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Josephson-frustrated superconductors in a magnetic field
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We study the effect of an externally imposed rotation or magnetic field on frustrated multiband superconductors
and superfluids. The frustration originates with multiple superconducting bands crossing the Fermi surface in
conjunction with interband Josephson couplings with a positive sign. These couplings tend to frustrate the
phases of the various components of the superconducting order parameter. This in turn leads to an effective
description in terms of a U (1) × Z2-symmetric system, where essentially only the U (1) sector couples to the
gauge field representing the rotation or magnetic field. By imposing a large enough net vorticity on the system
at low temperatures, one may therefore reveal a resistive vortex-liquid state which will feature an unusual
additional phase transition in the Z2 sector. At low enough vorticity there is a corresponding vortex-lattice
phase featuring a Z2 phase transition. We argue that this transition phase should be readily observable in
experiments.
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I. INTRODUCTION

Multiband superconductors, that is, superconductors with
more than two superconducting bands crossing the Fermi
surface [1–7], may display fascinating physics which has no
counterpart in single- or two-band superconductors, including
the possibility of spontaneous breaking of time-reversal
symmetry [8,9]. These phenomena originate with the interplay
between phase variables of each of the components of the
superconducting order parameter: Having more than two
fluctuating phase degrees of freedom inherently leads to an
internal frustration of the superconducting order parameter,
provided the interband Josephson couplings are positive.
Such phenomena are not seen in the single- or two-band
case [10,11]. Recently, it has been demonstrated that phase-
frustrated systems feature phase diagrams which are a result
of large fluctuations [12] and as such are fundamentally not
captured correctly by standard mean-field descriptions of these
systems, which ignore completely fluctuations in these phase
variables.

Phase fluctuations come into play in a particularly impor-
tant manner in Josephson-frustrated systems in at least two
instances. The first case is close to thermally driven phase
transitions in zero external field [11,13]. The second is associ-
ated with the physics of field-induced topological defects of the
superconducting order-parameter components, which involve
2π phase windings in the phase variables. In this paper, we will
focus on the latter and see how a tuning of the phase transition
in the lattice of field-induced topological defects (vortex
lattice) of a multiband superconductor (or for that matter a
multicomponent superfluid or even a multicomponent spinor
Bose-Einstein condensate) may be used to unearth unexpected
emergent broken symmetries in multiband superconductors.
Prime examples of the multiband superconductors that we have
in mind are heavy fermion systems [1] and the more recently
discovered iron-pnictide high-temperature superconductors
[2–7], but our discussion will be applicable more generally
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to any system with a spinor-type order parameter with three or
more components.

When a container holding a (one-component) superfluid
liquid is subject to rotation, the circulation of the condensate
is quantized into vortices parallel to the axis of rotation. These
vortices may be described as externally imposed topological
defects of the U (1) order-parameter field describing the
condensate. This is in contrast to the thermally induced
proliferation of vortex-antivortex pairs (two-dimensional) or
vortex loops [three-dimensional (3D)] driving the transition
from a superfluid to a normal fluid. The vortices interact,
and below a given temperature they will self-organize into
a lattice structure. An equivalent situation is found in type-II
superconductors subject to an external magnetic field, where
the topological defects form vortex lines of zeros of the order
parameter in addition to exhibiting tubes of confined and
quantized magnetic flux.

When multiple (three or more) complex order parameters
are needed to describe the condensate of the superfluid or
superconductor, an additional Z2 (“time-reversal”) symmetry
may be needed for describing the system [11,13]. Such a
situation is expected to occur in the iron pnictides in some
parameter regime [8,9] but will also occur in other systems
involving more than two superconducting order-parameter
components where several superconducting bands cross the
Fermi level, interacting with each other through Josephson
couplings [11,13–16]. For repulsive Josephson couplings, the
resulting frustration leads to two classes of (mirrored) U (1)
symmetric ground states. Hence, the system features an overall
U (1) × Z2 symmetry. This is illustrated in Fig. 1. For details,
see Refs. [11,13].

