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Superconductivity from fractionalized excitations in URu2Si2
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An unconventional pairing mechanism in the heavy-fermion material URu2Si2 is studied. We propose a
mixed singlet-triplet d-density wave to be the hidden-order state in URu2Si2. The exotic order is topologically
nontrivial and supports a charge 2e skyrmionic spin texture, which is assumed to fractionalize into merons and
antimerons at the deconfined quantum critical point. The interaction between these fractional particles results in a
(pseudo)spin-singlet chiral d-wave superconducting state, which breaks time-reversal symmetry. Therefore, it is
highly likely to produce a nonzero signal of the polar Kerr effect at the onset of the superconductivity, consistent
with recent experiments. In addition, the nodal structures of the possible pairing functions in our model are
consistent with the thermodynamic experiments in URu2Si2.

DOI: 10.1103/PhysRevB.90.134507 PACS number(s): 74.20.Mn, 74.70.Tx, 12.39.Dc

I. INTRODUCTION

The identity of the order parameter in URu2Si2 (URS),
[1] a heavy-fermion material, below the so-called hidden-
order (HO) transition at THO = 17.5 K is unknown despite
its discovery a quarter century ago [2–21]. Buried deep
inside this phase lies a much less explored unconventional
superconducting state at a temperature Tc ∼ 1.5 K [1,22–25].
It is natural that there must be an intimate relation between the
two. While numerous theoretical models have been proposed
to explain the HO phase, very few of them attempted to explain
the origin of the unconventional superconductivity. Thus, it
is our central interest to explore the connection between the
two states to provide a mechanism for the unconventional
superconducting state.

In this paper we posit that an intriguing density wave
state, termed mixed singlet-triplet d-density wave (st-DDW)
[26,27], is responsible for the HO state. This state has no
net charge or spin modulations and does not break time-
reversal symmetry (TRS). It does have topological order
with a quantized spin Hall effect [26]. Thus, it is naturally
impervious to common experimental probes [27]. We then
construct a global phase diagram in which there is a decon-
fined quantum critical point (QCP) [28], which is ultimately
responsible for the basic mechanism of superconductivity. The
skyrmionic spin texture in the st-DDW state fractionalizes
into fermonic merons and antimerons [28], which results in
unconventional chiral d-wave superconductivity [29,30]. The
deconfinement takes place only at the QCP. On one side of
it merons and antimerons are paired to form skyrmions, but
on the other side merons pair with merons, and similarly for
antimerons. The resulting superconducting state breaks TRS,
which can be directly detected by polar Kerr effect (PKE)
measurements [31]. Determination of the density wave state
posited here is also possible through two-magnon Raman
scattering, nuclear quadrupolar resonance, or the skyrmions
themselves. In a more general context, our work reflects the
rich possibilities of emergent behavior in condensed-matter
systems.

*Present address: RIKEN Center for Emergent Matter Science, 2-1
Hirosawa, Wako, Saitama 351-0198, Japan.

Density wave states of higher angular momenta are intrigu-
ing objects [32]. They are particle-hole condensates in contrast
to particle-particle condensates in a superconductor. Because
there are no exchange requirements between a particle and a
hole, the orbital wave function cannot constrain the spin-wave
function. Of particular interest is the angular momentum � =
2: its singlet counterpart has been suggested to be the cause of
the pseudogap in high-temperature superconductors [33–35].
Physically, it reflects staggered circulating charge currents
in a two-dimensional square lattice. The triplet counterpart
consists of circulating staggered spin currents but not charge
currents. Recently an attempt [10] was made to relate it to
the HO phase of URS to explain the in-plane anisotropic
magnetic susceptibility χ [110] �= χ [1̄10] observed in the
magnetic torque measurements [36,37]. In Ref. [10], the triplet
d-density wave is assumed to be formed on the diagonal planes
(x + y = const), which breaks the C4 rotational symmetry
down to C2. Therefore, the off-diagonal term of the spin
susceptibility χab arises below THO and naturally explains the
in-plane anisotropic susceptibility,

χ [110] = χaa + χab �= χ [1̄10] = χaa − χab. (1)

While this is an interesting idea, so far it has not been able
to provide a mechanism for superconductivity, which must be
related to the HO state.

