vxvy

�x

�2
y

. (A7)

Since �y � �x , we can ignore the second contribution and I1212 ≈ I1212|1. Note that we have made the approximation
T

∑
m>0 F (ωm) ≈ ∫ ∞

πT
dω
2π

F (ω).
Similarly, we have the following contributions to wa ,

I2565 = −T
∑
m

∫
|k|<�

1

(iωm + vxkx + vyky)2

1

(iωm − vxkx + vyky)

1

(iωm + vxkx − vyky)
, (A8)

I1256 = −T
∑
m

∫
|k|<�

1

(iωm − vxkx − vyky)

1

(iωm − vxkx + vyky)

1

(iωm + vxkx + vyky)

1

(iωm + vxkx − vyky)
. (A9)

Then,

I2565 = − T

4π2vxvy

∑
m

∫ �x

−�x

dx

∫ �y

−�y

dy
1

(iωm + x + y)2

1

(iωm − x + y)

1

(iωm + x − y)
, (A10)

I2565

∣∣∣∣
1

= T

16πvxvy

∑
m

∫ �x

−�x

dx
sgn(ωm)

ωm

1

(x + iωm)2
≈ − 1

8π2vxvy�x

ln

(
�x

πT

)
, (A11)

I2565

∣∣∣∣
2

≈ �xT

2π2vxvy

∑
m

∫
|y|>�y

1

(iωm + y)2

1

y2 + ω2
m

≈ �x

4π3vxvy

∫ ∞

−∞
dω

∫ ∞

�y

dy
2(y2 − ω2)

(y2 + ω2)3
, (A12)

I2565

∣∣∣∣
2

≈ 1

16π2vxvy

�x

�2
y

. (A13)

Therefore, we can approximate I2565 ≈ I2565|1. Similarly, we have

I1256 = − T

4π2vxvy

∑
m

∫ �x

−�x

dx

∫ �y

−�y

dy
1

(iωm − x − y)

1

(iωm − x + y)

1

(iωm + x + y)

1

(iωm + x − y)
, (A14)

I1256

∣∣∣∣
1

= − T

8πvxvy

∑
m

∫ �x

−�x

dx
sgn(ωm)

ωm

1

ω2
m + x2

. (A15)

The above integral is convergent in the limit of �x → ∞ (and the singularity comes from small momenta), so that

I1256

∣∣∣∣
1

= − 1

4π2vxvyT

∑
m>0

1

(2m + 1)2
= − 1

32vxvyT
. (A16)
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The other contribution is given by

I1256

∣∣∣∣
2

= − T �x

2π2vxvy

∑
m

∫
|y|>�y

dy
1(

y2 + ω2
m

)2 = − �x

8π2vxvy�2
y

. (A17)

Let us now compute the diagram(s) contributing to ub. They are given by

J1515 = −T

2

∑
m

∫
|k|<�

1

(iωm − vxkx − vyky)2

1

(iωm + vxkx + vyky)2
. (A18)

This simplifies to

J1515 = − T

8π2vxvy

∑
m

∫ �x

−�x

dx

∫ �y

−�y

dy
1

(iωm − x − y)2

1

(iωm + x + y)2
, (A19)

J1515

∣∣∣∣
1

= − T �x

8πvxvy

∑
m

sgn(ωm)

ω3
m

, (A20)

J1515

∣∣∣∣
1

= −7ζ (3)

32π4

�

vyT 2
. (A21)

The contribution from I2 turns out to be J1515|2 = I1212|2 and can therefore be ignored, compared to J1515|1.
We now evaluate the contribution to the terms that lead to competition between the different bond order, via the 4-point

couplings, uab and ūab:

K1626 = −T
∑
m

∫
|k|<�

1

(iωm + vxkx − vyky)2

1

(iωm − vxkx + vyky)

1

(iωm − vxkx − vyky)
, (A22)

K6515 = −T
∑
m

∫
|k|<�

1

(iωm + vxkx + vyky)2

1

(iωm − vxkx − vyky)

1

(iωm + vxkx − vyky)
, (A23)

L2516 = −T
∑
m

∫
|k|<�

1

(iωm − vxkx − vyky)

1

(iωm − vxkx + vyky)

1

(iωm + vxkx + vyky)

