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Dispersive qubit measurement by interferometry with parametric amplifiers
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We perform a detailed analysis of how an amplified interferometer can be used to enhance the quality of a
dispersive qubit measurement, such as one performed on a superconducting transmon qubit, using homodyne
detection on an amplified microwave signal. Our modeling makes a realistic assessment of what is possible in
current circuit-QED experiments; in particular, we take into account the frequency dependence of the qubit-
induced phase shift for short microwaves pulses. We compare the possible signal-to-noise ratios obtainable with
(single-mode) SU(1,1) interferometers with the current coherent measurement and find a considerable reduction
in measurement error probability in an experimentally accessible range of parameters.
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I. INTRODUCTION

The realization of quantum information processing in the
laboratory requires quantum measurements of unprecedented
speed and precision. In particular, the measurements that will
be necessary for achieving scalable fault-tolerant quantum
computing are understood in some detail, requiring 99+%
measurement fidelities, as well as the capability of repeating
the same measurement very frequently within one coherence
time (T2) [1]. For the most part, these measurements are to
be used as part of a quantum error correction scheme to give
an accurate diagnosis of corrections that are needed to main-
tain quantum coherence in the computation. Fundamentally,
these “syndrome” measurements detect the parity (even or
odd) of a collection of computational qubits; while special
measurement schemes (so-called direct parity measurements)
can be designed to access the particular multiqubit parities
required [2–5], the quantum computation can be organized in
such a way that single ancillary qubits hold the results of all
necessary measurements. In this study, we will focus only on
the improvement of this basic single-qubit measurement.

We will also only focus here on the implementation of
measurements in the setting of superconducting qubits within
the paradigm of circuit quantum electrodynamics [6] (cQED).
cQED techniques have contributed greatly to the quality of
all aspects of quantum circuit implementation, measurement
among them. Single-qubit measurements were achieved before
the advent of cQED, a SQUID magnetometer strongly coupled
to the qubit to be measured was biased to the edge of
stability, so that it would switch to its normal state in a qubit-
state-dependent way. This approach, while a great milestone
in establishing the possibility of quantum computation in
superconducting device systems, was unscalable, slow, very
intrusive [i.e., far from quantum nondemolition (QND)], and
also far from single shot (fidelity F far below 100%).

With the advent of cQED, qubits with much longer
coherence times have become available, and new, engineered
forms of light-matter coupling have opened the possibility of
higher-quality measurements performed within the coherence
times of the qubit. The transmon qubit coupled to a high-
quality factor cavity realizes the Jaynes-Cummings model of
atomic physics [6]. When the qubit transition frequency is
off resonance with respect to the cavity eigenmode frequency

(“dispersive regime”), this cavity frequency is shifted by an
amount dependent on the qubit state. Probe radiation near this
resonant frequency, transmitted or reflected from the cavity,
acquires a phase shift ϕ+ or ϕ− for qubit state |0〉 or |1〉.
The sensing of this phase shift accomplishes the quantum
measurement, which will be QND so long as the probe
radiation is weak enough that the conditions for the dispersive
approximation for the Jaynes-Cummings model are met. This
condition will be an important constraint in the analysis that
we give below; it is understood that “high-power” readout,
involving the full nonlinearity of the Jaynes-Cummings model,
can also give an effective (but non-QND) measurement [7].

While it is not difficult to make the phase shift change
large (even ϕ+ − ϕ− = π is achievable), the necessity for a
weak probe means that the probe signal must be amplified
before being mixed with a reference beam. Fortunately, a
reasonable amplifier in the necessary microwave band, the
so-called HEMT (“high-electron mobility transistor”) has been
available for low-temperature use, and has enabled qubits
measurements near the single-shot regime [8]. The HEMT
remains essential in measurements up to the present, but it
is far from ideal: its noise temperature around 10 K prevents
the achievement of genuinely high-fidelity (>90%) quantum
measurements.

It was understood that, to go further, new types of
superconducting devices would be needed to push the amplifier
noise temperature into the desired millikelvin regime. While
the use of SQUIDs for low-noise amplifiers have been
understood for a long time [9], the adoption of these devices
in cQED setups, and the form of the amplifier used, has
undergone steady evolution in recent years. First, so-called
“bifurcation” phenomena in modified qubits were used for
initial amplification [10]. From this work it was realized that
further modifications of these devices would permit them to
be used in parametric mode [11]: the nonlinearity is used so
that the device works as a linear but time-dependent circuit
element. Practical devices were made [12] and optimized in
conjunction with extensive theoretical analysis [13,14]. These
superconducting parametric amplifiers, operating very close
to minimal noise temperatures, are now in use in many labs
worldwide, with achievement of 99% measurement fidelities
now in sight.
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Parametric devices have other functionalities aside from
amplification: they are also capable of producing squeezed
radiation, which can be another tool in improving the noise
performance of qubit systems. Recently, an experiment has
been reported [15] in which squeezed radiation improves the
coherence time of a transmon qubit. Note that this involves
having the probe radiation interacting with the parametric
device before encountering the qubit-containing cavity; when
used as an amplifier, the parametric device comes after the
probe has exited the cavity.

In this paper, we explore the benefit gained from combining
both, placing parametric devices both before and after the
phase-shifting element (qubit+cavity). Such concepts were
already explored in the pioneering work of Yurke and co-
workers [16], who considered the possibility of such “active”
interferometers, where the simple beam splitters are replaced
by active devices, both for optical and microwave systems.
This work defined the so-called “SU(1,1)” amplifiers, which
we will describe and study in this work [17].

To see how the SU(1,1) paradigm can be used to further
improve qubit measurement, we will need to modify Yurke’s
approach to account for three aspects of the cQED setup: (1)
phase shifts are not small, (2) probe radiation inside the cavity
should be weak, (3) probe pulses Tpulse should be of short
duration, perhaps comparable to the inverse cavity linewidth
κ−1. We will visit all these issues in the studies in this paper,
showing improvements are indeed possible.

In [16], two types of SU(1,1) interferometers were defined
for which it was shown that they would give rise to a phase
sensitivity �ϕ ∼ 1

N
where N is the total number of photons

that pass through the interferometer: these interferometers are
depicted in Figs. 2(a) and 2(d). In these setups, one measures
the total number of outgoing photons Nout so that

�ϕ ≡ �Nout

|∂Nout/∂ϕ| . (1)

Here, (�x)2 = 〈(x − 〈x〉)(x − 〈x〉)〉 for an arbitrary operator
or random variable x.

Such scaling with N is usually referred to as “reaching
the Heisenberg limit” in contrast with the shot-noise limit
�ϕ ∼ 1√

N
which is reached by using a coherent state |α〉 with

average photon number |α|2 = N to determine the unknown
phase shift (see, e.g., [18,19] and references therein). It is
important to note that the enhanced phase sensitivity is only
reached for small phases ϕ ≈ 0; in addition, in the schemes
in [16] the input modes are taken to be in the vacuum state.

While the SU(1,1) interferometer is a way of obtaining
a high sensitivity to an unknown phase shift, it does not
immediately suit the experimental cQED setting for the
following reasons. In the measurement chain for supercon-
ducting (transmon) qubits coupled to microwave cavities, the
information-carrying signal is a microwave pulse which is
amplified to a classical stochastic signal whose quadratures
are recorded as classical voltages (see Sec. III). This means
that one does not measure the number of output photons of
the interferometer, but rather the quadrature of one or both
outgoing modes. By the linear optical transformation of the
interferometer, any outgoing quadrature can be expressed as
a linear function of the quadratures of the input modes. This

means that the phase sensitivity of such quadratures is 0 when
the input modes are prepared in the vacuum state and hence
the quadrature signal carries no phase information [20].

The simplest modification to this setup is to provide the
interferometer with a pulsed coherent microwave at one of
its inputs, say, the mode a1,in in Fig. 2, which is what we will
assume. We thus reexamine the phase sensitivity of the SU(1,1)
interferometers under a homodyne measurement in Sec. II (see
also [21]). There are further features of the experimental setup
that we take into account; as mentioned above, the number of
photons in the top arm of the interferometer should be bounded
below a critical value in order for the measurement to be of
nondemolition character. The number of photons coming out
of the last parametric amplifier (PA) or degenerate parametric
amplifier (DPA) in Fig. 2 should be sufficiently high so that
further amplifications have a small effect. Third, we wish the
quantum measurement to be short: the finite-time duration of
the incoming pulse Tpulse motivates the multifrequency mode
analysis in Secs. III and IV.