In addition to the in-plane anisotropic susceptibility, an
Ising anisotropy of the g factor has been observed in URS
[38,39]. However, the Ising anisotropy does not lower the
symmetry, while C4 → C2 is a broken symmetry. In the
presence of an external field, say H = 10 T, the Zeeman
energy difference due to the anisotropic g factor is

�EZeeman = (gc − ga)μBH = 1.53 meV, (2)

where (gc − ga) ≈ 2.65 is the difference between the g factor
along the c and a axes [38], and μB is the Bohr magneton.
The magnitude of �EZeeman is an order of magnitude smaller
than the gap parameters of the st-DDW state estimated
from the specific-heat calculation (cf. below). Therefore,
the skyrmionic spin texture is unlikely to be affected by the
anisotropic g factor.

In contrast, we consider a mixed st-DDW, which mixes
the triplet and the singlet density waves in the � = 2 particle-
hole channel; see Refs. [26,27] for details. Reference [27]

1098-0121/2014/90(13)/134507(12) 134507-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.134507


CHEN-HSUAN HSU AND SUDIP CHAKRAVARTY PHYSICAL REVIEW B 90, 134507 (2014)

introduced skyrmions as a spin texture in the st-DDW state.
As has been analyzed in Ref. [27], the inclusion of the
explicit spin-orbit coupling will not affect the skyrmionic
texture in the st-DDW state even for the U atoms. The
skyrmions were shown to have zero angular momentum
and charge 2e bosons, so one could only predict s-wave
Bose-Einstein condensate. However, available experiments
[29,30] show that the superconductivity is not s-wave, but
chiral d-wave, breaking TRS. In this paper we propose a
totally unconventional pairing mechanism arising from the
fractionalization of skyrmions into merons and antimerons.
The mechanism resolves the paradox that skyrmions may have
zero angular momentum, but the superconductivity can be a
chiral d-wave condensate. We also predict a nonzero signal of
the PKE at the onset of the superconductivity. None of these
were contained in Ref. [27], nor could it have been simply
guessed at. Moreover, the generalization to three dimensions
to accommodate the quantum oscillation experiments [40,41],
as opposed to two dimensions in Ref. [27], is important.

The following is a summary of the experimental aspects of
URS which the st-DDW state and the resulting superconduc-
tivity may account for:

(i) The nesting vector of the st-DDW, �Q = 2π
c

ẑ, gives rise
to the unit-cell doubling along the c axis in agreement with the
quantum oscillation measurements [40].

(ii) The broken C4 rotational symmetry by the st-DDW on
the diagonal planes results in the observed anisotropic suscep-
tibility in the HO phase in the magnetic torque experiments
[36,37].

(iii) The opening of the st-DDW gap causes an exponential
behavior below THO in the specific-heat measurements [22].

(iv) Because of the pairing mechanism discussed in this
paper, the superconductivity arises only within the HO phase,
but not the pressure-induced large-moment antiferromagetic
phase [1].

(v) The chiral d-wave superconducting order parameter
has nodal structures consistent with the thermodynamic
experiments [29,30].

(vi) The broken TRS in the superconducting state is
consistent with a nonzero signal of the PKE [42].

The structure of this paper is as follows: in Sec. II, we
discuss the topology of the st-DDW state and the charge-2e

skyrmions. In Sec. III, we study the pairing interaction due to
the merons and antimerons, and show that the superconduc-
tivity is chiral d-wave. In Sec. IV we remark on our results
and the experiments of URu2Si2. In Appendices A and B, the
calculation of the topological invariant and the charge of the
skyrmions are provided.

II. NONTRIVIAL TOPOLOGY AND CHARGE-2e
SKYRMIONS

URS has a body-centered-tetragonal structure, and the order
parameter and the band structure must be consistent with it;
see Fig. 1. We consider the tight-binding model [16] with the
URS crystal structure and the st-DDW order on the diagonal
planes, which leads to the observed anisotropic magnetic
susceptibility. This model is merely a low-energy effective
Hamiltonian, which is sufficient to illustrate our mechanism
of superconductivity, but clearly cannot capture all aspects of

x'

z'

FIG. 1. (Color online) Left: the crystal structure of the URS
material. The modulated hopping and spin current patterns are on
the diagonal planes (x + y = const), which is highlighted with the
pink color. The black points indicate the positions of the U atoms. The
black arrows indicate three primitive vectors, ax̂, aŷ, and cẑ. The blue
arrows indicate three vectors for the rotated coordinate: a′x̂ ′, a′ŷ ′, and
cẑ′. Here x̂ ′ = (x̂ − ŷ)/