1

(iωm + vxkx − vyky)
. (A24)

It is straightforward to see that K1626 = −M2515, K6515 = −M1262, and L2516 = N2651(=I1256), which we evaluate in detail below.
Let us now evaluate the terms contributing to the competition terms, sa and sb, between CDW and SC. We start with the

distinct self-energy type diagrams contributing to sa ,

M2515 = −T
∑
m

∫
|k|<�

1

(iωm + vxkx + vyky)2

1

(iωm − vxkx + vyky)

1

(−iωm + vxkx + vyky)
, (A25)

M1262 = −T
∑
m

∫
|k|<�

1

(iωm − vxkx + vyky)2

1

(iωm − vxkx − vyky)

1

(−iωm − vxkx + vyky)
. (A26)

Transforming to the x,y coordinates, this becomes

M2515 = − T

4π2vxvy

∑
m

∫ �x

−�x

dx

∫ �x

−�x

dy
1

(iωm + x + y)2

1

(iωm − x + y)

1

(−iωm + x + y)
, (A27)

M1262 = − T

4π2vxvy

∑
m

∫ �x

−�x

dx

∫ �x

−�x

dy
1

(iωm − x + y)2

1

(iωm − x − y)

1

(−iωm − x + y)
. (A28)

By splitting the integral as earlier, we have from I1

M2515

∣∣∣∣
1

= − iT

16πvxvy

∑
m

∫ �x

−�x

dx
sgn(ωm)

ω2
m

1

x − iωm

= T

8πvxvy

∑
m>0

∫ �x

−�x

dx
1

ωm

(
x2 + ω2

m

) , (A29)

M2515

∣∣∣∣
1

= 1

64vxvyT
, (A30)
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where we have used the fact that 2M2515|1 = −I1256|1. Similarly from I2, we get

M2515

∣∣∣∣
2

≈ − T �x

2π2vxvy

∑
m

∫
|y|>�y

dy
1

y2 + ω2
m

1

(y + iωm)2
≈ − �x

4π3vxvy

∫ ∞

−∞
dω

∫ ∞

�y

dy
2(y2 − ω2)

(y2 + ω2)3
, (A31)

M2515

∣∣∣∣
2

≈ − �x

16π2vxvy�2
y

. (A32)

For M1262,

M1262

∣∣∣∣
1

= − iT

16πvxvy

∑
m

∫ �x

−�x

dx
x − 2iωm

(x − iωm)2ω2
m

sgn(ωm) = − iT

16πvxvy

∑
m>0

∫ �x

−�x

dx
4iωm(

x2 + ω2
m

)2 , (A33)

M1262

∣∣∣∣
1

= 1

64vxvyT
, (A34)

M1262

∣∣∣∣
2

≈ T �x

2π2vxvy

∑
m

∫
|y|>�y

dy
1(

y2 + ω2
m

)2 = �x

8π2vxvy�2
y

. (A35)

We can ignore M2515|2,M1262|2 compared to M2515|1,M1262|1.
Let us now evaluate the only distinct vertex-correction type diagram contributing to sa ,

N2651 = −T
∑
m

∫
|k|<�

1

(iωm − vxkx − vyky)

1

(iωm − vxkx + vyky)

1

(−iωm − vxkx − vyky)

1

(−iωm − vxkx + vyky)
. (A36)

Upon transforming coordinates, we have

N2651 = − T

4π2vxvy

∑
m

∫ �x

−�x

dx

∫ �y

−�y

dy
1

(iωm − x − y)

1

(iωm − x + y)

1

(−iωm − x − y)

1

(−iωm − x + y)
, (A37)

and we immediately see that N2651 = I1256, as expected.
The diagrams contributing to sb can also be evaluated analogously as follows:

P2626 = −T
∑
m

∫
|k|<�

1

(iωm − vxkx + vyky)

1

(iωm + vxkx − vyky)2

1

(−iωm + vxkx − vyky)
. (A38)

However, we immediately notice that P2626 = −2J2626 = −2J1515 (which we have already evaluated above), due to the underlying
SU(2) symmetry of the hot-spot theory.