One reason to consider an SU(1,1) interferometer instead of
an SU(2) Mach-Zehnder interferometer is that the attenuated
microwave probe will have to undergo amplification anyhow
in order to be detectable with current hardware; in this way,
the second amplifier in the interferometer does double duty
(see, however, [22] for a preliminary exploration of the Mach-
Zehnder interferometer). It also means that the experimental
setup of the interferometer is not much more costly than the
standard homodyne measurement in which typically only one
Josephson-based amplifier is used [see Fig. 2(c)]. We will
find that the two-mode SU(1,1) interferometer which uses two
nondegenerate parametric amplifiers [Fig. 2(a)] gives better
results than a single-mode SU(1,1) interferometer [Fig. 2(d)]
(see Sec. IV): our proposed experimental setup is depicted in
Fig. 1. We note that in [23] the position of a nanomechanical
oscillator, coupled to a microwave cavity, was measured in
a “Mach-Zehnder interferometric setup.” However, in that
experimental setup the signals from both arms of the inter-
ferometer are only recombined at room temperature allowing
no entanglement between the arms of the interferometer. In
our envisioned scheme, the entire interferometer is realized at
low temperature (e.g., 30 mK). In [24], the authors used two
nondegenerate Josephson parametric amplifiers (“Josephson
mixers”) to create a two-mode squeezed state which was
subsequently analyzed by a second Josephson mixer: this setup
thus uses identical components as the SU(1,1) interferometer
in Fig. 2 and shows that our proposal is experimentally
feasible.

In the next section, we will consider the four schemes in
Fig. 2 with coherent state inputs and quadrature measurement
on the mode a1,out or aout at the end. We assume the state of
the qubit induces a phase shift

ϕ+ = +ϕ, qubit state |0〉,
(2)

ϕ− = −ϕ, qubit state |1〉
onto the passing probe (how it does this is reviewed and ana-
lyzed in Sec. III). Instead of focusing on the phase sensitivity,
we derive expressions for the signal-to-noise ratio (SNR), first
assuming a simplified single-mode, single-frequency picture.
This gives us insight in the gains that we can expect when
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FIG. 1. (Color online) Schematic of the experimental setup for
implementing one version of the SU(1,1) interferometer (using
nondegenerate parametric amplifiers) in present-day microwave
components, which could be either lumped “3D” structures or on-chip
integrated devices. Many additional components of such an actual
setup are omitted (e.g., attenuators, additional amplifiers, mixer
local oscillators, data acquisition hardware); only the parts that are
essential to our scheme are shown. A pump is to be distributed by
a power splitter to the nondegenerate two parametric devices (PA)
(for example, the “Josephson parametric converter” [13]). The PAs
work in reflection, requiring circulators to separate input from output
modes. It is assumed that the cavity containing the qubit is probed in
reflection. The isolator/circulator at the bottom of the figure serves
both to define the cold vacuum input to PA1 and to provide the
necessary beam path from PA1 to PA2 for the reference mode of the
SU(1,1) interferometer. Relative phases of the pump beams, and of
the two interferometer arms, must be precisely set, requiring careful
choice of the propagation lengths along all these paths. We show the
HEMT amplifier (but not other amplifiers that would be involved in
this setup) since it is necessary to consider whether the amplification
provided by PA2 is large enough to overcome the nonideal noise
characteristics of the HEMT.

we include the multimode nature of the input probe later
on, in Secs. III and IV. We focus on the SNR as we do
not expect ϕ± to be necessarily small, nor do we analyze
the use of feedback in these schemes, but see Sec. V. Let
x±

out be any information-carrying quadrature and suppose that
�x+

out = �x−
out (we will restrict ourselves to such scenarios).

The signal-to-noise ratio is then given by

SNR ≡ |〈x+
out〉 − 〈x−

out〉|
2�x±

out
. (3)

FIG. 2. (Color online) Possible scenarios of a dispersive qubit
measurement in a circuit-QED setting where ϕ is the qubit-state-
dependent phase shift. The pump beams of the parametric (PA) and
degenerate parametric amplifiers (DPA) are not explicitly depicted.
(a) The (two-mode) SU(1,1) interferometer. When both input modes
are prepared in the vacuum state and the parametric amplifiers
are chosen such that r = r1 = r2, θ1 − θ2 = π , the total number
of photons at output Nout = N1,out + N2,out is a sensitive probe for
the phase ϕ, i.e., (�ϕ)2 = 1

sinh2(r)
at ϕ = 0 [16]. In our scenario, we

consider a coherent pulse in mode a1,in and a homodyne measurement
is done on the outgoing mode a1,out. (b) The squeeze scenario in
which a coherent input pulse is first squeezed by a degenerate
parametric amplifier before picking up a to-be-determined phase shift.
A phase-insensitive amplifier subsequently amplifies the signal so
that homodyne measurement is possible. (c) The standard coherent
dispersive measurement scenario in which a coherent pulse, after
having picked up a phase shift at the cavity, is amplified. (d)
The single-mode SU(1,1) interferometer in which two degenerate
parametric amplifiers sharing the same pump are used. The relative
difference of the phases θ1 and θ2 is determined by the pump beam.

This signal-to-noise ratio can be simply related to the proba-
bility of error of the quantum measurement (see Sec. III B).

II. SU(1,1) INTERFEROMETERS
AND COMPARABLE SCHEMES

The action of an ideal phase-insensitive (also called “phase-
preserving”) nondegenerate parametric amplifier (PA), acting
on four ports each of which is described by a continuum of
modes labeled by frequency, is given [25] by the following
transformation:

(
b1,out(ω)

b
†
2,out(2
 − ω)

)
= S

(
a1,in(ω)

a
†
2,in(2
 − ω)

)
,

(4)

S =
(

cosh(r) eiθ sinh(r)
e−iθ sinh(r) cosh(r)

)
,
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where 
 is the frequency of the pump mode of the amplifier.
The mode a2,in(ω) functions as the “idler” mode and a1,in(ω)
as the “signal” mode. This transformation models a four-wave
mixer in which two pump photons at frequency 
 are converted
into one photon for mode 1 and one for mode 2, i.e., 2
 =
ω1 + ω2. Replacing 2
 by 
 in Eq. (4) would correspond to
a three-wave mixer with 
 = ω1 + ω2.

Such a phase-insensitive nondegenerate PA amplifies both
quadratures by the same amount, with a gain related to the real
parameter r by

G = cosh2(r), (5)

and this PA will always add a nonzero amount of noise [26].
A good example of such an amplifier is the Josephson ring
modulator [13,14] used in the transmon qubit measurement
in [27]. The pump frequency 
 will be set at the carrier
frequency ωc of the microwave signal to be amplified. In
a phase-sensitive degenerate parametric amplifier (DPA) or
squeezer, the incoming modes 1,2 are degenerate and the
amplifier thus enacts the following idealized transformation
on a single-frequency mode, given the pump frequency 
:

bout(ω) = cosh(r)ain(ω) + eiθ sinh(r)a†
in(2
 − ω). (6)

Such an amplifier will squeeze the outgoing quadratures
and will add a corresponding quadrature-dependent amount
of noise. Very good phase-sensitive Josephson parametric
amplifiers have been developed in [28,29]; for such amplifiers,
the dominant source of noise at the output of the amplifier is
the quantum fluctuations of the ingoing weak signal. For both
phase-sensitive and phase-insensitive amplifiers, we assume
that the phase θ and gain G are independent of frequency
ω. This approximation is warranted for the usual operating
conditions of the current microwave devices which have
sufficiently large bandwidth × gain characteristics.

In the remainder of this section, we will give closed-form
expressions for SNR for the setups of Fig. 3 in the simple one-
frequency approximation that is standard in quantum optics;
the next section will give the full multimode analysis. Thus,
for the nondegenerate parametric amplifier, we take 
 = ω

and write Eq. (4) without frequency arguments:(
b1,out

b
†
2,out

)
=

(
cosh(r) eiθ sinh(r)

e−iθ sinh(r) cosh(r)

) (
a1,in

a
†
2,in

)
. (7)

In other words, this relation is considered to be one involving
just four modes, rather than four continua of modes. The de-
generate parametric amplifier relation (6) is likewise simplified
to one involving only two discrete modes:

bout = cosh(r)ain + eiθ sinh(r)a†
in. (8)

We first consider the SNR of the current measurement
schemes through which a qubit is measured (see, e.g., [27]),
schematically depicted in Fig. 2(c). A coherent microwave
pulse picks up a phase shift at the cavity [see the sketch in
Fig. 3(a)], after which the signal is amplified by a single
phase-insensitive Josephson parametric amplifier whose mode
transformation is given in Eq. (7). We thus assume an input
state |α〉 [fixing Im(α) = 0] in mode 1 so that the outgoing
p quadrature p1,out contains the maximal amount of informa-
tion. We use the quadrature convention p = −i(a − a†)/