√
2, ŷ ′ = (x̂ + ŷ)/

√
2, ẑ′ = ẑ, and a′ = √

2a.
The coordinate rotation is convenient to describe the st-DDW order,
which is assumed to be formed on the diagonal planes and consistent
with the magnetic torque measurement [36]. Right: the spin current
patterns and hopping modulations on the diagonal planes. The arrows
indicate the directions of the circulating spin currents due to the triplet
component of the mixed st-DDW order. The red and black dashed
lines indicate different signs of the modulated hopping terms due to
the singlet component of the mixed st-DDW order. For clarity, the Ru
and Si atoms are not shown.

URS:

H0 =
∑
k,σ

(
ε

(1)
k c

†
1σ,kc1σ,k + ε

(2)
k c

†
2σ,kc2σ,k

)

+
∑

k

(Ckc
†
1+,kc2+,k + C∗

k c
†
1−,kc2−,k + H.c.)

+
∑

k

(Dkc
†
1+,kc2−,k − D∗

k c
†
1−,kc2+,k + H.c.), (3)

where c
†
ασ,k is the creation operator of 5f electron with

band index α = 1,2 and spin index σ = ±, and the band
structure is

ε
(α)
k ≡ 8t cos

(
kxa

2

)
cos

(
kya

2

)
cos

(
kzc

2

)
+2t ′α[cos(kxa) + cos(kya)]

+4t ′′α cos(kxa) cos(kya) − μ + sgn(α)
�12

2
, (4)

where sgn(α) = ±1 for band indices α = 1,2, respectively.
Here a and c are the lattice constants. t, t ′α , and t ′′α are the
hopping amplitudes along the body diagonals, in-plane axes,
and in-plane diagonals, respectively. �12 is the crystal-field
splitting and μ is the chemical potential. Notice that t, t ′α , and
t ′′α describe the hopping terms of the 5f electrons between the
U atoms, and our conclusion holds as long as t is nonzero
(see below and the Appendix A). As in Ref. [16], we will take
Ck = 0. Dk is related to the hybridization due to the Ru atoms,
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and has the form

Dk ≡ 4t12

[
sin

(
kxa + kya

2

)
− i sin

(
kxa − kya

2

)]

× sin

(
kzc

2

)
. (5)

Then the st-DDW order parameter is defined to be

〈c†ασ,k+Qcασ ′,k〉 = δσσ ′�k + i(�σ · N̂ )σσ ′Wk, (6)

where σ and σ ′ are spin indices and the nesting vector is
�Q = 2π

c
ẑ, consistent with the fact that quantum oscillation

frequencies are hardly changed between HO and the large
moment antiferromagnetic phase (LMAF); [40,41] Wk and �k

are the form factors for the triplet and the singlet components
of the density wave order:

Wk = W0 sin

(
kxa − kya

2

)
sin

(
kzc

2

)
, (7)

�k = �0

2
[cos(kxa − kya) − cos(kzc)]. (8)

Judging from microscopic Hartree-Fock calculations of
Ref. [8] and Refs. [34,35], it is clear that no fine tuning is
necessary to have such an order parameter at the Hartree-Fock
level. The above form factors are constrained by the nesting
vector, (0,0, 2π

c
), in quantum oscillation experiments [40,41]

and the C4 → C2 rotational symmetry breaking [36]. In
contrast, the nesting vector adopted in Ref. [10] is (0,0, π

c
).

We have checked that the inclusion of the hybridization, t12,
barely alters the ground-state energy. To be explicit, we found
the change in the ground-state energy per lattice site is

�Ehyb ≈ −
( |t12|2

W

)(
W0

W

)2

, (9)

where W = 8t is the bandwidth. �Ehyb is much smaller than
W0 and �0 because (W0/W )2 ≈ 0.01. Therefore, the inclusion
of the hybridization will not affect our conclusion. For the
calculation of the Berry phase crucial to our mechanism of
superconductivity one only requires the t-term in the band
structure, hence the results are identical for the two bands; see
Appendix A.