In Ref. [13] it was shown that in a multiband U (1) × Z2

superconductor only the U (1) sector, and not the Z2 sector,
couples to a gauge field. Hence, if we induce vortices in
such a superconductor by an external field, the behavior of
the Z2 sector is expected to be largely unaffected. Thus, by
applying an external field to a U (1) × Z2 superconductor,
one should be able to control the U (1) sector independently
of the Z2 sector, an effect which should be experimentally
detectable.
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FIG. 1. (Color online) The arrows in panel (a) ( , , )
correspond to (θ1,θ2,θ3). Panels (b) and (c) show examples of phase
configurations for the two Z2 symmetry classes of the ground states,
shown on a 2 × 2 lattice of selected points of a planar slice of the
system. Here g12 > g23 > g13 > 0. The spatial contribution to the
energy is minimized by making the spatial gradient zero [hence
breaking the global U (1) symmetry]. Then there are two classes
of phase configurations, one with chirality +1 and one with chirality
−1, minimizing the energy associated with the interband interaction.
The chirality is defined as +1 if the phases (modulo 2π) are cyclically
ordered θ1 < θ2 < θ3 and −1 if not.

Of special interest is the study of the U (1) symmetric but Z2

broken metallic phase predicted to be present in the multiband
superconductors for a range of parameters [11,13]. We show
that by tuning an external magnetic field it is possible to
extend the region of the Z2 broken metallic phase in the phase
diagram.

II. MODELS

In this work, we consider two versions of a 3D minimal
n-component model in the London limit of the Ginzburg-
Landau model of a multiband superconductor, displaying
U (1) × Z2 symmetry. We focus on the simplest nontrivial
case of three components. Both versions of the model are
described in greater detail in Ref. [11]; see also references
therein. In particular, it has been shown [10] that the inclusion
of more than three superconducting bands crossing the Fermi
surface will, apart from states with measure zero in parameter
space, yield the same physics as in the three-band case. We
include a nonfluctuating U (1) gauge field with a tunable
value in the description, which in turn will lead to induced
vortices. Neglecting the fluctuations in the amplitudes of
the order-parameter components and the U (1) gauge field is
consistent with the fact that the pnictide superconductors are
in the extreme type-II regime [17–19]. The use of the London
limit therefore rests on solid ground in this case.

A. Full model

The model on the L3 lattice (with periodic boundary
conditions) is given by

H = −
∑

〈i,j〉,α
aα cos(θα,i − θα,j − Aij )

+
∑

i,α′>α

gαα′ cos(θα,i − θα′,i), (1)

where the gauge field is chosen to be

A(r) = (2πyf,0,0). (2)

i and j are lattice site indices and 〈i,j 〉 denote nearest-neighbor
sites. α,α′ ∈ { 1,2, . . . ,n } are component labels. f is the vor-
tex filling fraction, which is a direct measure of the rotation of
the system. Moreover, a,g > 0 are parameters determining the
condensate density and intercomponent Josephson interaction,
respectively. For convenience a1 is set to a1 = 1. Note that we
have rescaled the gauge field A with the electric charge e,
A ← eA.

B. Reduced models

Previous works [11] have shown that the interband fluctu-
ations of the phases of the “full” model, Eq. (1), are not of
qualitative importance when mapping out the phase diagram.
These fluctuations may be suppressed by letting gαα′ → ∞
while keeping the ratios gαα′/gα′′α′′′ finite, locking the phase
“stars” to one of their two ground-state configurations [see
Figs. 1(b) and 1(c)]. The advantage of doing so is twofold.
First, the U (1) × Z2 structure of the system is brought out
clearly. Second, the computational cost of simulations is
significantly reduced [20], meaning that larger systems and
better statistics are obtainable.

The Hamiltonian may now be written as [11]

H = −
∑
〈i,j〉

(1 + K1σiσj ) cos(θi − θj − Aij )

−
∑
〈i,j〉

K2(σi − σj ) sin(θi − θj − Aij ). (3)

Here σj is a statistically fluctuating Ising variable on each
lattice site, denoting the chirality of the phase star, while θj

is a statistically varying U (1) variable denoting the overall
orientation of the phase star [see Fig. 2 as well as Figs. 1(b)

θ

φ2

φ3

FIG. 2. (Color online) One of the two Z2 phase configurations in
the gαα′ → ∞ limit when n = 3. φα is the phase difference between
the first and the αth component, a constant.
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and 1(c)]. K1 and K2 are parameters given by

K1 ≡
∑

α>1 aα[1 − cos(2φα)]

2 + ∑
α>1 aα[1 + cos(2φα)]

, (4)

K2 ≡
∑

α>1 aα sin(2φα)

2 + ∑
α>1 aα[1 + cos(2φα)]

, (5)

where φα is the phase difference between the the first and the
α’th component in the ground-state phase star, as illustrated in
Fig. 2.

