
PHYSICAL REVIEW B 90, 134513 (2014)

Strong enhancement of bulk superconductivity by engineered nanogranularity
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It is now well established, both theoretically and experimentally, that very small changes in the size of
isolated nanograins lead to substantial nonmonotonic variations, and sometimes enhancement, of the mean-field
spectroscopic gap of conventional superconductors. A natural question to ask, of broad relevance for the theory
and applications of superconductivity, is whether these size effects can also enhance the critical temperature
of a bulk granular material composed of such nanograins. Here we answer this question affirmatively. We
combine mean-field, semiclassical, and percolation techniques to show that engineered nanoscale granularity
in conventional superconductors can enhance the critical temperature by up to a few times compared to the
nongranular bulk limit. This prediction is valid for three-dimensional and also quasi-two-dimensional samples,
provided the thickness is much larger than the grain size. Our model takes into account an experimentally realistic
distribution of grain sizes in the array, charging effects, tunneling by quasiparticles, and limitations related to the
proliferation of thermal fluctuations for sufficiently small grains.
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The quest for higher critical temperatures Tc is one of the
main driving forces in the field of superconductivity. Tuning
the number of charge carriers [1], increasing pressure [2]
or disorder [3], applying microwave radiation [4] or a high
pulse field [5], and exploiting finite size effects [6,7] are
only a few of the mechanisms proposed to increase the Tc of
superconductors. The last of these, first proposed theoretically
in the 1960s [6,8], predicts more robust superconductivity
in nanostructures by tuning the Fermi energy to a region of
anomalously large spectral density. The effect is especially
strong in symmetric nanograins with level degeneracies,
usually referred to as shells. Recent mean-field numerical [9]
and analytical [10] results have confirmed that, for typical
grain radii R ∼ 10 nm, enhancement of Tc by size effects
is still substantial. A mean-field approach is justified in this
region since the mean level spacing δ is much smaller than the
bulk superconducting gap �0 [11–13]. Recent experimental
results in isolated Sn nanograins [14] are fully consistent with
theoretical predictions.

However, true superconductivity, characterized by phase
coherence and zero resistance, cannot exist in a single isolated
grain. The number of particles inside the grain is fixed
and hence the phase of the order parameter is delocalized.
The situation could in principle be different in a Josephson
array composed of such nanograins where intergrain coupling
can lead to bulk phase coherence. Due to size effects in
the single grains a higher critical temperature [7] than in
a bulk nongranular sample [15,16] may be possible. Some
experiments [17,18] indeed found enhancement of T

Array
c in

Al and other granular metallic superconductors [17,19] but no
enhancement was observed in Sn [20] or in samples where
granularity was suppressed [21]. We note, see sketch in Fig. 1,
that such arrays are intrinsically inhomogeneous as the critical
temperature of neighboring grains can be very different.

With some exceptions [22] not much is known about the
physical properties of inhomogeneous arrays. Moreover, size
effects in single grains are obviously weakened by intergrain
coupling so it is not clear at all, a priori, whether nanogran-
ularity can enhance superconductivity. Previous claims in

the literature of orders of magnitude enhancement of the
critical temperature [23] do not take into account these
features, namely, inhomogeneity of nanograins arrays and
the weakening of size effects by intergrain coupling, so their
results are unrealistic.

Here we tackle this problem by putting forward a real-
istic model of a Josephson array of clean, superconducting
nanograins. Explicit analytical results are obtained by com-
bining mean-field, semiclassical, and percolation techniques.
The main goal of the paper is to clarify whether it is feasible
to enhance bulk superconductivity by size effects in single
nanograins and then to explore the set of realistic parameters
that lead to the highest increase of the critical temperature of
the array. Our results pave the way for the design of novel
nanoengineered superconductors with tunable properties.

The formalism we use is applicable to nanograins of any
shape but we focus on spheres with negligible disorder since
this is, not only, the geometry that leads to the strongest
finite size effects but also the easiest one to fabricate ex-
perimentally [14,18]. We focus on a three-dimensional array
as global phase coherence is easier to achieve in higher
dimensionalities and a mean-field approach is more accurate.
However, our results are also valid in quasi-two-dimensional
geometries relevant for experiments, provided the thickness
is much larger than the typical grain size. Indeed this is
the case in most experiments [18–20]. The grain size in
any realistic array [14,24] is randomly distributed. Following
the experimental results of Ref. [18] we employ a Gaussian
distribution with a mean and variance of about ∼5 and 1 nm,
respectively. We stress that this implies some grains have a Tc

that is higher than the bulk material Tc0, while for others it is
lower.