Furthermore, it has also been pointed out that the Fermi
surface does not depend strongly on t12 [16], so t12 will
be neglected in the following discussion. In addition,
the inclusion of the explicit spin-orbit coupling in the
two-dimensional st-DDW model has been analyzed in Ref.
[27], and it has been shown that the change in the ground-state
energy per lattice site is

�ESO ≈ [(N̂ · ẑ)2 − 1]

(

2

0

W

)(
W0

W

)2 [
1 + O

(
W 2

0

W 2

)]
.

(10)

Here 
0 is the strength of the spin-orbit coupling, given by

HSO =
∑

k

c
†
kα

�
(k) · �σαβckβ, (11)

where �
(k) = (
0/
√

2)[x̂ sin ky − ŷ sin kx]. As large as the
spin-orbit coupling may be for U atoms, �ESO is still a small
energy scale because of the small factor (W0/W )2 ≈ 0.01. The

analysis in Ref. [27] is based on the second-order expansion
in (W0/W ), which is justified because W0 is one order smaller
than W . Therefore, the charge-2e skyrmionic texture that we
invoke below is unlikely to be affected by the explicit spin-orbit
coupling, which will be neglected in the discussion. Notice that
the order parameter itself cannot be factorized into spin and
orbital parts, so it requires spin-orbit interaction to be realized.
In other words, the spin-orbit interaction is present in the model
even though we do not include it in the Hamiltonian explicitly.

At the mean-field level, we can choose the N̂ vector to be
uniform and perpendicular to the diagonal planes (x + y =
const). The real-space picture of the order parameter form
factors are shown in Fig. 1. Note that this is different from Ref.
[10], where there are two copies of spin current patterns on
the diagonal planes and the singlet component is missing [27].
The spin currents are unaffected by the singlet component, as
that only produces modulations of the bare kinetic energy.
Therefore, the C4 rotational symmetry is broken by the
st-DDW order, which results in anisotropic susceptibility as
in Ref. [10]. However, the singlet component �0 has an
important consequence on the basic nature of the HO state.
One of the experimental signatures of the HO state is a jump
in the specific heat �C

T
≈ 270 mJ/mol K2 at THO, followed by

an exponential drop below THO, which can be fitted with a gap
of ≈11 meV [22]. The specific heat for the mixed st-DDW
state also exhibits a similar exponential behavior when we
consider the fully gapped ky ′a′ = π plane; see Fig. 1 for the
rotation of the coordinate axes. This implies that the specific
heat reflects primarily the quasi-two-dimensional part of the
spectrum, which justifies that it is a good approximation to
consider the system as a collection of quasi-two-dimensional
diagonal planes, with low carrier concentration. With the gap
parameters of W0 = 14 meV and �0 = 13 meV, we obtained
the exponential drop C(T ) ∝ e−�/T , which is consistent with
experiments, except for lower temperature linear behavior
due to the fact that the three-dimensional Fermi surface is
only partially gapped. Importantly, our basic mechanism of
superconductivity depends on the quantized spin Hall effect
on the diagonal planes, which is absent if �0 = 0 (cf. below).

The mean-field Hamiltonian with the mixed st-DDW order
is

Hst-DDW =
∑

k

�
†
kAk�k, (12)

where the summation is over the reduced Brillouin zone
(RBZ). The spinor, �

†
k , is defined in terms of the fermion

operators (c†k,↑,c
†
k+Q,↑,c

†
k,↓,c

†
k+Q,↓) and the matrix Ak is

Ak =

⎛
⎜⎜⎝

εk − μ �k + iWk 0 0
�k − iWk εk+Q − μ 0 0

0 0 εk − μ �k − iWk

0 0 �k + iWk εk+Q − μ

⎞
⎟⎟⎠,

(13)
where

εk ≡ 8t cos

(
kxa

2

)
cos

(
kya

2

)
cos

(
kzc

2

)
+2t ′[cos(kxa) + cos(kya)] + 4t ′′ cos(kxa) cos(kya),

(14)
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where t, t ′, and t ′′ are the hopping amplitudes along the body
diagonals, in-plane axes, and in-plane diagonals, respectively.
Although a two-band tight-binding model is considered above
[16], the Berry curvature for these two bands are the same be-
cause the t ′, t ′′, and �12 terms commute with the Hamiltonian.
Therefore, for simplicity the band index α and the crystal-field
splitting �12 have been dropped.