It can be shown that K1 and K2 are restricted to the ellipsis
given by [

2

n − 1
K1 − 1

]2

+
[

2
√

n

n − 1
K2

]2

� 1. (6)

An equivalent formulation to Eq. (3) reads (see the
Appendix)

H = −
∑
〈i,j〉

(1 + Jσiσj ) cos[θi − θj − Aij − γ (σi,σj )], (7)

where

γ (σi,σj ) ≡
{

0 σi = σj

± arctan
[ 2K2

1−K1

]
σi = −σj = ±1 (8)

and

J = W

1 + √
1 − W 2

∈ [0,K1], (9)

where

W ≡ 2
(
K1 − K2

2
)

1 + K1
2 + 2K2

2 . (10)

Equation (7) reveals an interesting feature of the model. The
case in which K2 �= 0, i.e., the system features a deviation from
a symmetric ground-state phase star (i.e., φ12 �= φ13 �= φ23 in
the n = 3 case), leads to the addition of a fluctuating quantity
coupling minimally to the phase difference on a link, θi − θj .
It formally has the appearance of a fluctuating discrete “gauge
field,” γ , in a Ising-XY model. It should be kept in mind,
however, that γ (σi,σj ) is only a “semi-independent” degree
of freedom since it couples to the prefactor through the Jσiσj

term.

III. OBSERVABLES

In the full model, as well as in the reduced one, the Z2

sector is monitored by the (global) “magnetization” defined as

m ≡ N−1
∑

i

σi . (11)

We use the Binder cumulant [21,22],

U2 ≡ 1

2

(
3 − 〈m4〉

〈m2〉2

)
, (12)

to detect phase transitions. The Binder cumulant dis-
plays a nonanalytical jump at the phase transition in the
thermodynamical limit and has the useful property of being
only mildly affected by finite-size effects.

For the reduced model, we use the helicity modulus along
the z axis, the direction of the external field, to probe the

structural order of the vortex system. Furthermore, to make
sure that there is no pinning of the vortices to the underlying
numerical lattice, we monitor the helicity modulus in the x and
y directions as well. These should be zero for all temperatures
of interest if such numerical artifacts are to be avoided.

In the full model, the helicity modulus is no longer well
defined if one wants to consider the formation of a vortex lattice
in each of the individual components. We choose therefore
instead to use the value of the planar structure function of
the vortices at the first Bragg peak to monitor the vortex lattice
as the temperature is varied. In the liquid phase this will be
a small number (approaching zero in the thermodynamical
limit), while in the ordered phase this number will be finite.
The structure function for a given momentum k⊥ in the plane
perpendicular to the direction of the external field, the xy

plane, is given by

Sα(k⊥) = 1

(f L3)2

〈∣∣∣∣
∑

r

nα
z (r) eik⊥·r⊥

∣∣∣∣
2〉

. (13)

r⊥ is the projection of the position vector r onto the xy plane.
nα(r) is the vorticity vector (which can be 0,±1 in each spatial
component) of component α of the field in point r:

nα(r) = 1

2π
[∇ × (∇θα − eA)]. (14)

We also monitor the specific heat:

c ≡ N−1C = N−1β2〈(H − 〈H 〉)2〉. (15)

IV. SIMULATIONS AND RESULTS

Due to the frustration effects inherent in the models,
there appears to be no efficient nonlocal (cluster) algorithm
for simulating them. Hence, a local update Monte Carlo
scheme, the “fast linear algorithm” (FLA) of Ref. [23], was
used. It proved to be a significant improvement over the
standard Metropolis-Hastings sampling and appears to be the
most efficient canonical algorithm available for the models
investigated in this paper. However, for technical reasons the
use of FLA meant that we were prevented from simulating
the case K1 = 1 of the reduced model, where the effect of the
intraband frustration is strongest in a three-component reduced
model. Therefore, in the simulations, the parameter value
K1 = 0.99 was chosen as a reasonable compromise between
proximity to K1 = 1 and numerical stability.