The theoretical analysis is divided into two parts. First,
we compute the weakening of size effects in the mean-field
critical temperature of a single grain caused by coupling it
to its nearest neighbors. We employ the mean-field Bardeen-
Cooper-Schrieffer (BCS) formalism and semiclassical tech-
niques that are only applicable in the limit kF R � 1 and
Tc0 � δ so quantum and thermal fluctuations are negligible;
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FIG. 1. (Color online) Sketch of the Josephson array of
nanograins at three different temperatures: (a) T � Tc, (b) T � Tc,
and (c) T � Tc, where Tc is the critical temperature of the grain
in the bulk limit. The distribution of grain sizes is Gaussian with
typical average ∼5 nm and variance 1 nm. Due to size effects the
array is highly inhomogeneous as each grain has a different critical
temperature. Red (gray) grains are (no longer) superconducting at
that temperature. The phase of the superconducting gap is indicated
by an arrow. The transition in the array occurs at a temperature for
which either phase fluctuations induce the loss of phase coherence
or there are not enough superconducting grains to form a cluster
permeating the whole of the material. We have found a substantial
enhancement of the array critical temperature for different average
grain size and variance, packings, electron-phonon coupling, and
normal state resistance. For an optimal grain packing, see Fig. 4, the
critical temperature of the array can be up to a few times higher than
for a bulk nongranular material.

where kF is the Fermi-wave vector and R is the radius of the
grain. Typically this limit corresponds to R � 5 nm although
the exact value depends on the material. Moreover, intergrain
coupling smooths out the spectrum and consequently enlarges
the range of applicability of mean-field theory techniques.

Second, we compute the critical temperature of the array,
defined as the temperature at which global phase coherence
is lost, as a function of different parameters: the normal state
resistance, the electron-phonon coupling constant, the grain
size, and the way the grains in the array are arranged. Two
mechanisms can induce the transition: phase fluctuations or
that the fraction of grains that are superconducting is not
sufficient to form a cluster permeating the whole sample. The
former mechanism is modeled by a mean-field formalism for
the phase dynamics that includes charging effects, quasiparti-
cle tunneling, and the usual Josephson coupling that depends
on the superconducting gap computed previously. The latter
by counting the number of superconducting grains, defined as
those with a finite superconducting gap, at a given temperature
and comparing to the known results from percolation theory.
The physical critical temperature is the lower of the two.

The main conclusion of this analysis is that it is possible
by nanoengineering to enhance the critical temperature of a
conventional superconductor by up to a few times the bulk
nongranular limit. The optimal setting is for weakly coupled
materials, such as Al, grain sizes ∼5 nm and fcc packing of the
grains in the array. These results offer a plausible explanation
of the observed enhancement of superconductivity in some
granular materials. However, quantitative comparisons with
experiments will require better control of grain positioning
such as that offered by polylithographic techniques where the
material is built up layer by layer and the superconducting
islands can be placed in a pattern with varying interisland
spacing [24]. A convincing experimental confirmation of these
results would be a key step in the development of engineered
superconductivity with tunable properties. We start with a
detailed theoretical description of the coupling of a single
nanograin to the rest of the array.

I. MODEL OF A SINGLE GRAIN COUPLED TO
THE NEAREST NEIGHBORS

We model the coupling of a single grain to the rest of
the array using semiclassical techniques and a mean-field
formalism. The overall effect of the coupling is a smoothing
of the density of states that suppresses finite size effects.
Superconductivity in each grain is described by the BCS [25]
Hamiltonian,

H =
∑
n σ

εnc
†
nσ cnσ − λ

νT F (0)

∑
n,n′

In,n′c
†
n↑c

†
n↓cn′↑cn′↓, (1)

where c
†
nσ creates an electron of spin σ in state n with energy

εn, λ is the dimensionless BCS coupling constant, νT F (0) is
the bulk density of states at the Fermi energy εF , and In,n′

are the short range electron-electron interaction matrix ele-
ments. The second sum is taken over all of the states within
the Debye energy εD , window around εF . The superconducting
gap �(R,T ) is given by

1 = λ

2

∫ εD

−εD

1√
ε′2 + �2

ν(ε′)
νT F (0)

tanh

(
β
√

ε′2 + �2

2

)
dε′,

(2)
where β = 1/kBT and ν(ε) =∑n δ(ε − εn) is the exact single
particle density of states. Here ν(ε) is dependent on the size of
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the grain and is the parameter responsible for including size
effects in the model. For simplicity we assume In,n′ = 1 which
underestimates the size effects on the gap and Tc.

The most important difference between an isolated grain
and one coupled to an array is that in the latter quasiparticles
can escape by tunneling. The grain is therefore open and its
density of states is smoothed. This smoothing is modeled by
expressing the density of states analytically as a sum over
classical periodic orbits with a cutoff that depends on the
probability of intergrain tunneling. The latter is a function
of the tunneling resistance of the junction RN and the number
of nearest neighbor. Explicit expressions of these quantities
for the case of spherical grains are given in the Appendix.

Explicit expressions for Tc(R) and �(R,T = 0) as a
function of the grain radius R are then obtained from Eq. (2)
by a power expansion in the small parameter (kF R)−1/2 [10].
The superconducting gap close to Tc is given by

�(R,T ) ≈ 1.74�(R,0)

(
1 − T

Tc(R)

)1/2

. (3)

These expressions will be the key building blocks to study the
behavior of the array. For more details of these calculations
we refer to the Appendix.