√
2,

FIG. 3. (Color online) Phase-space sketches. In all three figures,
we start with a coherent or squeezed state with 〈p〉 = Im(α) = 0 and
the state picks up a phase shift ϕ±. (a) A coherent state picks up
one of two phases depending on the state of a qubit |α〉 → |αe±iϕ〉.
Values |ϕ+ − ϕ−| > π do not give rise to greater distinguishability
when measuring Im(α), but as we will find in this paper modeling the
input as a multimode signal and constraining the number of photons
in the cavity will lead to a better SNR for larger phase shifts. (b), (c)
The optimal direction of squeezing depends on the phase shift which
is π/2 in (b) and close to 0 in (c). It is clearly not possible to minimize
the noise for both ± signals when ϕ± is not close to the points 0 or
π/2.

implying (�p)2 = 1
2 for any coherent state. In this scenario,

the SNR defined in Eq. (3) can be calculated as

SNRcoherent+PA = 2
√

nin| sin(ϕ)|√
2AN + 1

, (9)

with added noise number AN = 1
2 (1 − G−1) [see also Eq. (25)]

and nin = |α|2. The Haus-Caves theorem [26] states that for a
nonideal phase-insensitive parametric amplifier AN � 1

2 |1 −
G−1| where equality is achieved for a vacuum state at the idler
port. We see that the SNR corresponds to shot-noise behavior,
i.e., SNR ∼ √

nin. The expression does not depend on the
phase θ1 of the amplifier as the amplifier adds noise to each
quadrature by the same amount.

Alternatively, one can use an ideal degenerate parametric
amplifier at the output for a coherent input signal. We obtain

〈pout〉 =
√

2nin [cosh(r) sin(ϕ) + sinh(r) sin(θ − ϕ)] ,
(10)

(�pout)
2 = 1

2 [cosh(2r) − cos(θ ) sinh(2r)],

and a corresponding SNRcoherent+DPA. At θ = π , one obtains
the expected SNRcoherent+DPA = 2

√
nin| sin(ϕ)|, showing that

the DPA does not add any additional noise. Note that for θ = 0,
both the noise and the signal are vanishingly small.

Next, we consider the two-mode SU(1,1) interferometer in
Fig. 2(a). We can obtain the composite mode transformation of
the two amplifiers and the phase shift modeled by the matrix
(e

±iϕ 0
0 1). Again, we assume |α〉 [with Im(α) = 0] in mode 1
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and obtain general expressions for (�p1,out)2 and 〈p1,out〉 as

〈p1,out〉 =
√

2nin[cosh(r1) cosh(r2) sin(ϕ)

+ sinh(r1) sinh(r2) sin(θ2 − θ1)]

and
(�p1,out)

2 = 1
2 [cosh(2r1) cosh(2r2)

+ cos(θ1 − θ2 + ϕ) sinh(2r1) sinh(2r2)].

One can observe that the signal |〈p+
1,out〉 − 〈p−

1,out〉| does not
depend θ1 − θ2. The noise �p±

1,out is clearly minimized when
θ1 − θ2 + ϕ± = π , but this condition cannot be satisfied for
both measurement outcomes simultaneously when |ϕ±| > 0.
An optimal choice is to take θ1 − θ2 = π,θ1 = 0 for |ϕ±| �
π
2 and θ1 = θ2 = 0 for |ϕ±| > π

2 : in both settings �p+
1,out =

�p−
1,out (see Fig. 7 in Sec. IV). The expression for the SNR for

the choice θ1 − θ2 = π equals

SNRSU(1,1)+PA = 2
√

nin| sin(ϕ)| 1√(
2A1

N + 1
)(

2A2
N + 1

) − 8 cos(ϕ)
√

A1
NA2

N

, (11)

where A1
N (A2

N ) are the noise quanta added by the first
(second) amplifier. If the first amplifier has G1 = 1 (no
amplification), we have A1

N = 0 and recover SNRcoherent+PA.
For a small phase around ϕ± ≈ 0 and A1

N ≈ A2
N one has

SNRSU(1,1)+PA = 2
√

nin| sin(ϕ)|
2AN −1 where the noise vanishes in the

limit of large gain AN → 1
2 . Note that for |ϕ±| ≈ π/2, for

which the signal is maximal, the noise in the denominator of
Eq. (11) does not get suppressed: when A1

N = A2
N = 1

2 , the
SNR of the interferometer is 1/

√
2 worse as compared to the

coherent state expression in Eq. (9), due to the added noise of
the first amplifier.

It is of interest to compare this two-mode SU(1,1) interfer-
ometric setup with other uses of two (Josephson) parametric
amplifiers depicted in Figs. 2(b) and 2(d). In scenario (b),
the first degenerate PA squeezes the incoming signal before it
interacts with the qubit according to the mode transformation
in Eq. (6). The signal emerging from the cavity is then
amplified by a nondegenerate PA after which a homodyne
measurement is done. The difference between this squeeze
scenario and the SU(1,1) interferometer in Fig. 2(a) is that the
probe state is not entangled between two modes. This means
that the SNR will not depend on the relative phase θ1 − θ2.
One does expect an improvement in SNR as compared to
SNRcoherent+PA since presqueezing can reduce the noise in the
information-carrying quadrature of the outgoing signal. One
has

〈p1,out〉 =
√

2nin cosh(r2)[cosh(r1) sin(ϕ)

+ sinh(r1) sin(θ1 + ϕ)]

and

(�p1,out)
2 = 1

2 {sinh2(r2) + cosh2(r2)

× [cosh(2r1) − sinh(2r1) cos(2ϕ + θ1)]}.
For r1 = 0 we again obtain the coherent SNR. The optimal
direction of squeezing which is determined by θ1 depends on
how large the phase shift ϕ is [see the sketches in Figs. 3(b)
and 3(c)]. For very small ϕ ≈ 0, θ1 should be chosen to be 0
to minimize (�p1,out)2. On the other hand, for ϕ = ±π/2, the
noise is minimized for both �p±

1,out for θ1 = π and the signals
〈p±

1,out〉 differ by the maximal amount. For ϕ away from these
points, the optimal noise-minimizing squeezing direction is
different for ±ϕ. If we require that �p+

1,out = �p−
1,out we can

choose θ1 = 0 for |ϕ±| � π
4 and θ1 = π for |ϕ±| > π

4 so that
cos(2ϕ + θ1) � 0. Choosing θ1 = 0, we obtain

SNRsqueeze =
2
√

nin
(
1 +

√
1 − G−1

1

)| sin(ϕ)|√
G−1

1

(
2A2

N − 1
) + 2 − 2

√
1 − G−1

1 cos(2ϕ)

,

where no squeezing, so a coherent state input, corresponds to
the case G1 = 1, giving the coherent SNR. Clearly, the SNR
can be enhanced in this scenario for sufficiently large G1, but
this gain G1 is limited as we need to bound the number of
photons interacting with the qubit in the cavity and thus the
noise contribution proportional to G−1

1 may not be negligible.
We will not analyze this “squeeze” scenario in more detail as
more favorable SNRs can probably be obtained by the use of
DPAs in an interferometric setup.

Hence, in our last scenario, that of the single-mode SU(1,1)
interferometer [16], both parametric amplifiers are degenerate
[see Fig. 2(d)]. In the regime ϕ ≈ 0, Ref. [16] has shown
that this interferometer can also reach the Heisenberg limit if
photon-number measurements are assumed. Choosing θ1 = 0
and θ2 = π as in [16] one can obtain

〈pout〉 =
√

2nine
r1+r2 sin(ϕ),

(�pout)
2 = 1

2

{
e2r2

[
cosh(2r1) − cos(2ϕ) sinh(2r1)

]}
,

giving

SNRSU(1,1)+DPA = 2
√

nin| sin(ϕ)|√
1
2 [1 − cos(2ϕ)] + 1

2 [1 + cos(2ϕ)]e−4r1

.

(12)

We note that this SNR does not depend on the gain of the
second amplifier (we assume that it is an ideal amplifier,
adding no noise), but the second amplifier will be needed
to process the signal in any case. For small ϕ± ≈ 0, the noise
vanishes as exp(−4r1) corresponding to the Heisenberg limit.
When ϕ = ±π

2 , the SNR equals 2
√

nin which is identical to
the SNRcoherent+DPA. Comparing it with SNRcoherent+PA, we see
that the coherent SNR is worse by a factor 1/

√
2 due to the

added noise.
It is clear that the noise is reduced as compared to a coherent

measurement when cos(2ϕ) > 0, that is, for small angles 0 �
|ϕ±| � π

2 or relatively large angles 5π
4 � |ϕ±| � 3π

4 . We note
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that for G1 → ∞, the expression for SNRSU(1,1)+DPA coincides
with SNRsqueeze.

In Sec. IV, we present numerical values for these various
signal-to-noise ratios within a full multimode analysis and
show the qualitative improvement of the SU(1,1) interfer-
ometer using further details of the modeling of the qubit
measurement.