In order to take advantage of the computational resources
available, grid parallelization was implemented. Ferrenberg-
Swendsen multihistogram reweighting [24] was used to
improve our numerical data. Pseudorandom numbers were
generated by the Mersenne-Twister algorithm [25].

The reduced model is significantly less computationally
demanding than the full model, and most of the simulations
were performed on the former. To demonstrate the equivalence
of the two models, we first show that the full model gives
equivalent results to the reduced model for a representative
choice of parameters (see also Ref. [11]).

Moreover, we establish the main point conjectured earlier,
namely, that an external field separates the Z2 transition and
the U (1) lattice melting, with separation increasing with field
strength since the external gauge field couples to the U (1)
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FIG. 3. (Color online) Simulation results for the full model with
a as indicated and g = (5,5,5), f = 1

32 , and L = 64. The Z2 sector
is monitored by the Binder cumulant for the Z2 magnetization, U2

(blue). The vortex-lattice ordering (in each component) is monitored
by the value of the structure function at the first Bragg peak,
S(K ) (red). Note how the order of the phase transitions changes
as the anisotropy of the system a3/a1,2 is varied. In the top panel,
the system features a normal metallic state (vortex liquid), with
broken Z2 symmetry being restored at β ≈ 0.37. In the bottom
panel, the Z2 symmetry is restored inside the superconducting
(vortex-lattice) phase. In the middle panel, the transitions occur
roughly simultaneously.

sector, but not the Z2 sector. Thus, as magnetic field is
increased, we observe a reversal of the order of the U (1) and
Z2 transitions as a function of temperature.

Figure 3 shows simulation results from the full model,
Eq. (1), for various different choices a3 of the model, with fixed
a1 = a2 = 1. This variation effectively leads to a variation in
the angles φα describing the relative orientations of the various
phases of the components of the order parameter in the ground
state, and hence to a variation in the energy of the Z2 domain
walls of the system. This in turn will lead to a variation in the
critical temperature of the Z2 phase transition responsible for
restoring time-reversal symmetry. The rotation of the system
is fixed at a filling fraction f = 1

32 .
The top panel of Fig. 3 corresponds to the fully symmetric

case where all aα and gα,α′ are equal in Eq. (1), in turn
corresponding to the case K2 = 0 in Eq. (5). Reducing
a3 in the following panels shifts the Z2 phase transition
downward in temperature as the domain wall energy decreases.
The transition temperature in the U (1) sector, in this case
the vortex-lattice melting transition, is little affected by the
reduction in a3, since the vortex-lattice melting temperature is

0.0

0.5

1.0 K2 = 0

0.0

0.5

1.0 K2 = 0.289

0.4 0.45 0.5 0.55

0.0

0.5

1.0 K2 = 0.404

β

U2 Υx Υy Υz

FIG. 4. (Color online) Simulation results for the reduced model
with K1 = 0.99, f = 1

32 , L = 128, and K2 = 0,0.058,0.173,

0.289,0.404. The choice of the parameter K1 is explained in the
text. The Z2 sector is monitored by the Binder cumulant for the Z2

magnetization, U2 (blue). The vortex-lattice ordering is monitored
by the helicity modulus ϒ (red) in the various directions, where z is
parallel to the external field.

largely determined from the phase stiffness of the overall phase
star, and not the relative fluctuations of the internal phases of
the multicomponent order parameter. The former stiffness is
dominated by the largest phase stiffnesses of the individual
phases [see, for instance, Eq. (2) of Ref. [13]]. Thus, the Z2

transition temperature is eventually lowered through the U (1)
transition temperature. This reversal of the phase transition
of the Z2 and U (1) sectors means that the system transitions
from one featuring a superconducting state with broken time-
reversal symmetry and a time-reversal symmetric metal to
one with a time-reversal symmetric superconducting state and
a metallic state with a spontaneously broken time-reversal
symmetry. Below, we return to the experimental probes of
the Z2 phase transition inside the superconducting or metallic
states.