II. MODEL OF THE JOSEPHSON ARRAY BASED
ON COUPLED NANOGRAINS

We now turn to the theoretical description of an ar-
ray composed of the spherical nanograins studied in the
previous section. In order to mimic realistic experimental
conditions [14,18] we consider a Gaussian distribution of
grain sizes P (R) with mean R̄ and standard deviation σ . As
a consequence Tc and the gap � are different in each grain.
The fraction of grains in the normal metal phase increases
as temperature increases. We choose a three-dimensional
array for which a Kosterlitz-Thouless transition [26] is not
favorable since, even close to the percolation threshold, the
dimensionality of the percolating cluster is Df ∼ 2.52 >

2 [27]. The grains that belong to the superconducting cluster
are those that verify Tc(R) � T

Array
c , they have a distribution

Psc(R) = θ [Tc(R) − T ]P (R).
We aim to compute T

Array
c as a function of RN , P (R),λ,

and the way the grains are packed in the array. There are two
distinct ways to destroy global phase coherence in the array.
First, the array may reach its percolation threshold p = pc,
where p is the fraction of grains in the superconducting phase
p = ∫∞

0 Psc(R)dR, and pc is the percolation threshold of
the array. Beyond the percolation threshold there may exist
globally phase coherent clusters but these do not permeate the
whole array. Second, global phase coherence may be destroyed
by phase fluctuations. In the former the critical temperature
is defined as the temperature for which the number of
grains still superconducting, computed using the expressions
obtained previously, form the critical percolating cluster. The
calculation of the latter requires a more elaborate treatment.
We start by considering the usual action, see the Appendix for a
definition of the action, for this type of array [28] that includes
charging effects, quasiparticle tunneling, and the Josephson

coupling, which is highly inhomogeneous as the value of the
superconducting gap is different in each grain.

Here we only provide a broad overview of the calculation
and refer to the Appendix for further technical details.
First, we remove the position dependence of the Josephson
coupling term by expressing it in terms of the mean gap
�̄ij = �i+�j

2 and the difference in the gaps �′
ij = |�i−�j |

2
across the junction and expand in powers of �′

ij . Then we
approximate the superconducting cluster by a homogeneous
array with �̄ij replaced by the mean value for the clus-
ter �̄ = 1

p2

∫∞
0

∫∞
0

�(R)+�(R′)
2 Psc(R)Psc(R′)dRdR′. A similar

procedure is applied to �′
ij . This is a good approximation as

close to T
Array
c the distribution of �̄ij and �′

ij in the cluster
will be narrow and sharply peaked around this value. We
also introduce the mean number of superconducting neighbor
grains in the percolating cluster z̄ = zp. This value slightly
underestimates the coordination number of the infinite cluster
as this is the mean coordination number for the whole array
including both finite clusters and the infinite cluster, however
this discrepancy is small.

The resulting homogeneous action, already studied in
the literature [29], can be tackled by standard mean-field
techniques. The critical temperature of the array, due to phase
fluctuations, is obtained by finding the solution to

1 = ẼQ

z̄J
+ e−βẼQ/2, (4)

where ẼQ = ( 1
EQ

+ η

E∗
Q

)−1, E∗
Q = 124e2�̄RN

3π�
, and J =

�̄RQ

2RN
tanh( β�̄

2 ) − �, see the Appendix for a full definition of �.
The values of z,η,pc for several geometries are summarized
in Table I. Having determined critical conditions for the
breaking of global phase coherence due to percolation and
phase fluctuations we then define the critical temperature of the
array T

Array
c to be the lower of the two critical temperatures. We

note that we are assuming that intergrain coupling is constant,
however the distance between grains in realistic arrays is rather
random but with a well defined average and small variance. We
believe that this is a fair approximation as random coupling
only affects the percolation transition through the weakening
of size effects in single grains which is a small correction.
Regarding phase fluctuation, we expect that random couplings
will lower the critical temperature of the array. However, in
the range of parameters we study this should not affect the
maximum of the critical temperature which occur far from the
quantum resistance where phase fluctuations are important. In

TABLE I. Intrinsic properties of the three most common packing
geometries. From left to right: packing, coordination number, inte-
gration constant in ẼQ [see below Eq. (A28)] and the site percolation
threshold.

Packing geometry z η pc

Simple cubic 6 5.9 0.3116 [30]
Body centered cubic (bcc) 8 5.4 0.2460 [31]
Face centered cubic (fcc) 12 5.1 0.1992 [32]
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the next section we explore the range of parameters that give
the greatest enhancement of T

Array
c .