We note that in all these scenarios we have, as stated above,
assumed that ϕ± = ±ϕ and taken the p quadrature of the
outgoing signal. For the two-mode SU(1,1) interferometer, one
can show that the expression of a different outgoing (δ-rotated)
quadrature is identical to the expression for the p quadrature
when we phase shift ϕ± = δ ± ϕ, and change the phase of
the last parametric amplifier by δ. Choosing the p quadrature
when ϕ± = ±ϕ is intuitively optimal (see Fig. 3), but we also
have verified numerically that this is optimal for the schemes
that we consider in Sec. IV.

III. DESCRIPTION OF THE CIRCUIT-QED
MEASUREMENT CHAIN

In this section, we will review several details of the de-
scription of a dispersive quantum measurement of a qubit. We
consider a superconducting qubit with resonance frequency
ωq such as the transmon qubit which is capacitively coupled
to a two- or three-dimensional (2D or 3D) microwave cavity.
We assume that a particular cavity mode a with resonance
frequency ωr couples most strongly to the qubit and neglect the
interactions of the qubit with other cavity modes, as well as the
coupling to all higher-energy levels beyond the states |0〉 and
|1〉. The interaction between qubit and cavity mode is then ap-
proximately described by the Jaynes-Cummings Hamiltonian
HJC = −�ωq

2 Z + �ωra
†a + �g(σ−a† + σ+a) where Z is the

Pauli matrix. The eigenstates of the Jaynes-Cummings model
are entangled states between transmon-qubit and cavity mode,
but in the dispersive regime when g

�

 1 (� = ωq − ωr is the

detuning), one may do a perturbative expansion in g

�
and derive

an effective Hamiltonian via a Schrieffer-Wolff transformation
(see, e.g., [30], typo corrected here) to obtain

1

�
Heff =

(
ωr + 5g4

�3
− χZ

)
a†a − 1

2
(ωq + χ )Z

+ 5g4

3�3
Z(a†a)2 + O

(
g6

�5

)
,

χ = g2

�
+ 5g4

6�3
+ O

(
g6

�5

)
. (13)

Such expansion is warranted for 2g
√

n+1
�


 1 where n is the
average number of photons in the cavity. We note that due to
the multilevel nature of the transmon qubit, the dispersive shift
is more accurately given by χ � −Ecg

2/[�(� − Ec)] [31],
where Ec is the charging energy of the Cooper-pair box.

It is essential for our analysis that we remain within the
regime of validity of this picture, which breaks down when
the number of photons in the cavity is beyond a critical
photon number (as estimated in the two-level approximation
for the transmon qubit) n > ncrit = �2/(4g2); in this regime,
the eigenstates of the Hamiltonian are entangled “atom” and
cavity field states. If we wish to use the interaction with

TABLE I. Representative ranges of relevant parameters.

Transmon qubit ωq

2π
and bare cavity frequency ωr

2π
3–11 GHz

Qubit T1/T2 time 10–100 μs
Cavity decay rate κ/2π 1–10 MHz [39]
Pulse/measurement time Tpulse 25–300 ns
Dispersive shift χ/2π 1–10 MHz
Jaynes-Cummings coupling g/2π 1–150 MHz [39]
(Phase-sensitive, degenerate) JPA amplifier gain G 30 dB [29]
(Phase-insensitive) JPC amplifier gain G 23 dB

the cavity mode to perform a quantum measurement, such
measurement will thus change the state of the qubit and will
cease to be of nondemolition character. We would like to be
considerably into this regime n < ncrit so that neglecting the
nonlinear term ∝Z(a†a)2 is also warranted: it has been shown
in [32] that such nonlinear coupling can lead to a reduction in
SNR.

The effective Hamiltonian shows that the resonant fre-
quency of the cavity is shifted depending on the state |0〉 (+)
or |1〉 (−) of the qubit, i.e., its frequency

ωr → ω̃r = ωr ∓ χ + O

(
g4

�3

)
. (14)

Detecting this frequency shift thus amounts to a dispersive,
nondemolition, measurement of the qubit state in the |0〉,|1〉
basis.

We imagine that a microwave transmission line is capac-
itively coupled to the cavity on one side only, i.e., radiation
enters and leaves the cavity through the same port or we use
the cavity “in reflection” (see Fig. 1). This can be achieved
by having outgoing transmission line couple asymmetrically
to the cavity (see, e.g., [27]), where κin 
 κout determine the
decay rates on both sides, or having a tunable coupler to the
cavity [33] or simply having one ingoing transmission line.
The cavity can be a 1D stripline cavity [6] or a 3D cavity [34].
The strength with which the cavity mode a interacts with the
continuum of modes in the one-dimensional transmission line
will determine the cavity decay rate κ . We will neglect other
sources of cavity decay in our modeling. Furthermore, we
neglect qubit decoherence during the measurement because the
transmon-qubit coherence time is O(10) μs or more [34,35],
much longer than the measurement times that we will consider.
Table I shows the experimental range of values of the relevant
parameters.

The linear weak coupling of a single-cavity mode to a
continuum of traveling modes for a one-dimensional trans-
mission line is modeled using input-output theory [36–38].
Neglecting the nonlinear terms in Heff , the cavity acts as a
linear optical device whose effect can be described on a set
of frequency-labeled ingoing and outgoing modes (see the
background details in the Appendix). When one eliminates
the cavity field, one obtains a direct relation between an
input mode bin(ω) at frequency ω and an output mode bout(ω)
[defined as the Fourier transform of the Heisenberg operator
bin(t) resp. bout(t), see Appendix], viz.,

bout(ω) = κ/2 + i(ω − ω̃r )

κ/2 − i(ω − ω̃r )
bin(ω) = eiϕ±(ω−ωr )bin(ω), (15)
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where ω̃r = ωr ± χ . The presence of the qubit in the cavity
thus induces a state-dependent phase shift on the outgoing
signal bout(ω) given by [6]

ϕ±(ω − ωr ) = 2 arctan

[
2(ω − ωr )

κ
± 2χ

κ

]
. (16)

If one drives the cavity at resonance ωr , the phase shifts
equal ϕ± = ±2 arctan( 2χ

κ
), symmetric around 0. Maximal

distinguishability with a quadrature measurement would be
achieved with |ϕ+ − ϕ−| = π difference corresponding to
2χ = 2g2

�
= κ . We have also seen in the single-frequency

mode SNR expressions [Eqs. (11) and (12)] that for such
an optimal phase shift, the benefits of interferometers and
squeezings are negligible.

However, two aspects of the realization of this measurement
alter this picture. First of all, for reasonably short pulses (and
it is the goal to have a short measurement time) one needs to
take into account the frequency dependence of the phase shift
ϕ±(ω − ωr ). Second, we need to work under the condition
that the number of photons in the cavity at any given time
n(t) 
 ncrit. Let us consider these issues in more detail.

The expression for the cavity field a(ω) [defined as the
Fourier transform of the Heisenberg operator a(t)] equals

a(ω) =
√

κ
κ
2 − i(ω − ωr )

bin(ω).

Hence, the expected number of photons in the cavity n(t) as a
function of time is given by

n(t) = 〈a†(t)a(t)〉 = 1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
dω′ ei(ω−ω′)t

× κ〈bin(ω)†bin(ω′)〉
(κ/2 − i(ω − ω̃r ))(κ/2 + i(ω′ − ω̃r ))

. (17)

For a simple plane-wave coherent state traveling towards
the cavity with wave number kc > 0 and frequency ωc = vkc,
we have 〈bin(ω)†bin(ω′)〉 = δ(ω − ωc)δ(ω′ − ωc)2πFt where
Ft is the photon-flux per unit time (see Appendix). For such a
plane-wave input, one has

n(t) = κFt

κ2

4 + (ωc − ω̃r )2
→

ωc=ωr

κFt

κ2

4 + χ2
. (18)

From this Lorentzian profile of n(t), it is clear that the
larger the value of 2χ

κ
, the further one is removed from the

resonance at ω = ω̃r , the lower the number of photons in
the cavity at a given point in time. Given a fixed upper
value for the photon number in the cavity n̄, the number of
input photons nin [proportional to the flux Ft in Eq. (18)] is
an increasing function of 2χ/κ , i.e., as the system is taken
further from resonance. Thus, the optimal value 2χ/κ for the
SNR expressions in Sec. II can, and does, exceed the value
2χ/κ = 1 for which the phase shift per photon is optimal.
Each photon is less informative, but we can safely send more
of them through the system.