Finally, let us compute the diagram contributing to the three-point function, Yμνρ . The one we intend to compute is

Y261 = −T
∑
m

∫
|k|<�

1

(iωm − vxkx − vyky)

1

(iωm − vxkx + vyky)

1

(iωm + vxkx − vyky)
, (A39)

Y261 = − T

4π2vxvy

∑
m

∫ �x

−�x

dx

∫ �y

−�y

dy
1

(iωm − x − y)

1

(iωm − x + y)

1

(iωm + x − y)
. (A40)

It evaluates to

Y261

∣∣∣∣
1

= − T

8πvxvy

∑
m

∫ �x

−�x

dx
sgn(ωm)

ωm(x − iωm)
= − T

8πvxvy

∑
m>0

∫ �x

−�x

dx
2x

ωm

(
x2 + ω2

m

) = 0, (A41)

Y261

∣∣∣∣
2

= − T �x

2π2vxvy

∑
m

∫
|y|>�y

dy
1

(y − iωm)
(
y2 + ω2

m

) = − T �x

2π2vxvy

∑
m

∫ ∞

�y

dy
2iωm(

y2 + ω2
m

)2 = 0. (A42)

Therefore, we see that both pieces evaluate to zero, when working with the linearized dispersions.

APPENDIX B: FEYNMAN DIAGRAMS FOR HOT-SPOT THEORY WITH A FINITE CURVATURE

In this Appendix, we provide details for the computation of the same diagrams that were evaluated earlier, but now in the
presence of a finite Fermi-surface curvature, κ . We already summarized the results in Sec. IV B.

We start with the diagrams contributing to ua . These were already well behaved in the linearized theory in the T → 0 limit, and
hence should continue to be so in the presence of a finite κ . Let us evaluate them nevertheless. The distinct diagrams contributing
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to ua after performing the Matsubara summation are given by

Ĩ1212 = 1

8π2vxvy

∫ �x

−�x

dx

∫ �y

−�y

dy

[
2
f (ε1(x,y)) − f (ε2(x,y))

[ε1(x,y) − ε2(x,y)]3
− f ′(ε1(x,y)) + f ′(ε2(x,y))

[ε1(x,y) − ε2(x,y)]2

]
. (B1)

In the above, f [...] is the Fermi-Dirac distribution function and we have changed variables to x = vxkx,y = vyky . Ĩ2525 is identical
in form to the above with ε1 → ε5. We evaluate the above integrals numerically as a function of temperature for different values
of κ at fixed α and vice versa. We find that Ĩ2525 identically evaluates to 0 even in the presence of a finite (but small) curvature
(recall that I2525 = 0). The results for Ĩ1212 along with a comparison to the analytical predictions for I1212 are shown in
Fig. 6(a).

Let us now move onto the diagrams contributing to wa , which were singular (∼1/T ) in our computation with the linearized
dispersion. After carrying out the Matsubara summation, the distinct diagrams evaluate to

Ĩ2565 = − 1

4π2vxvy

∫ �x

−�x

dx

∫ �y

−�y

dy

[
1

[ε2(x,y) − ε5(x,y)]2

(
f (ε2(x,y))

ε2(x,y) − ε6(x,y)
− f (ε5(x,y))

ε5(x,y) − ε6(x,y)

)

+ 1

[ε6(x,y) − ε5(x,y)]2

(
f (ε6(x,y))

ε6(x,y) − ε2(x,y)
− f (ε5(x,y))

ε5(x,y) − ε2(x,y)

)
+ f ′(ε5(x,y))

[ε5(x,y) − ε2(x,y)][ε5(x,y) − ε6(x,y)]

]
, (B2)

Ĩ1256 = − 1

32π2vxvy

∫ �x

−�x

dx

∫ �y

−�y

dy

[
f (ε1(x,y)) − f (ε5(x,y))

xy(x + y)
− f (ε2(x,y)) − f (ε6(x,y))

xy(x − y)

]
, (B3)

where we have used the explicit forms of the dispersions to simplify the expression for Ĩ1256. We evaluate these diagrams
numerically and find that both of them have a very similar behavior except at low temperatures, where Ĩ2565 is always significantly
smaller than Ĩ1256 [this was the case even in our previous computation where the former went as ∼ln(T ) while the latter was
∼1/T ]. We plot Ĩ1256 in Fig. 6(b).