III. RESULTS

We compute T
Array
c assuming the grain size distribution is a

Gaussian, P (R) = 1√
2πσ

e
− (R−R̄)2

2σ2 . This choice with σ ∼ 1 nm

and R̄ ∼ 5 nm is a good approximation to the experimen-
tal distribution [18]. Throughout the calculation we use
C = 4πε0R ∼ 0.5aF . However, this capacitance is typically
strongly renormalized, see Eq. (A28), by the quasiparticle
tunneling so its value does not influence our results. As
mentioned above, the physical T

Array
c is the minimum of the

critical temperature computed from Eq. (A28) and the critical
temperature at which the array reaches its percolation threshold
p = pc. In Fig. 2 we depict both critical temperatures for
typical values of the grain size and tunneling resistance. A
percolation driven transition is observed for RN � RQ. For
larger RN phase fluctuations, induced by ẼQ, break long range
order at temperatures below the percolation transition.

We first investigate the dependence of T
Array
c on the width

of the distribution σ . For experimentally realistic values, see
Fig. 3, the results depend very weakly on σ . This is expected
as oscillations in the order parameter due to shell effects take
place on a much smaller length scale ∼1 Å. Indeed, when
we tune σ to this range we start to see substantial deviations
depending on whether shell effects enhance or suppress Tc(R)
for R = R̄. However, it is not realistic to expect such a narrow
distribution to be experimentally feasible in the near future.

0

0.5

1

1.5

2

1000 2000 3000 5000

T
Array
c
Tc0

RN (Ω)

FIG. 2. (Color online) The critical temperature of the array in
units of the bulk critical temperature of the material against RN for
a cubic array with εF = 10.2 eV, εD = 9.5 meV, R̄ = 5 nm, σ =
1.0 nm, and λ = 0.3. The blue line shows the critical temperature
due to percolation given by finding the temperature at which p = pc.
The red line shows the critical temperature due to phase fluctuations
found by solving Eq. (A28). Close to 2.5 k these two lines cross,
meaning the transition that breaks global-phase coherence goes from
being percolation to phase-fluctuation driven. The shaded region
shows the range of parameters for which the array will be globally
superconducting. This crossover corresponds to the sharp tail seen at
large resistance in the following figures.
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FIG. 3. (Color online) T
Array
c in units of the bulk material critical

temperature, against RN for a cubic array with εF = 10.2 eV,
εD = 9.5 meV, and λ = 0.25. Top: Gaussian distribution of sizes
with mean R̄ = 5 nm, and variance σ = 0.1 nm (blue, solid line),
0.6 nm (red), 1.0 nm (yellow), and 1.4 nm (green). Results are weakly
dependent on σ (for σ > 1 Å) as the typical scale for which shell
effects in the size distribution are not randomized is much smaller.
Bottom: σ = 1.0 nm and R̄ = 5 nm (blue), 7 nm (red), 11 nm
(yellow), and 17 nm (green). T

Array
c becomes independent of RN ,

due to the decreasing importance of quasiparticle tunneling, and then
gradually decreases for increasing R̄ due to the weakening of shell
effects.

Consider next the behavior of the array as RN increases, we
observe a peak ∼500  indicating there is an optimal coupling
strength for the array. In general, we expect an increase in
T

Array
c as RN increases due to the decreasing strength of

intergrain coupling. This makes the shell effects within each
grain larger meaning some grains now have a significantly
enhanced Tc. However, for sufficiently large RN � RQ there
is very little smoothing of the spectral density in single grains.
This results in a lower T

Array
c as the fraction of grains with an

enhanced Tc is not sufficient to form a percolating cluster. This
is the reason for the peak observed at intermediate RN .

We then move to the dependence of T
Array
c on the mean

grain size R̄. For large R̄ results should be less dependent
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on RN as in this case the width of the peaks in the density
of states is not controlled by RN but rather by the coherence
length ξ = �vF /�0. Finite size effects diminish as R̄ increases
which results, see Fig. 3, in a smaller enhancement of T

Array
c

as the Tc of the single grains is not increased as much. We
restrict ourselves to R̄ > 5 nm so that thermal and quantum
fluctuations that break the mean-field theory approach are
unimportant. Significantly we observe that, for a broad range
of R̄, T

Array
c is well above that of a nongranular bulk material.

This is a quite general result that only requires that a three-
dimensional array is inhomogeneous with a distribution of
Tc(R) around the bulk value Tc0.

The value of the BCS coupling constant λ also plays an
important role in T

Array
c . The larger the λ, the less important size

effects are. This follows from the fact that the coherence length
ξ decreases as λ increases thus making the material more
bulklike. This prevents the employment of our BCS theory
based approach in the study of cuprates and other strongly
coupled superconductors. The results depicted in Fig. 4 fully
confirm this picture.

Strikingly the array geometry, the way spheres are packed
in the array, has a substantial effect on T

Array
c . Settings which

decrease the percolation threshold allow the array to remain
globally phase coherent with fewer superconducting grains.
This results in a much higher T

Array
c , see Fig. 4. The peaks for

intermediate RN also moves to larger values of the resistance
since the coupling between grains becomes stronger with
increasing z.