Another effect, as we will see numerically in Sec. IV, is the
effect of dispersion due to the finite pulse time. Any incoming
microwave pulse signal of finite duration Tpulse has a nonzero
frequency spread W . We choose such a pulse to have its center
frequency at the bare resonance frequency, i.e., ωc = ωr , such

that (see Appendix)

α(ω) = α0 e−(ω−ωc)2/W 2

(2π )1/4
√

W/2
, 〈b†in(ω)bin(ω′)〉 = α∗(ω)α(ω′),

(19)
where the total number of photons in the input pulse is

npulse =
∫

dω |α(ω)|2 (20)

while |α(ω)|2 is the photon flux per unit angular frequency
at frequency ω (thus in units of seconds). If we consider the
intensity |α(ω)|2 of this pulse per unit angular frequency, we
see that this is a Gaussian with standard deviation W/2. If we
Fourier transform α(ω) to α(t) and consider the intensity of
the pulse per unit time |α(t)|2, we note that it has a standard
deviation of 1/W and thus we can take Tpulse = 2/W as a
measure of the time duration of the pulse.

Let us consider to what extent the frequency dependence of
the phase shift ϕ(ω − ωr ) will play a role in the distinguisha-
bility of the output signals (see, e.g., Fig. 4). For W 
 κ , one
can Taylor expand Eq. (16) around ωr , i.e.,

ϕ±(ω − ωr ) = ±2 arctan

(
2χ

κ

)
+ (ω − ωr )

dϕ±

dω

∣∣∣∣
ωr

+O

(
(ω − ωr )2

κ2

)
. (21)

Note that dϕ±
dω

∣∣
ωr

= 4
κ[1+( 2χ

κ
)2]

is independent of whether the

qubit is in the |0〉 or |1〉 state. This means that in the
linear approximation where we neglect terms O( (ω−ωr )2

κ2 ), the
Gaussian envelope of the wave packet in time (or space) does
not get distorted, but merely picks up a time delay ∼1/κ at the
cavity that is the same for both ± signals. In this regime, one
expects the finite bandwidth to affect neither the signal nor the
noise [see the expressions (28) in Sec. III A].

When we go beyond the first-order Taylor expansion,
we can observe that the frequency-averaged phase shift∫

dω|α(ω)|2|ϕ±(ω − ωr )| (which is relevant for W ∼ κ) is
smaller than |ϕ±(ω − ωr )| due to the shape of the arctan(. . .)
function (see Fig. 4). This means that the phase shift at ω = ωr ,
which gives the optimal SNR, lies beyond the π phase-shift

FIG. 4. (Color online) Frequency dependence of phase shifts
ϕ±(ω − ωr ) for κ = 52 MHz and χ = 36 MHz. The shift between
the two arctan functions equals 2χ .
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point. We see this effect numerically in, for example, Fig. 6 in
Sec. IV for the standard coherent-state measurement.

As argued before, we have to work under the restriction that
the number of photons in the cavity at any given moment in
time n(t) is well bounded below the critical number of photons
ncrit. For a Gaussian microwave pulse with bandwidth W and
a total of ncav

pulse photons at the entrance to the cavity one has,
using Eqs. (18) and (19)

n(t) = ncav
pulse|FT[f (ω)h(ω)]|2,

(22)

f (ω) =
√

κ

κ/2 − i(ω − ω̃r )
, h(ω) = e−(ω−ωc)2/W 2

(2π )1/4
√

W/2
,

where FT stands for the Fourier transform and ncav
pulse is the

total number of photons arriving at the cavity. This expression
is also approximately valid for states arriving at the cavity in
the interferometric schemes depicted in Fig. 2: even though
the coherent input state may get entangled with other modes
or squeezed before (or after) arriving at the cavity, it remains
almost a product state with respect to the frequency-dependent
modes at all times. The linear transformation due to the
amplifier mixes modes at frequency ω with 2
 − ω but at

 = ωc, α(2ωc − ω) = α(ω) with α(ω) in Eq. (19) and thus
〈b†in(ω)bin(ω′)〉 ≈ β∗(ω)β(ω′) for some amplitudes β(ω). For
such a state, ncav

pulse in Eq. (22) will equal the gain G of the
amplifier before the cavity times the number of photons in the
input probe.

In Fig. 5, we use Eq. (22) to plot the instantaneous number
of photons in the cavity n(t) for some illustrative parameters.
We have taken a Gaussian pulse with Tpulse = 60 ns, cavity
damping rate κ = 1/25 (ns), ωr/2π = 6.789 GHz, and a qubit
frequency at ωq/2π = 5.5 GHz [39] so that the detuning
equals �/2π = 1.289 GHz. By assuming a coupling strength
g/2π = 100 MHz, the critical number of photons inside the
cavity is ncrit = �2/(4g2) � 41.53. The plot shows that the
maximum number of photons nc = max n̄(t) of Eq. (22) is at
most 5 for a total number of input photons npulse = 9. For this
choice of parameters, one has 2χ

κ
= 2.43 and a rather large

value of W
κ

= 0.83.

FIG. 5. (Color online) Example of the number of photons in the
cavity n(t) versus time t for some representative choice of parameters
�,g,κ,Tpulse,npulse. The cavity initially is excited by a Gaussian pulse
and the maximum number of photons inside the cavity nc stays well
below the critical value set by the detuning � and the coupling g at
ncrit � 41.53.

A clear way of having a relatively short measurement time
but remaining in the regime where the pulse is not distorted
(W/κ 
 1) is to have large cavity decay rate κ . However,
via the coupling with the resonator mode, the transmon
qubit undergoes additional decoherence due to the Purcell
effect [31,40]. This can lead to a loss of the nondemolition
character of the measurement as it speeds up the decay from
|1〉 to |0〉. One can bound [31] the Purcell-induced decoherence
time T1 � �2

κg2 = �
κχ

where � is the detuning. A larger κ

can thus be accommodated by increasing the detuning �

(for identical χ ) leading to an increase in ncrit. A route
towards enhancing κ without inducing additional decoherence
was indicated in the experiment [39], which reports a fast
single-qubit measurement with Tpulse ∼ 25 ns.

A. Amplification and homodyne measurement

The microwave signal emerging from the cavity is amplified
through, first, either a phase-sensitive or phase-insensitive
amplifier at low (∼30 mK) temperature, and subsequently,
through some standard transistor amplifiers operating at higher
temperatures (see Fig. 1). The presence of these amplifiers
does not impact which setup or choice of parameters leads to
an optimal SNR: the only requirement is that the signal coming
into the sequence of amplifiers is already sufficiently strong so
that the added noise of these amplifiers does not wash out any
expected sensitivity enhancements.

We assume that the added noise of the Josephson parametric
amplifiers is negligible and so their mode transformation
corresponds to the idealized ones of Eqs. (4) and (6) with
a vacuum state at the idler port of the phase-insensitive para-
metric amplifier. A standard (e.g., transistor) linear amplifier
can be modeled [26] by mixing in continuum modes c(ω)
{with [c(ω),c†(ω′)] = δ(ω − ω′)} which are assumed to be in
a thermal state at (an effective) temperature T as follows:

aamp(ω) = √
Gampa1,out(ω) + √

Gamp − 1 c†(ω), (23)

where a1,out(ω) is the outgoing frequency mode in the various
schemes in Fig. 2. For a thermal state one has

〈c†(ω)c(ω′)〉 = nT (ω)δ(ω − ω′),
(24)〈c(ω)〉 = 0, 〈c(ω)c(ω′)〉 = 0,

where the number of photons at frequency ω is equal to
nT (ω) = 1

e�ω/kB T −1
≈ kBT

�ω
for kBT � �ω. Thus,

[�pamp(ω)]2

Gamp
≡ [�p1,out(ω)]2 + AN,

= [�p1,out(ω)]2 + (
1 − G−1

amp

) (
nT (ω) + 1

2

)
,

(25)

where the defined AN is the added noise number. For the
Josephson parametric amplifier one has AN < 1.7 quanta
while for the JPA in [29] AN is reported to be 0.23, below
1
2 (this is a phase-sensitive amplifier). When the added noise
number is considerably above 1

2 , we may thus associate an
effective noise temperature TN ≈ �ωn(ω)

kB
≈ �ωAN

kB
with it.

The added noise is largely set by the first amplifier in the
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chain: for the HEMT amplifier (at operating temperature
T = 5–10 K and frequency of ω

2π
= 4–10 GHz) one

has AHEMT
N ≈ 20–30 [28]. In order for the relative noise

contribution from the HEMT to be small, the total number
of photons in the outgoing signal (after the last PA or DPA)
should thus be more than 20–30.