Let us now compute all the terms that turned out to be ∼1/T 2 in our earlier computation, which included both ub (|�b|4) and
sb (|�|2|�b|2), and study the effect of a finite κ . The diagrams that contribute to ub are modified to

J̃1515 = 1

8π2vxvy

∫ �x

−�x

dx

∫ �y

−�y

dy

[
2
f (ε1(x,y)) − f (ε5(x,y))

[ε1(x,y) − ε5(x,y)]3
− f ′(ε1(x,y)) + f ′(ε5(x,y))

[ε1(x,y) − ε5(x,y)]2

]
, (B4)

and J̃2626 = J̃1515 even for κ �= 0.
On the other hand, the self-energy type diagrams contributing to sb are modified to

P̃2626 = − 1

4π2vxvy

∫ �x

−�x

dx

∫ �y

−�y

dy

[
f (ε6(x,y)) − f (ε2(x,y))

[ε6(x,y) − ε2(x,y)]
[
ε2

6(x,y) − ε2
2(x,y)

]
+ 1 − 2f (ε6(x,y))

4ε2
6(x,y)[ε2(x,y) + ε6(x,y)]

− f ′(ε6(x,y))
2ε6(x,y)[ε6(x,y) − ε2(x,y)]

]
, (B5)

and P̃1515 = P̃2626, even when κ �= 0. Similarly, the vertex-correction diagrams are modified to

Q̃2626 = − 1

8π2vxvy

∫ �x

−�x

dx

∫ �y

−�y

dy

[
1 − 2f (ε6(x,y))

ε6(x,y)
− 1 − 2f (ε2(x,y))

ε2(x,y)

]
1

ε2
2(x,y) − ε2

6(x,y)
, (B6)

and Q̃1515 = Q̃2626. The results for J̃1515, P̃2626, and Q̃2626 are plotted in Fig. 7, along with a comparison to the respective
diagrams evaluated with κ = 0. It is not surprising that the singular power-law agrees, but even the prefactor matches perfectly.

Next, we compute the diagrams contributing to sa (|�|2|�a|2). The distinct self-energy type diagrams evaluate to

M̃1262 = 1

4π2vxvy

∫ �x

−�x

dx

∫ �y

−�y

dy

[
f (ε1(x,y)) − f (ε2(x,y))

[ε1(x,y) − ε2(x,y)]
[
ε2

1(x,y) − ε2
2(x,y)

]
− 1 − 2f (ε2(x,y))

4ε2
2(x,y)[ε2(x,y) + ε1(x,y)]

+ f ′(ε2(x,y))
2ε2(x,y)[ε2(x,y) − ε1(x,y)]

]
(B7)

and M̃2515 is identical in form to the above with the replacement, ε1 → ε2 and ε2 → ε5. Similarly, the distinct vertex-correction
type diagrams evaluate to

Ñ2615 = − 1

8π2vxvy

∫ �x

−�x

dx

∫ �y

−�y

dy

[
1 − 2f (ε2(x,y))

ε2(x,y)
− 1 − 2f (ε5(x,y))

ε5(x,y)

]
1

ε2
5(x,y) − ε2

2(x,y)
, (B8)

and where Ñ2651 can be obtained from the above by replacing ε5 → ε1. The results are plotted in Fig. 8.

134516-16



FEEDBACK OF SUPERCONDUCTING FLUCTUATIONS ON . . . PHYSICAL REVIEW B 90, 134516 (2014)

Finally, let us evaluate the three-point functions, tab. Recall that in the linearized theory, this was identically 0. In the presence
of a curvature, it is modified to

Ỹ261 = − 1

4π2vxvy

∫ �x

−�x

dx

∫ �y

−�y

dy

[
f (ε1(x,y))

[ε1(x,y) − ε2(x,y)][ε1(x,y) − ε6(x,y)]

+ 1

ε2(x,y) − ε6(x,y)

(
f (ε2(x,y))

ε2(x,y) − ε1(x,y)
− f (ε6(x,y))

ε6(x,y) − ε1(x,y)

)]
, (B9)

and where Ỹ261 is still equal to the other symmetry-related diagrams. The results for Ỹ261/κ and αỸ261 are shown in Figs. 9(a)
and 9(b), respectively, along with a comparison to the particular form, Y , that we guessed.
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