The outcome of this detailed analysis is that the maximum
increase of T

Array
c , with respect to the bulk limit, is found

in arrays of weakly coupled superconductor λ � 1 with a
mean grain size ∼5 nm, for intermediate resistances and for
packings with a minimal percolation threshold. An interesting
option to further increase T

Array
c is to go beyond the minimum

percolation threshold, corresponding to fcc, by employing two
types of grains, each one with a different average size. As
discussed in Ref. [33] such an arrangement can be packed with
a higher coordination number and hence a lower percolation
threshold. Therefore, a higher T

Array
c is also expected.

We have also computed analytically the specific heat Ces

of the array from the entropy S, Ces = −β ∂S/∂β (see the
Appendix for more details). This is an interesting observable
as it is easy to measure experimentally and it can be used to
detect a nonbulk transition in which spatial inhomogeneities
are important. A transition with a highly inhomogeneous
order parameter is characterized by a broad peak around the
critical temperature, while for more homogeneous systems the
transition is more bulklike with a shaper peak. As is shown
in Fig. 5, the specific heat becomes much broader than the
bulk BCS prediction but enhancement of Tc is still observed.
The specific heat peak broadens as the tunneling resistance RN

increases, in line with the experimental results of [34]. This
prediction, relatively easy to test experimentally, is a clear
signature that the enhancement of the critical temperature is
not a bulk effect but rather it is related to the percolation of a
critical superconducting cluster due to size effects of the single
nanograins. Our plot of specific heat for an array of nanograins
exhibits long tails extending to very high temperature. These
tails are caused by a vanishingly small fraction of the grains
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T
Array
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Tc0

RN (Ω)
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1.5

2

0001001

T
Array
c
Tc0

RN (Ω)

FIG. 4. (Color online) T
Array
c in units of the bulk material critical

temperature against RN with εF = 10.2 eV, εD = 9.5 eV, R̄ = 5 nm,
and σ = 1.0 nm. Top: A cubic array with λ = 0.2 (blue), 0.25 (red),
0.3 (yellow), 0.35 (green), and 0.40 (black). Increasing λ suppress size
effects resulting in a behavior which is closer to the bulk. Bottom:
λ = 0.25 for a cubic (blue), bcc (red), and fcc (yellow) array. A
smaller pc substantially enhances T

Array
c by allowing the removal of

more grains from the superconducting cluster so that the remaining
ones have a higher Tc.

which, in our model, are predicted to have a very high
critical temperature. We do not expect such grains to be
realized experimentally. It is very likely the anomalously large
spectral density around the Fermi energy in these grains causes
electronic or lattice instabilities in a perfectly spherical shape
that reduce the critical temperature. However, the fraction of
grains this applies to is extremely small so the results for the
critical temperature of the array are not modified even if these
grains are not taken into account.

In summary, we have studied the properties of a large three-
dimensional array of superconducting spherical nanograins.
We have shown that superconductivity in the array is enhanced
by the shell effects of the single grains. Our model includes a
realistic distribution of grain sizes and tunneling to the nearest
grains. For λ ∼ 0.25, fcc packings, R̄ ∼ 5 nm and RN ∼ 1 k

we have observed that T
Array
c can be more than three times
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FIG. 5. (Color online) The superconducting electronic specific
heat of the array in units of the normal electronic specific heat as
a function of the temperature for λ = 0.2, z = 6, R̄ = 5 nm, σ =
0.5 nm, and different values of the tunneling resistance RN = 50 

(blue), 100  (red), 500  (yellow), and 1000  (green). As the
resistance increases the peak of the specific heat becomes broader.
This is a signature of a percolation-driven transition.

higher than in the nongranular bulk limit. These values are
in reasonable agreement with the experimental results in
Ref. [18], where a peak critical temperature was observed,
RN ∼ 1 k. These results pave the way for technological
applications that exploit size effects to engineer materials with
more robust superconductivity.
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APPENDIX: CALCULATION DETAILS

In this Appendix we give some details of the calculations
which are skimmed over in the main text.

1. Density of states in coupled grains

We find this local density of states for a grain which
is coupled to an array by extending the Gutzwiller trace
formalism [35].

The density of states for isolated, spherical grains is given
by

ν(ε) = νT F (ε)[ḡ(ε) + δg(ε)], (A1)

where νT F (ε) = 2(kR)3

3πε
, and ḡ(ε) is the Weyl expansion for

the density of states, here taken to have Dirichlet boundary
conditions

ḡ(ε) =
(

1 − 3π

4

1

kR
+ 1

(kR)2

)
(A2)

and the oscillating contribution δg is given by the trace over
periodic orbits of the Green’s functions G(r,r,E),

δg = − 1

πνT F (ε)
Im
∫

G(r,r,E + iε)dr (ε > 0). (A3)

This formalism can be extended to include coupling by
modifying the Green’s functions in Eq. (A3) to allow for
tunneling. In general one must also be careful to consider
potential modification to the smooth terms νT F (ε) and ḡ(ε)
as when the barrier is removed completely the volume in
these formulas has changed from that of the grain to the
entire array and the boundary conditions likewise disappear
changing the Weyl expansion. We neglect these modifications
by considering only arrays which are weakly coupled where
the boundary conditions are Dirichlet like and the effective
volume is that of the grain. We will return later to consider
the quantitative meaning of this limit and show this is in fact
the experimentally interesting regime.