At the room-temperature output (see Fig. 1), the chain of
amplification thus produces an essentially classical stochas-
tic voltage signal V (t) ∝ −i√

2
[αout(t) − α∗

out(t)] with expec-

tation 〈V (t)〉 and stochastic noise correlator �2V (t,t ′) ≡
〈V (t)V (t ′)〉 − 〈V (t)〉〈V (t ′)〉. The last step in the quantum
measurement chain is the measurement of this time-dependent
voltage, which is usually referred to as a “homodyne mea-
surement.” We assume that a single measurement outcome
± will be deduced after time Tm. This measurement time
Tm ∼ Tpulse + O( 1

κ
) when W ∼ κ so that we also catch the

late-incoming photons.
The homodyne measurement in practice means the mixing

of the signal with a reference signal and the application of a
low-band-pass filter in order to eliminate the fast-oscillating
behavior of V (t) (or different quadratures). This homodyne
measurement thus differs from the standard quantum optics
technique in which a homodyne measurement of a weak
quantum signal is realized by mixing it (on a partial beam
splitter) with a high-amplitude local oscillator [41]. The output
of the microwave homodyne measurement for the p quadrature

is the time-averaged signal

〈pout{Tm}〉 ≡
√

4π

∫ Tm
2

− Tm
2

dt cos(ωct) 〈V (t)〉, (26)

where ωc is chosen to be equal to the carrier frequency of the
incoming pulse equal to ωr . In a typical experiment [27], a
stochastic signal pout{δt} is obtained for shorter time intervals
δt 
 Tm, but we assume here that one takes the sum over this
entire data record pout{δt}δt and obtains one random variable
pout{Tm} with mean as in Eq. (26). The noise on this signal is
given by

(�pout{Tm})2 ≡ 4π

∫ Tm
2

− Tm
2

dt

∫ Tm
2

− Tm
2

dt ′

× cos(ωct) cos(ωct
′)�2V (t,t ′). (27)

In order to evaluate these expressions for the various setups
described in Fig. 2, let the modes a1,out(ω) [with quadrature
pout(ω) ≡ p1,out(ω)] describe the frequency-dependent output
modes obtained from transforming bout(ω) in Eq. (15) through
the degenerate or nondegenerate parametric amplifiers (4)
and (6) (overall, we omit any time delays that are picked up to
due finite-speed propagation along the transmission lines). If
we add the additional amplification and noise by the HEMT
with gain GH, we can evaluate Eqs. (26) and (27) to obtain the
approximate expressions

〈p±
out{Tm}〉 ≈ TmG

1
2
H

∫ ∞

−∞
dω sinc

(
Tm(ω − ωc)

2

)
〈p±

out(ω)〉,

(�p±
out{Tm})2 ≈ T 2

mGH

∫ ∞

−∞
dω sinc2

(
Tm(ω − ωc)

2

)[
(�p±

out(ω))2 + (
1 − G−1

H

) (
nT (ω) + 1

2

)]
. (28)

When we evaluate these expressions, we will use values typical
from the literature, viz., nT = 25 and GH = 30.1 dB, so
that AHEMT

N = 24.7. To arrive at Eq. (28) we have neglected
the terms proportional to e±i(ω+ωc)t assuming that these fast-
rotating terms average out because of the time integration.
Note that the signal strength will increase for small Tm but then
saturate once all photons in the pulse have been processed. In
calculating the noise we also use the fact that both the outgoing
signal, as well as the thermal state that is mixed in with the
signal by the HEMT amplifier, are product states with respect
to the frequency modes. Note that the probability distribution
of this quadrature random variable is a Gaussian distribution
as all states in the protocol (coherent, squeezed, and thermal)
are Gaussian states. It is interesting to see what happens in
Eq. (28) when the measurement time Tm becomes too large
while we keep Tpulse fixed. The signal becomes constant as all
photons have been processed, but the noise continues to grow
(�p±

out)
2 ∼ Tm so that the SNR goes to zero.

B. Signal-to-noise ratio and measurement error probability

The quality of the quantum measurement, given a fixed
measurement time Tm, can be expressed indirectly using
a signal-to-noise ratio (SNR) [Eq. (3)], and more directly
through a measurement error probability. If the qubit is

in the |0〉 (resp. |1〉) state, the outgoing signal distribu-
tion P±(x = pout{Tm}) is a Gaussian distribution P±(x) =

1
σ±

√
2π

exp(−(x−μ±)2

2σ 2±
) with mean μ± = 〈p±

out{Tm}〉 and standard

deviation σ± = �p±
out{Tm} such that μ+ � 0. As argued in

Sec. II, the standard deviations �p±
out{Tm} are not necessarily

identical for arbitrary choice of phases in the SU(1,1) in-
terferometer, but we will only choose parameters such that
�p+

out = �p−
out. Assuming that the qubit has an arbitrary long

lifetime compared to the measurement time Tm, one chooses
a midway threshold value ν = μ− + |μ+−μ−|

2 (for μ− < μ+)
such that when x < ν we decide for outcome “−” or |1〉, while
for x > ν we decide “+” or |0〉 (for a qubit with a finite lifetime
one should bias this threshold value, see [43]). The probability
for an incorrect measurement conclusion is equal to Perror =
Prob(infer − |+)Prob(+) + Prob(infer + |−)Prob(−) and we
will assume an equal probability for ±, Prob(±) = 1

2 . Us-
ing Prob(−|+) = Prob(+|−) = P−(x � ν) = 1

2 erfc( |μ+−μ−|
2
√

2σ
)

gives

Perror(Tm) = 1

2
erfc

[ |〈p+
out{Tm}〉 − 〈p−

out{Tm}〉|
2
√

2�p±
out{Tm}

]

= 1

2
erfc

(
SNR√

2

)
, (29)
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with the expressions in Eq. (28). This error probability does
not say to what extent the measurement also projects the qubit
onto the |0〉 or |1〉 state given the measurement outcomes; this
additional information could be obtained through a stochastic
master-equation analysis as in [44]. Note also that the statistical
reasoning leading up to these expressions is a shorthand for
the actual situation, as the qubit is not generally in either the
|0〉 or |1〉, but can be in an arbitrary superposition a|0〉 + b|1〉,
Again, a stochastic master-equation analysis would give a more
complete description of the gradual “collapse” of the qubit
wave function.

It is common to include a “fudge” measurement inefficiency
factor η < 1 in the final measurement error probability to
account for the fact that not all photons in the measurement
pulse contribute to the outgoing signal (as they get reflected,
etc.). For example, for a cavity with two ports each with decay
rate κin and κout of which only the out port is monitored,
one has [44] η = κoutηdet

κin+κout
where ηdet is some overall efficiency

of detecting the photons at the output. In [45], the authors
determine an overall measurement efficiency of η ≈ 1

2 . As
the loss of photons could be abstractly modeled as the
presence of an additional beam splitter somewhere in the
measurement chain, a good approximation to the modified
error probability is then Perror = 1

2 erfc(
√

η

2 SNR) which we
will use in our numerical evaluations. However, one expects
that a more detailed modeling of photon loss inside the
interferometer versus photon loss at the outgoing/ingoing
ports, would modify the SNR in different ways. Loss inside
the SU(2,2) interferometer would lead to both a loss in signal
(similar as for the coherent measurement) as well as a loss
in the entanglement of the two-mode squeezed state which
comes out of the first PA, thus reducing the advantage of the
interferometer. We leave the calculation of the various SNRs
of such lossy interferometers as future work.

IV. NUMERICAL EVALUATION OF SCHEMES

Overall, it seems daunting, if not impossible, to be able to
experimentally determine the precise values of all the physical
parameters which play a role in the SNR. It assumes these
values can be determined independently of each other, at least
these should only depend on parameters whose values we
already know with high accuracy. But, for a theoretical study
we are not faced with this conundrum and we can consider the
sensitivity enhancement that one may be able to achieve given
realistic values of these parameters. This is what we do in this
section.

We first observe that in the standard coherent scheme, the
finite pulse Tpulse affects the values of ϕ± for which the SNR
is maximized (see Fig. 6). For a pulse width W = 0.01κ , the
minimal error probability is found at the π -phase-shift point
of 2χ/κ ≈ 1, but for W = 0.3κ the minimal error probability
lies at 2χ/κ ≈ 1.4. We do not limit the number of photons
in the cavity, but it is noticeable that even for W = 0.3κ ,
the minimal error probability is achieved for phase shifts
|ϕ+(0) − ϕ−(0)| > π [see Eq. (16)]. This demonstrates that
we should include the multimode nature of the pulse in
our analysis.

2χ/κ = 1

2χ/κ = 1.55

(b)
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FIG. 6. (Color online) (a) The probability of error Perror of the
standard coherent measurement scheme versus 2χ

κ
. Other parameters

in this plot (which do not directly affect where the error probability
is minimal) are ωr/2π = 6.789 GHz, ωq/2π = 5.5 GHz, and Tm =
1.2Tpulse, Tpulse = 2/W , npulse = 9. (b) Perror versus normalized pulse
width W/κ for different values of phase shift (determined by 2χ/κ).