The eigenvalues of the Hamiltonian are

λk,± = ε2k − μ ± Ek, (15)

where Ek =
√

ε2
1k + W 2

k + �2
k , the +(−) sign indicates the

upper (lower) band, and

ε1k ≡ εk − εk+Q

2

= 8t cos

(
kxa

2

)
cos

(
kya

2

)
cos

(
kzc

2

)
, (16)

ε2k ≡ εk + εk+Q

2
= 2t ′[cos(kxa) + cos(kya)] + 4t ′′ cos(kxa) cos(kya).

(17)

The eigenvalues and eigenvectors of the mean-field
Hamiltonian can be used to compute the Berry curvature, ��σ,±,
for the upper and the lower bands (±),

��σ,± ≡ ��k × 〈�σ,±(k)|i ��k|�σ,±(k)〉, (18)

where |�σ,±(k)〉 are the corresponding eigenstates. The Berry
curvature is necessary for the computation of the physical
charge and flux carried by the skyrmions. Since the mixed st-
DDW order is on the diagonal planes, the nonzero contribution
to the Berry phase arises from the component of the Berry
curvature perpendicular to the diagonal planes. The result does
not depend on the details of the band parameters as long as
t, W0, and �0 are all nonzero (see the Appendix A). In other
words, we need a mixing of the triplet and the singlet density
wave orders in order to have nontrivial topology. As in the
previous two-dimensional model [26], the total Chern number
is zero, but the spin Chern number is nonzero. Therefore,
the topology of the system is nontrivial, and there will be a
quantized spin Hall conductance on the x ′z′ planes, σ spin

x ′z′ = e
2π

.
Because of this the charge current corresponds to a physical
charge (see the Appendix). Then, the skyrmionic spin texture
can be constructed on the x ′z′ plane, and one can find that
the skyrmions in the system carry physical flux 4π , as in
Refs. [27,43]. As a skyrmion is adiabatically threaded through
the system, a net charge of −2e is displaced to the boundary at
infinity; by charge neutrality of the total system, the skyrmion
should have physical charge 2e and flux 4π .

III. CHIRAL d-WAVE PAIRING

A useful way to proceed is to sketch a proposed phase
diagram in which we introduce a quantum parameter λ in
addition to the parameters pressure P and temperature T ,
as shown in Fig. 2. λ controls W0(λ) such that W0(λ <

λc) = 0 and W0(λ > λc) �= 0. Note that an isolated meron
costs logarithmically infinite energy for λ > λc, and hence
merons and antimerons appear as bound pairs in skyrmions.

FIG. 2. (Color online) The proposed phase diagram with the
quantum parameter (λ), pressure (P ), and temperature (T ) axes.
Here λ is a tuning parameter such that W0(λ < λc) = 0 and W0(λ >

λc) �= 0. λc is a deconfined quantum critical point between the QSHI
and superconductivity as T = P = 0. THO and Tc are the HO and
superconducting transition temperatures as P = λ = 0, respectively.
Along the P axis, Pc indicates the phase transition between the HO
and superconducting states, while Px indicates the phase transition
between the HO and LMAF states. In some literatures Pc coincides
with Px , which does not affect our main conclusion. In addition, there
should be phase boundaries in the λ-P and λ-T planes, which are not
the main purpose of this work.

The length scale of the confinement potential grows when
approaching the deconfined quantum critical point, where it
diverges. Therefore, the skyrmions fractionalize into merons
and antimerons, because there is no confinement at that point.
We must emphasize that the hedgehog configurations are
assumed to be suppressed because the particle-hole excitations
are of much higher energy [43]. Therefore the skyrmion
number is conserved in the two-dimensional diagonal planes.
The state at T = 0,P = 0 is connected, as is the entire
superconducting state, by continuity from the second-order
phase transition between the superconductivity and quantum
spin Hall insulator (QSHI); λc is a deconfined quantum critical
point [43]. The suppression of hedgehog configurations is
crucial to the existence of the deconfined quantum critical
point. This critical point is described by the field theory of
merons and antimerons, fractional particles that emerge at λc,
but are not present in either side of it. λc can be computed
from a suitable microscopic Hamiltonian; for instance, λ

may be a function of the on-site Coulomb interaction U ,
the nearest-neighbor direct interaction V , and the exchange
interaction J in the extended Hubbard model [8].