We consider a grain to be coupled to its nearest neighbors by
a finite square potential barrier of height V0 and width a. Within
periodic orbit theory we are free to choose an orthonormal
basis to treat the problem so we make the usual choice,

ψ(r) =

⎧⎪⎨
⎪⎩

Aeikr + Be−ikr , r < R,

Feκr + Ge−κr , R < r < R + a,

Ceikx, R + a < r,

(A4)

where κ = √
2m(V0 − E)/� and the prefactors A to F are

constants set by the boundary conditions. Normalization
is controlled through an appropriate choice of A. In the
weak coupling regime where κa > 1 the wave functions can
be normalized by assuming the wave function is entirely
contained in the grain, neglecting the small leak into the barrier.
In this limit A = B = 1√

V
.

The tunneling rate out of the grain is determined by Fermi’s
golden rule. As we are interested in the properties of the system
in the temperature regime where many grains are normal and
the remaining superconducting grains are close to their critical
temperature, we use the normal-normal tunneling form of
Fermi’s golden rule. For an electron moving from grain 1
to any of the z neighboring grains,

I1→z = z

eRN

∫ ∞

−∞
f (E)[1 − f (E)]dE, (A5)

where RN = [4πe2|T |2ν(0)2/�]−1 is the normal state tunnel-
ing resistance of the junction and f (E) is the Fermi-Dirac
distribution. The tunneling rate per electron close to the Fermi
level then is given by

�T = z

e2RNν(0)
. (A6)

To find the probability an electron tunnels during the time it
takes to travel around a periodic orbit LP we integrate this rate
along the orbit path. Hence the probability the electron is still
inside the grain after a complete orbit is∫ LP

0

�T

vF

dl = 1 − 4zLP RQ

RNν(0)vF h
≈ e

− 4zLP RQ

RN ν(0)vF h , (A7)
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where RQ = h/4e2 is the quantum resistance. RN is related to
the normal state array resistance rN by rN = Mx

(My+1)(Mz+1)RN ,
where the x axis is along the array, y,z are across it, and Mi is
the number of layers in the i direction [15].

Including this factor into the Gutzwiller trace formula (A3),
making the semiclassical approximation, and evaluating for
spherical grains, one finds the oscillating term in the density
of states for the open system is given by [35]

δg(ε) = 3

2

√
π

kR

∞∑
w=1

∞∑
v=2w

(−1)w sin(2θv,w)

×
√

sin θvw

v
sin �vwe

− 4zL
v,w
p RQ

RN ν(0)vF h

− 3

4

1

kR

∞∑
w=1

1

w
sin(4wkR)e− 4zLw

p RQ

RN ν(0)vF h , (A8)

where we have introduced the periodic orbit variables: v

is the vertex number, w is the winding number, and the
orbit length L

v,w
P = 2vR sin θv,w, θv,w = πw/v, and �v,w =

kL
v,w
P − 3v π

2 + 3π
4 . The second sum concerns diameter orbits

with orbit length Lw
P = 4wR. The increase of the tunneling

probability has the effect of suppressing oscillations eventually
resulting in a smooth density of states. Henceforth, we will use
the compact notation

δg(ε) =
∑
v,w

g̃(1/2)
v,w +

∑
w

g̃(1)
w , (A9)

where g̃
(1/2)
v,w and g̃(1)

w correspond to the first and second terms
in Eq. (A9), respectively. The validity of this expression is
restricted to the tight binding limit but it still provides a good
description of tunneling in realistic metal oxide barriers [36].

2. The gap and critical temperature in coupled grains

In this section we determine closed expressions for the
gap and critical temperature in the coupled grain. First,
we determine the zero temperature gap by solving the gap
equation,

1 = λ

2

∫ εD

−εD

1 + ḡ(0) + δg(ε′)√
ε′2 + �(R,0)2

dε′, (A10)

with the ansatz �(R,0) = �0(0)(1 + f (1/2) + f (1)), expand-
ing about the Fermi energy and solving by order in (kF L)−1/2

we find

f (1/2) =
∑
v,w

g̃(1/2)
v,w (0)K0

(
Lvw

P

ξ

)
,

(A11)

f (1) = ḡ(1)(0)

λ
+ f (1/2)

[
f (1/2)

2
−
∑
v,w

g̃(1/2)
v,w (0)

Lvw
P

ξ
K1

(
Lvw

P

ξ

)]
+
∑
w

g̃(1)
w (0)K0

(
Lw

P

ξ

)
,

where Ki(x) is the ith order modified Bessel function of the second kind.
The critical temperature of the grain is found by solving the gap equation [Eq. (2)] at � → 0 and expanding about the Fermi

energy, which gives

kBTc(R) = 2εDeγ

π
exp

[
− 1

λ
[
ḡ(0) +∑v,w g̃

(1/2)
v,w ω

(
Lvw

P ,T
)+∑w g̃

(1)
w ω
(
Lw

P ,T
)]
]