The results of Fig. 3 should be compared with the results
for the reduced model, Fig. 4. For K2 = 0, corresponding
to the results shown in the upper panel of Fig. 3, the same
result is found for smaller K2 values; i.e., the Z2 transition
is found at higher temperature than the U (1) transition due
to the relatively large energy of the Z2 domain walls. As K2

increases, the relative energy associated with a Z2 domain wall
decreases, eventually resulting in a reversal of the order of the
Z2 and U (1) transitions. These effects are thus essentially the
same in the full and reduced models.
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FIG. 5. (Color online) Simulation results for the reduced model
with K1 = 0.99, K2 = 0.0, L = 128, and f = 0, 1

128 , 1
64 , 1

32 , 1
16 . The

Z2 sector is monitored by the Binder cumulant for the Z2 magnetiza-
tion, U2 (blue). The vortex lattice ordering is monitored by the helicity
modulus ϒ (red) in the various directions, where z is parallel to the
external field. In zero external field (f = 0) the system is isotropic.

We next consider the effect of varying the rotation f at
otherwise fixed parameters. For this, we limit the discussion
to the reduced model, Eq. (3). Figure 5 shows how, as
conjectured, the separation of the Z2 and U (1) transitions
increases with an increasing external field strength. To work
with a manageable parameter space, we limit the study to
K2 = 0 since this suffices to illustrate our main point, namely,
the separation of two otherwise simultaneous zero-field phase
transitions when the field strength is increased. For the special
case f = 0, the Z2 and U (1) transitions occur simultaneously
via a preemptive first-order mechanism, and there is never
a chiral metallic state in the absence of a fluctuating gauge
field [11]. As the field strength is increased, the transitions
separate, with the U (1) transition being strongly suppressed

0.0

10.0

20.0 K2 = 0

0.0

10.0

20.0 K2 = 0.289

0.4 0.45 0.5 0.55

0.0

10.0

20.0 K2 = 0.404

β

FIG. 6. Specific-heat capacity of the reduced model with K1 =
0.99, f = 1

32 , L = 128, and K2 = 0,0.289,0.404, associated with
Fig. 4.

to lower temperature while the Z2 transition remains only
weakly affected. This follows from the fact that it is only the
U (1) sector of the theory which couples to the (nonfluctuating)
gauge field, while the Z2 sector does not. Hence, upon
increasing the (nonfluctuating) gauge field and hence the filling
fraction of the system, the vortex-lattice melting transition of
the U (1) sector is suppressed in the usual manner, while the Z2

sector is largely unaffected. A reversal of the order of the phase
transitions as the temperature is varied is thus possible. An
increase of the magnetic field beyond the vortex-lattice melting
transition brings about a resistive state with spontaneously
broken Z2 symmetry, a chiral metallic state.

Note that the temperature dependence of the structure
function in Fig. 3 and the helicity moduli in Figs. 4 and 5
typically is not of the form one expects in a first-order
vortex-lattice transition, with a jump in the helicity modulus
at the melting transition, and which has been found in the
single-component case [19,26]. This point requires further
investigation, but is beyond the scope of the present paper,
where the main point is not to investigate the details of the
melting transition but to demonstrate that a magnetic field
may be utilized to clearly bring out the unusual metallic state
with a spontaneously broken time-reversal symmetry.

Figures 6 and 7 show the specific heat corresponding to
the results of Figs. 4 and 5. The main point to be made in
connection with Figs. 6 and 7 is that the Ising-type anomaly
in the vortex-liquid phase, associated with restoring the
spontaneously broken time-reversal symmetry, is considerably
more pronounced than the small anomaly associated with the
vortex-lattice melting. These two phase transitions essentially
involve the same degrees of freedom, ultimately connected to
the phases θα,j of the superconducting order-parameter com-
ponents. Hence, to the extent that the specific-heat anomaly
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FIG. 7. Specific heat of the reduced model with K1 = 0.99, K2 =
0.0, L = 128, and f = 0, 1

128 , 1
64 , 1

32 , 1
16 . These results correspond to

those shown in Fig. 5. Note that the Z2 anomaly is considerably more
prominent than the sharp peak associated with the melting of the
vortex lattice.

associated with the vortex-lattice melting is observable, the
Ising anomaly inside the vortex-liquid phase, associated
with restoring the broken Z2 symmetry, should be readily
observable in specific-heat measurements on Fe pnictides.
Moreover, an equally prominent Z2 anomaly in the specific
heat should be observable inside the vortex-lattice state, for
small enough magnetic fields.