Since merons have topological charge they should have
zero overlap with band fermions and therefore cannot be
expressed in terms of local band fermonic operators. This is not
unprecedented. Recall that creation/annihilation of Laughlin
quasiparticles in the fractional quantum Hall effect cannot be
expressed as any local function of the band fermions.
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FIG. 3. (Color online) The merons ψ
†
+,σ (�r) and ψ

†
−,σ (�r). ψ

†
+,σ (�r)

creates a meron with N̂ (r → 0) = ŷ ′ and N̂ (r → ∞) = (x′,0,z′)
r

;

ψ
†
−,σ (�r) creates a meron with N̂(r → 0) = −ŷ ′ and N̂(r → ∞) =

(x′,0,z′)
r

. Each meron above is half a skyrmion. A composite of a

meron ψ
†
+,σ (�r) and an antimeron ψ−,σ ′ (�r) makes one skyrmion [28].

A skyrmion is a composite of a meron with a flux of 2π and
charge e, and an antimeron with a flux of −2π and charge −e,
as shown in Fig. 3. In the HO phase, the fractional particles
are confined in skyrmions while in the superconducting phase
they are bound into Cooper pairs (see Fig. 4). Let ψ

†
s,σ (�r) be

the creation operator of a meron at �r , where s = ± labels the
flux of ±2π and the (pseudo)spin index σ =↑ or ↓ for up
or down spin, respectively. Pairing of 〈ψ†

s,σ (�r)ψ†
s ′,σ ′(�r ′)〉 thus

results in a charge 2e superconductivity for s = s ′. Motivated
by experiments [29], we will be interested in the (pseudo)spin-
singlet pairing [44], so we will set σ = −σ ′. Here we assume
that the length scale of a meron is much smaller than the
distance between the merons, so we can treat them as point
particles.

The interaction Hamiltonian can be described by the
coupling between the charge current �j (�r) and the gauge field
�A(�r), which is associated with the flux of the merons and

antimerons, Hint = ∫
d2r �j (�r) · �A(�r). Notice that we will set

� = c = 1 for simplicity. With the continuity equation for the
charge and current densities of the merons and antimerons,
and assuming that the kinetic energy of merons is k2

2m
with the

effective mass of a meron m, we may write the interaction in
terms of the ψs,σ (�r) operators. This immediately leads to the
(pseudo)spin-singlet pairing Hamiltonian in the momentum

FIG. 4. (Color online) The deconfinement and pairing of the
merons and antimerons. The up (down) arrows indicate a flux of
2π (−2π ). The solid (open) circles indicate merons (antimerons).
The dashed lines indicate the confinement and pairing. The colors are
associated with the meron texture in Fig. 3. The spins of the merons
are not shown for simplicity. Left: in the HO phase, merons and
antimerons are confined in skyrmions. Middle: at the critical point, the
merons and antimerons are deconfined. Right: in the superconducting
phase, the merons and antimerons are separately confined again into
Cooper pairs.

space

Hint =
∑
�k,�k′

∑
s

Vk′kψ
†
k′,s,↑ψ

†
−k′,s,↓ψ−k,s,↓ψk,s,↑, (19)

where Vk′k ≡ 4πi
m

(�k×�k′)y′
|�k−�k′|2 .Hint clearly breaks TRS, so we expect

the superconducting order to break TRS as well.
The interaction is similar to the one discussed in the

half-filled Landau level problem [45] as well as one proposed
in the context of the hole-doped cuprates [46], though there are
significant differences as well. In Ref. [45], the flux attached to
a particle is πε instead of 2π so that fractional statistics could
be studied by varying ε. The particles considered there were
spinless fermions, so an odd-parity pairing state was obtained.
Furthermore, the interaction (19) is different from the one in
Ref. [46] because we express ρ(�r) = ∑

s,σ (se)ψ†
s,σ (�r)ψs,σ (�r)

and ( �� × �A(�r))y ′ = 2π
e

∑
s,σ sψ

†
s,σ (�r)ψs,σ (�r) differently. In

Ref. [46], the resulting interaction depends on the sign of s,
so the s = ± part leads to a (dx2−y2 ∓ idxy) superconductivity,
respectively. As a result, the addition of these two components
gives a dx2−y2 superconductivity in cuprates, but not a chiral
state.