, (A12)

where γ is the Euler-Mascheroni constant and the weight
function is given by

ω(LP ,T ) = 1

ln
( 2eγ βεD

π

) ∫ εD

0

1

ε
cos

(
ε

2εF

kF LP

)

× tanh

(
βε

2

)
dε. (A13)

Hence we can express the gap close to the critical temperature
by modifying the BCS expression,

�(R,T ) ≈ 1.74�(R,0)

(
1 − T

Tc(R)

)1/2

. (A14)

The inclusion of the Bessel functions and weight function
ω(LP ,T ) is to suppress the oscillating term for long periodic
orbits.

3. The weak coupling limit

We place a limit on the validity of the weak cou-
pling approximation by finding |T |2 using the Bardeen
transfer Hamiltonian formalism then combining with RN =
[4πe2|T |2ν(0)2/�]−1 one finds

RN = 648e2κa

(κR)2(kF R)2
RQ, (A15)

where we have assumed that the combined area of a grains
junctions for a fcc lattice covers 1/3 of the grains surface.
This puts the weak coupling κa ∼ 1 limit for our system at
RN ∼ 4 . Note also that the limit for weak coupling is well
below the typical experimental parameters for a metal oxide
barrier κ ∼ 1.2 Å−1 [36], a ∼ 4 Å, making the weak coupling
limit ideal for studying the current problem.
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4. Phase-fluctuation driven transition

We will consider the usual action for such an array [28],

S = 1

2

∫ β

0
dτ
∑

i

φ̇2
i

EQ

− 1

2

∑
〈ij〉

∫ β

0
dτJij cos{2[φi(τ ) − φj (τ )]}

+ 2
∑
〈ij〉

∫ β

0
dτ

∫ β

0
dτ ′Gij (τ − τ ′)

× sin2

{
1

4
[δφij (τ ) − δφij (τ ′)]

}
, (A16)

where φi is the phase in grain i and δφij = φi − φj . The
first term is the charging energy, the second is the Joseph-
son coupling, and the final term accounts for quasiparticle
tunneling. The charging energy is EQ = (2e)2

C
. This action has

been studied at length in the literature. Here we follow the
solution of Panyukov and Zaikin [29] and map the action
onto a Ginzberg-Landau free energy. To solve the problem in
a nonhomogeneous array we start by moving to a mean-field
theory in the gap to remove the position dependence of Jij ,Gij .

The problem is then identical to that treated in [29] with these
modified definitions.

The Josephson energy is defined in general by [37]

Jij = �i�j

β

RQ

RN

∞∑
l=−∞

1√[(
π(2l+1)

β

)2 + �2
i

][(
π(2l+1)

β

)2 + �2
j

] .
(A17)

We reparametrize this expression using the mean gap across
the junction and the separation of the gaps across the junction,
respectively given by �̄ij = �i+�j

2 ,�′
ij = |�i−�j |

2 . We then
make an expansion about �′ = 0 to find

Jij = �̄ijRQ

2RN

tanh

(
β�̄ij

2

)
−
[

3

�̄ij

tanh

(
β�̄ij

2

)

+ β

2
sech2

(
β�̄ij

2

)
+ β2�̄ij

2
sech2

(
β�̄ij

2

)

× tanh

(
β�̄ij

2

)]
�′2

ijRQ

8RN

. (A18)

Similarly we can consider the quasiparticle term. In all cases
of interest kBT � μ so we may work in a zero temperature
approximation where [38]

Gij (τ ) = �

2πe2RN

�i�j

�2
K1

(
�i |τ |

�

)
K1

(
�j |τ |

�

)
. (A19)

Noting the localized nature of G(τ ) and assuming phase varies slowly on scale �/� we can perform a gradient expansion, in τ ,
to express the dissipative part of the action as

SG

�
=
∑
〈ij〉

�j�
2

16e2RN

⎛
⎜⎜⎝
(
�2

i + �2
j

)
E
(√

1 − �2
i

�2
j

)
− 2�2

i K
(√

1 − �2
i

�2
j

)
(
�2

i − �2
j

)2
⎞
⎟⎟⎠
∫ β�

0
dτ

(
∂

∂τ
δφij (τ )

)2

, (A20)

where K,E are complete elliptic integrals of the first and
second kind, respectively, and we have assumed without loss
of generality that �i < �j . SG is a monotonic function of
�′ varying SG by a prefactor from 3π

8 → 1 as �′ goes from
0 → �̄, respectively. As this modification is very small in
general we will make the approximation that the prefactor is
3π
8 and hence

SG

�
=
∑
〈ij〉

3π�
2

256e2�̄ijRN

∫ β�

0
dτ

(
∂

∂τ
δφij (τ )