A. Comparison between SU(1,1) interferometer and coherent
readout: Single-mode results

We first consider the idealized situation, as discussed
in Sec. II, where Tpulse is large so that one can make a
single-mode approximation. We can take the measurement
time Tm to be sufficiently long so that the system reaches
steady state and a constant flux of photons is arriving at the
output. Under these assumptions, the probability of error of
the coherent-state readout (coherent+PA) and the two-mode
SU(1,1) interferometer [SU(1,1)+PA] are given by Eqs. (9)
and (11), respectively. In Fig. 7, we plot the ratio of these
two SNRs against 2χ/κ and for two different values of the PA
phase differences θ1 − θ2. Here, we take the number of photons
in the cavity n(t) � 5 and we use G1 = 3.12 dB. Here, and
in the following, we take G2 = 20 dB; larger amplification by
the second stage always improves the SNR, so we take the
largest value that is easily attainable in currently used PAs.
As expected, for θ1 − θ2 = π the two-mode SU(1,1) inter-
ferometer shows higher measurement accuracy as compared
to the coherent-state readout with PA for very small values
of 2χ/κ 
 1. However, this is not the regime that we are
interested in since the signal, being proportional to sin(ϕ), will
be very small for these values of 2χ/κ . On the other hand,
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FIG. 7. (Color online) (a) Comparison between SNRSU(1,1)+PA

and SNRcoherent+PA for two different relative phases θ2 − θ1 = π and
θ2 = θ1. (b) Comparison between SNRSU(1,1)+DPA and SNRcoherent+DPA

for the optimal phase choice θ2 − θ1 = π . (c) Comparison between
SNRSU(1,1)+DPA (with the optimal phase choice θ2 − θ1 = π ) and
SNRSU(1,1)+PA (with the optimal phase choice θ2 = θ1). In all
scenarios, we assume the optimal G1 = 3.12 dB, G2 = 20 dB (a
practical maximum amplifier gain), and the number of photons in the
cavity is at most 5. In the case of PA-based SU(1,1) interferometer,
the photon flux [see Eq. (18) and Appendix] before the first PA is
31.23κ and the photon flux after the first PA but before the cavity is
Ft = 32.5κ which is equal to the photon flux before the cavity for
the coherent schemes. For the DPA-based interferometer, the photon
flux before the cavity is 21.7κ which is amplified to 32.5κ after the
first DPA.

when θ1 = θ2 the two-mode SU(1,1) interferometer shows a
better result as compared to the coherent-state readout for large

phase shift 2χ/κ . We will focus our analysis on rather large
values of 2χ/κ where we have a significant signal.

Similarly, we can compare the SNR of the single-mode
SU(1,1) interferometer [SNRSU(1,1)+DPA in Eq. (12)] with the
SNR of a coherent pulse which is amplified using a DPA
(SNRcoherent+DPA) [see Eq. (10)]. As one can see, the DPA-
based SU(1,1) interferometer gives a higher SNR as compared
to the coherent DPA-based readout when the phase shifts are
very small 2χ/κ 
 1 or very large 2χ/κ > 2.9. Thus, Fig. 7
shows that the optimal scenario for qubit-state readout is the
two-mode SU(1,1) interferometer for the relevant values of
2χ/κ . In the next section, we present the multimode features
of this scenario and we will omit the multimode numerics of
the other scenarios.

B. Two-mode SU(1,1) interferometer: Multimode numerics

Now, we consider the more realistic scenario in which a
coherent pulse with a total of npulse photons and bandwidth W

is provided as input to the SU(1,1) interferometer, as shown in
Fig. 2(a). This pulse first amplifies (deamplifies) at the first PA
(with gain G1 and phase θ1), then interacts with the qubit in
the cavity, picks up a frequency-dependent phase factor as in
Eq. (16), and is subsequently amplified by the second PA and
then by the amplifiers at higher temperatures (see the setup in
Fig. 1).

In Fig. 8, we plot the probability of error Perror versus the
measurement time Tm for the two-mode SU(1,1) interferome-
ter and for a coherent-state readout, using the expressions for
the signal and the noise in Eqs. (28) and (3) and the expression
for the probability of error Perror = 1

2 erfc(
√

η

2 SNR). Thus, at
Tm = 0 with no photons at the output, one has Perror = 1

2

while for large Tm/Tpulse → ∞, Perror ≈ 1
2 erfc(cT −1/2

m ) → 1
2

for some constant c. We assume the experimentally realizable
parameters [39] 1/κ = 25 (ns), χ/2π = 7.7 MHz, 2χ/κ =
2.43, η = 0.5, ωr/2π = 6.789 GHz, ωq/2π = 5.5 GHz. We
have obtained these data by first fixing the maximum number
of photons in the cavity to be 5, using Eq. (22). Given a value
for npulse and the other parameters, this fixes the gain of the first
amplifier G1. We then consider for what value of npulse [recall
that this is the total number of input photons, see Eq. (20)] the
SNR is maximized and presents the optimal value. The figure
of merit that is thus held constant in comparing a coherent
readout and the SU(1,1) interferometer is thus the maximum
number of cavity photons and the corresponding number of
photons that is arriving at the cavity.

However, we consider two different values for the pulse
duration. In Fig. 8(a), we consider Tpulse = 160 ns where the
optimal total number of photons in the pulse before first PA is
npulse = 58.98 (corresponding to G1 = 0.431 dB). In Fig. 8(b),
we assume Tpulse = 60 ns where the optimum total number of
photons in the pulse before first PA is npulse = 19.36 (with
corresponding G1 = 0.222 dB). As the parameters are chosen
such that 2χ/κ > 1, the phase difference between first and
second PA is set to be equal [θ2 = θ1, as predicted by Fig. 7(a)]
in order to get the best results by using an interferometer.

The greater relative advantage of the SU(1,1) scheme for
the longer pulse [Fig. 8(a)] has a straightforward explanation
using the single-mode analysis. For the parameters of Fig. 8(a),
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FIG. 8. (Color online) Central result of the paper: The probability
of error versus measurement time Tm (a) for a pulse with time duration
Tpulse = 160 ns where the optimum total number of photons in the
pulse before first PA is npulse = 58.98. (b) For a pulse with time
duration Tpulse = 60 ns where the optimum total number of photons
in the pulse before the first PA is npulse = 19.36.

the steady-state SNR for the SU(1,1)+PA scheme is about 1.15
times greater than the SNR for the coherent-state scheme (cf.
Fig. 7, but with different system parameters). In steady state,
both SNRs grow like the square root of time [cf. Eqs. (9)
and (11)], so the ratios of the two error rates should go
like erfc(1.15c

√
t)/erfc(c

√
t) for some constant c. This is a

growing function of time, agreeing with the trend seen in
going to longer pulse times [from Fig. 8(b) to 8(a)].

It should be observed that the dramatic advantage gained
by using the parameters of Fig. 8(a) would not be attainable in
current practice: T1 relaxation of the qubits would need to be
much longer in order for measurement error rates of 10−5 to
be realistic. The gain indicated for the shorter probe pulse of
Fig. 8(b) should be attainable by present-day superconducting
qubits, but the gain in error rate here is much more modest
(a factor of 2). We have sought for parameters for which
an order of magnitude gain in error rate would be attainable
with practical present-day qubits, for example, by assuming a
critical cavity photon number larger than 5 [permitting larger
G1 and thus, presumably, more entanglement of the two beams
of the SU(1,1) interferometer]. However, up to this point, we
have not found other parameters for which this desired gain

FIG. 9. (Color online) Same as Fig. 8(b), except that the assumed
noisy post amplification (with HEMT) is replaced by ideal amplifi-
cation. This quantifies the (small) amount by which the HEMT noise
increases the error rate; at the minimum, the change is from 0.0007
to 0.0003. The relative performance of the coherent state vs SU(1,1)
schemes is essentially unchanged.

would be achieved. We plan further studies to explore more of
the large parameter space of SU(1,1) operation.

We finally show, in Fig. 9, that there is a small but real
degradation of the measurement due to the noisy HEMT post
amplification; the relative performance of the coherent state
versus SU(1,1) schemes is unaffected by this degradation.

V. DISCUSSION

In this paper, we have considered the gains in measurement
sensitivity for the measurement of a transmon qubit that is
coupled to a microwave cavity using squeezers and parametric
amplifiers, possibly in an interferometric setup. None of these
schemes for finite phase shifts ϕ± can claim to reach a Heisen-
berg limit, but we have demonstrated that an improvement in
measurement fidelity for a given measurement time is possible.