V. SUMMARY AND CONCLUSIONS

We have studied two models describing U (1) × Z2 multi-
band superconductors in the London limit, subject to an
external field. We have focused on the three-component case.
The external field induces vortices in the condensate, leading
to an increased separation of, and indeed reversal of, the Z2 and
U (1) phase transitions as the temperature is varied. This brings

out clearly the domain of a metallic (vortex-liquid) state with
an additional spontaneously broken time-reversal symmetry
on top of the explicitly broken time-reversal symmetry from
the external field. The effect increases with increasing field.
Inside the vortex-liquid phase there should be an anomaly in
the specific heat, and this anomaly should be in the 3D Ising
universality class. The same degrees of freedom are involved
in disordering the vortex lattice as are involved in disordering
the chirally ordered state. The numeric results show that both
anomalies are observable, but the Z2 anomaly is considerably
easier to see (see Figs. 6 and 7). Hence, we expect this anomaly
associated with restoring the Z2 chiral order to be readily
observable in experiments. Moreover, the same should be
the case for the Z2 anomaly in the specific heat inside the
vortex lattice for small enough magnetic fields. Finally, we
note that the predictions of anomalies in the specific heat,
obtained in the London limit of the Ginzburg-Landau theory
of a multiband superconductor, should be robust to inclusion
of amplitude fluctuations in the order-parameter components.
Such fluctuations are noncritical, but will nonetheless tend to
enhance the specific-heat anomalies, albeit analytically as a
function of temperature.
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APPENDIX: DERIVATION OF ALTERNATIVE
REDUCED MODEL

We derive Eq. (7) from Eq. (3). The identity

A cos x + B sin x =
√

A2 + B2 cos

[
x − arctan

(
B

A

)]
,

(A1)

together with σ 2
i = 1, implies that the contribution from a

lattice link to the Hamiltonian, Eq. (3), can be written in the
form

Hij = −(1 + K1σiσj ) cos(θi − θj − Aij )

−K2(σi − σj ) sin(θi − θj − Aij )

= −(p + qσiσj ) cos[θi − θj − Aij − γ (σi,σj )]. (A2)

p,q, and α are functions of K1 and K2, to be determined.
Comparing with Eq. (A1), it is seen that α is given by

γ = arctan

[
K2(σi − σj )

1 + K1σiσj

]

=
{

0 σi = σj

± arctan
[ 2K2

1−K1

]
σi = −σj = ±1 . (A3)
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Similarly, p and q are determined by√
(1 + K1σiσj )2 + K2

2(σi + σj )2 = p + qσiσj (A4)

or, by squaring both sides,

1 + K1
2 + 2K2

2 + 2
(
K1 − K2

2
)
σiσj = p2 + q2 + 2pqσiσj .

(A5)

Comparing the two sides, we see that

p2 + q2 = 1 + K1
2 + 2K2

2 ≡ U, (A6)

pq = K1 − K2
2 ≡ V. (A7)

Combining these two equations yields the quadratic equation
in p2,

p4 − Up2 + V 2 = 0, (A8)

with solutions

p = ±
√

1
2 (U ±

√
U 2 − 4V 2). (A9)

When K2 = 0, p + qσiσj should reduce to 1 + K1σiσj .
Hence, the relevant solution is

p =
√

1
2 (U +

√
U 2 − 4V 2), (A10)

q = V

p
. (A11)

Rescaling the Hamiltonian by 1/p simplifies Eq. (A2) to

Hij = −(1 + Jσiσj ) cos[θi − θj − Aij − γ (σi,σj )], (A12)

where J is given by Eqs. (9) and (10). Thus, since H =∑
〈i,j〉 Hij , we have derived Eq. (7).

For n � 3, we have W ∈ [0,2K1/(1 + K1
2) < 1], since

K1 ∈ [0,n−1] and K1 � K2
2. J (W ) increases monotonically

with W for W ∈ [0,1), so

J ∈ [0,K1]. (A13)
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