)2

(A21)

in all cases. This simplification allows us to treat the
superconducting grains and the normal grains around the
superconducting cluster identically, effectively removing any
need to consider the actual arrangement of the grains. We
can now move to a mean-field theory where we approximate
the disordered infinite cluster by a regular array with gaps
given by the mean properties across all the junctions. For the
Josephson term we reduce the nearest neighbor sum to the
superconducting nearest neighbors, however for the charging

and dissipation term we continue to use all nearest neighbors
as for these terms the behavior is not affected by the phase.
We move to a mean-field theory by dropping the indicies i,j

and replacing these properties with the following mean-value
definitions taken over the superconducting cluster,

�̄ij → �̄ = 1

p2

∫ ∞

0

∫ ∞

0

�(R) + �(R′)
2

×Psc(R)Psc(R′)dRdR′, (A22)

�′
ij → �′ = 1

p2

∫ ∞

0

∫ ∞

0

|�(R) − �(R′)|
2

×Psc(R)Psc(R′)dRdR′, (A23)

where p is the fraction of all the grains which are super-
conducting, p = ∫∞

0 Psc(R)dR. This is a good approximation
as close to the transition the distribution of �̄ij and �′

ij in
the array will be narrow and sharply peaked. With these
new definitions the Josephson tunneling energy [Eq. (A18)]
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becomes

J = �̄RQ

2RN

tanh

(
β�̄

2

)
− �,

� =
[

3

�̄
tanh

(
β�̄

2

)
+ β

2
sech2

(
β�̄

2

)
(A24)

+ β2�̄

2
sech2

(
β�̄

2

)
tanh

(
β�̄

2

)]
�′2RQ

8RN

.

We can now re-express the action Eq. (A16) by making a
Fourier transform as

S

�
= 1

2

�
2

kBT

∑
q ω

(
ω2

EQ

+ ω2

E∗
Q

∑
α

λα(q)

)
|φ(q,ω)|2

− 1

2

∑
〈ij〉sc

∫ β

0
dτJ cos{2[φi(τ ) − φj (τ )]}, (A25)

where ω = 2πnkBT
�

, n = 0, ± 1, ± 2, . . . and λα(q) = 1 −
eiq·α , α are the lattice vectors and E∗

Q = 124e2�̄RN

3π�
. Note

we have modified the sum in the Josephson coupling term
to just the superconducting nearest neighbors, however all
other terms maintain their sum over all neighboring grains.
Making a Hubbard-Stratonovich transformation in the Joseph-
son term and integrating out φi(τ ) we find in the limit
q → 0, ω → 0,

S

�
= z̄J

2kBT

(
1 − z̄J

2

∫ β�

0

dτ

�
Xii(τ )

)
|ψ(q = 0,ω = 0)|2

+ ζ

4
|ψ(q = 0,ω = 0)|4, (A26)

where ψ is the Hubbard-Stratonovich field, Xii is the correla-
tion function,

ln Xii(τ ) = −1

2
〈[φi(τ ) − φi(τ

′)]2〉 = ẼQτ

2�
, (A27)

ζ is a numerical constant, ẼQ = ( 1
EQ

+ η

E∗
Q

)−1, η is an

integration constant from integrating out q, and z̄ is the mean
number of superconducting neighbor grains in the percolating

cluster z̄ = zp. The critical temperature is found by solving

1 = ẼQ

z̄J
+ e

− ẼQ

2kB T . (A28)

5. Specific heat

We calculate the specific heat of a superconductor from the
electronic entropy,

S = −2kB

∑
k

[(1 − fk) ln(1 − fk) + fk ln(fk)], (A29)

where fk = (1 + eβEK )−1 is the Dirac distribution. For a

superconductor Ek =
√

ε2
k + �(T )2. We can calculate the

entropy in the region of the condensate by restricting the sum
in (A29) to the region within the Debye energy of the Fermi
surface. The electronic specific heat is defined by

Ces = −β
dS

dβ
,

Ces = 2βkB

∫ εD

−εD

− ∂f (ε)

∂E(ε)

[
ε2 + �2

(
1 − d ln �

d ln T

)]
ν(ε)dε.

(A30)

In the limit � → 0 we recover the usual normal metal elec-
tronic specific heat Cen ∝ T . We include the size dependent
density of states using Eqs. (A1), (A2), and (A8). Taking ν(0)
to be the total, volume independent spectral density of the grain
Eq. (A30) computes the volume independent specific heat of
each grain.

To calculate the specific heat of the array as a function of
volume we integrate over all grain sizes and divide by the total
volume of the grains,

CArray
es =

∫∞
−∞ CesP (R)dR∫∞

−∞ V (R)P (R)dR
, (A31)

where V (R) = 4
3πR3. Note that for an inhomogeneous array

grains go from superconductors to normal metals progressively
and thus the usual sharp peak observed for a bulk supercon-
ductor should become smoothed. This is a hallmark of an
inhomogeneous transition.
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