As an outlook for the future, we believe that it is worthwhile
to consider the idea of feedback on the basis of partial homo-
dyne measurement records both for the SU(1,1) interferometer
as well as the single-mode SU(1,1) interferometer. The idea of
feedback in this setting is different than in the usual setting of
phase estimation in which one biases the operating point of
the SU(1,1) interferometer (the relative phases between the
two parametric amplifiers) given the current precision with
which the phase is known so as to be maximally sensitive to the
remaining unknown bits [16]. In a qubit measurement, the goal
is to drive the qubit state as quickly as possible to either a |0〉
or |1〉; if we gather an initial data record that suggests outcome
+, one could bias the interferometer so that the SNR for the +
signal becomes larger, but at the same time the SNR for the −
signal becomes smaller. Circuit-QED techniques are certainly
available for making the necessary fast, controllable changes
of propagation phase [46]. Whether this has the desired effect
of realizing a faster projective measurement could be analyzed
using stochastic master equations.

We can note that such feedback schemes do not give gains
for a noninterferometric setup such as a measurement with a
squeezed or coherent probe. Even though the expression for
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the SNR in these noninterferometric setups does depend on the
value of ϕ±, shifting the carrier probe frequency ωc to be close
to a point ϕ ≈ 0 will also bring one closer to resonance and
hence lead to more photons in the cavity. In contrast, changing
the relative phase of amplifiers before and after the probe has
interacted with the cavity has no such effect. Another possible
regime of interest is to consider probing the cavity far off
resonance with a sequence of very short pulses, possibly in an
adaptive manner. Each pulse will pick up a small phase shift
ϕ± at the cavity so that one can maximally benefit from using
an interferometer.
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APPENDIX: BACKGROUND ON MODELING THE
QUANTUM MEASUREMENT CHAIN

Here, we collect some mathematical relations and def-
initions pertaining to the description of a one-dimensional
transmission line coupled to a (microwave) cavity [37] and
review the input-output formalism [36,38,47].

A semi-infinite transmission line can be described by a
Hamiltonian Htrans = ∫ ∞

−∞ dk �ωk(b†kbk + 1
2 ) with [bk,b

†
k′ ] =

δ(k − k′) where ωk = |k|v and the group (or phase) velocity
is v = 1√

lc
(dispersionless medium). Here, l (c) are the

inductance (capacitance) per unit length of the line (Zc =
√

l
c

is the characteristic impedance of the line). Note that the
operators bk have units of m1/2 in this continuum limit. One can
obtain this description through solving the one-dimensional
wave equation ∂2�(x,t)

∂t2 − v2 ∂2�(x,t)
∂x2 = 0 for the flux variable

�(x,t) along the line and expanding it in normal modes labeled
by a wave number k. The flux variable �(x,t) determines the
local voltage V (x,t) and local current density I (x,t) through
∂�(x,t)

∂t
= V (x,t) and I (x,t) = − 1

l

∂�(x,t)
∂x

. The local voltage
operator V (x,t) at a point x on the line is a Heisenberg operator
and equals

V (x,t) = −i

√
1

4πc

∫ ∞

−∞
dk

√
�ωk(bk(t)eikx − b

†
k(t)e−ikx),

with bk(t) = bke
−iωkt . If we split the integral over wave num-

bers k into a right-traveling part
∫ ∞

0 dk and a left-traveling part∫ 0
−∞ dk, then we can write V (x,t) = Vin(x,t) + Vout(x,t) with,

for example, Vin(x,t) = −i
√

1
4πc

∫ ∞
0 dk

√
�ωk(bk(t)eikx −

b
†
k(t)e−ikx).

We assume that the cavity couples to the transmission line
on the right, say at x = 0, so that incoming signals travel to the
right and outgoing signals to the left. The capacitive coupling
Hamiltonian between transmission line and the single-mode
cavity is taken to be of the form

Hcoupl = �

√
κv

2π

∫ ∞

−∞
dk (a†bk + b

†
ka), (A1)

while the Hamiltonian of the cavity field and qubit are given
by Heff [Eq. (13)]. Note that Hcoupl represents a simple lin-
ear coupling at x = 0 since Hcoupl = �

√
κv(a†bx=0 + b

†
x=0a)

using the spatially labeled modes bx = 1√
2π

∫ ∞
−∞ dk eikxbk .

We can model a coherent multimode input state on the
transmission line at initial time t = 0 as a state |{αk}〉 =
D({αk})|0〉 with continuous displacement operator D({αk}) =
exp[

∫ ∞
−∞ dk (αkb

†
ke

−ikx − α∗
k bke

ikx)] [47]. A plane wave with
wave number kc can be modeled by taking αk = δ(k −
kc)(2πFl)1/2 where Fl is the mean photon flux per unit length
(related to the mean photon flux per unit time Ft = vFl).
For such a plane-wave state one has 〈b†kbk′ 〉 = δ(k − kc)δ(k′ −
kc)2πFl and 〈b†xbx〉 = Fl .

We can also take a Gaussian pulse centered around
frequency ωk = |kc|v = ωc with wave number kc > 0 such
that the pulse travels towards the cavity on the right. For such
a pulse, one has

αk>0 = α
e−(ωk−ωc)2/W 2

(2π )1/4W 1/2(2v)−1/2
, αk<0 = 0 (A2)

with width W ≡ �ω 
 ωc. The coherent state |{αk}〉 =
D({αk})|0〉 representing this pulse will be spatially centered
(with Gaussian spread) at position x at time t = 0 [due to
the x dependence of the displacement operator D({αk})]. The
normalization of αk is chosen such that the total number of
photons in the pulse is npulse = ∫

dk |αk|2 = |α|2. As the pulse
travels dispersionless over the transmission line, we can drop
all dependence on position x or time-dependent phase shifts
when analyzing the interferometric schemes in the paper.

The relation between the cavity field and the ingoing and
outgoing fields on the transmission line is usually given in
terms of input and output fields bin(t) and bout(t). These opera-
tors are defined as bin(t) = −√

v
2π

∫ ∞
−∞ dk e−iωk (t−t0)bk(t0) for

t0 < t and bout(t) = √
v

2π

∫ ∞
−∞ dk e−iωk (t−t1)bk(t1) for t1 > t .

Note that as the input state at t0 = 0 traveling towards the cavity
has 〈bk<0〉 = 0, one could also replace the integral

∫ ∞
−∞ dk

in bin(t) by
∫ ∞

0 dk [and similarly use the integral
∫ 0
−∞ dk in

bout(t)].
The Heisenberg evolution of the operators a(t) is then given

by [with ω̃r defined in Eq. (14)]

ȧ = −iω̃ra(t) + √
κbin(t) − κ

2
a(t),

(A3)
ȧ = −iω̃ra(t) − √

κbout(t) + κ

2
a(t),

or bin(t) + bout(t) = √
κa(t). Thus, knowing the time dynam-

ics of the input field bin(t) and the cavity field lets one
determine the output field. Conversely, knowing the output and
the cavity field, one could calculate backwards to determine
the dynamics of the input field.

In order to solve Eqs. (A3), one defines Fourier-transformed
operators. For any time-dependent Heisenberg operator b(t)
one has b[ω] ≡ FT[b(t)] = 1√

2π

∫ ∞
−∞ dt eiωtb(t) and b†[ω] =

FT[b†(t)] = (b[−ω])†. For a continuum of wave-number
modes bk , this means that bk[ω] has units of s × m1/2. Note
that for a discrete set of modes, such as the modes in the cavity,
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a[ω] has units of s as a(t) is dimensionless. For Eqs. (A3) one
obtains

a[ω] =
√

κ
κ
2 − i(ω − ωr )

bin[ω]

and

bout[ω] = κ/2 + i(ω − ω̃r )

κ/2 − i(ω − ω̃r )
bin[ω] = eiϕ±(ω−ω̃r )bin[ω].

From the defined relations, it follows that

bin[ω] = −√
v

∫
dk δ(ω − ωk)bk = − 1√

v
bk=ω/v,

where we have restricted the input mode bin to only in-
volve k > 0. This also gives b

†
in[ω] = − 1√

v
b
†
k=ω/v . Similarly,

one has

bout[ω] = 1√
v
bk=−ω/v, b

†
out[ω] = 1√

v
b
†
k=−ω/v.

This shows that one may identify the input and output operators
with mode operators corresponding to a certain wave number
and thus with a certain frequency ω. It also allows us to
translate the input state in Eq. (A2) into expectations of bin[ω],
etc. Note that bin[ω] (and bout[ω]) have units of s1/2 and obey
[bin(ω),b†in(ω′)] = δ(ω − ω′) via the commutation relations for
the mode operators bk .

The mode transformations of the (degenerate) parametric
amplifiers in Eqs. (4) and (6) are given in terms of the operators
ai(ω), but these operators should be similarly interpreted as
input-output operators ai,in[ω] and ai,out[ω] (see, e.g., [25]).
Thus, in the main text we simply refer to such continuum-
mode operators as ai(ω),bin(ω) (with round brackets), etc.,
with expectations 〈bin(ω)〉 = α(ω) and units of s1/2.
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