In Eq. (19) we can see that the s = + and s = − parts in
our case are two independent copies. With the kinetic-energy
term, the total Hamiltonian is

Htotal =
∑
�k,s,σ

ξkψ
†
k,s,σ ψk,s,σ + Hint, (20)

where ξk = k2

2m
− μ with chemical potential μ. Defining the

gap �sc
k ≡ −∑k′ Vkk′ 〈ψ−k′,↓ψk′,↑〉, the BCS gap equation at

temperature T is

�sc
k (T ) = −

∑
k′

Vkk′
�sc

k′ (T )

2
√

ξ 2
k′ +

∣∣�sc
k′ (T )

∣∣2
× tanh

(
1

2kBT

√
ξ 2
k′ +

∣∣�sc
k′ (T )

∣∣2) . (21)

This equation at T = 0 has been analyzed in Refs. [45,46]. For
�-wave pairing, the solution will be �sc

k (T ) = |�(�)
k (T )|e−i�φk ,

where φk denotes the direction of the wave vector. The
magnitude of the gap can be written as (see Appendix C)

∣∣�(�)
k (T )

∣∣ =
{

�
(�)
F (T )

(
k
kF

)�
, for k � kF ,

�
(�)
F (T )

(
kF

k

)�
, for k � kF

(22)

with the Fermi wave vector kF and the temperature-dependent
gap �

(�)
F (T ) = |�(�)

k=kF
(T )|. The gap equation is solved numer-

ically, and nonzero solutions for �
(�)
F (T ) are found for any

� �= 0; there is no solution for � = 0. Since we are interested
in the (pseudo)spin singlet pairing [29], we will focus on the
even angular momentum channels in the following discussion.

The temperature dependence of the gap �
(�)
F (T ) for � = 2,4

is shown in Fig. 5. The zero-temperature gap and supercon-
ducting transition temperature are listed in Table I. Within
a numerical prefactor the gap at T = 0 is proportional to the
Fermi energy εF of merons because there are no other available
scales.
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FIG. 5. (Color online) Temperature dependence of the pairing
gaps for the angular momentum channels � = 2,4.

From Table I one can see that both the zero-temperature gap
and transition temperature for the � = 2 channel are larger than
the � = 4 channel, so the dominant channel will be the chiral
d-wave pairing. Clearly � = 4 is a subdominant gap, which
a thermodynamic measurement like specific heat will not
be able to detect. The ratio 2�

(�=2)
F (T = 0)/(kBTc) ∼ 4.390

is comparable to the experimental value 4.9 from the point
contact spectroscopy [47]. Notice that both the theoretical and
experimental values are larger than the BCS value ∼3.52.
Hence the superconducting gap in the continuum limit will be

�sc
k ∝ k2e−2iφk = (

k2
x ′ − k2

z′
)− 2ikx ′kz′ (23)

in the rotated coordinate. In the lattice, the gap function may
be matched to

�sc
k ∝ [cos(kx ′a′) − cos(kz′c)] + 4i sin

(
kx ′a′

2

)
sin

(
kz′c

2

)
.

(24)

Alternatively, another possible choice for the pairing function
could be

�sc
k ∝ cos(ky ′a′)

{
[cos(kx ′a′) − cos(kz′c)]

+4i sin

(
kx ′a′

2

)
sin

(
kz′c

2

)}
. (25)

Although both Eqs. (24) and (25) recover Eq. (23) in the
long-wavelength limit, they have different nodal structures.
The pairing function (24) has only point nodes on the ky ′ axis
(as kx ′ = kz′ = 0), but no line nodes. On the other hand, the
pairing function (25) has the same point nodes as (24), as
well as line nodes on the ky ′a′ = ±π/2 planes (Fig. 6). The

TABLE I. The zero-temperature gaps and transition temperatures
for the angular momentum channels � = 2,4.

Angular momentum, � 2 4

�
(�)
F

(T =0)
εF

0.406 0.197

kBT
(�)
c

εF
0.185 0.090

2�
(�)
F

(T =0)
kBTc

4.390 4.378

Γ

Z

X

M

A

R
Γ

Z

X

M

A

R

FIG. 6. (Color online) A cartoon illustration of possible nodal
structures drawn in the simple tetragonal unit cell due to the halving
of the Brillouin zone because of the nesting vector (0,0, 2π

c
). The

ellipsoids are sketches of the Fermi surface. The red lines and
crosses indicate the line and point nodes, respectively. In the original
coordinate the st-DDW order is on the diagonal planes in a manner
consistent with the symmetries mentioned above. Left: the point
nodes of the pairing function in Eq. (24). Right: the line and point
nodes of the pairing function in Eq. (25).

locations of the nodes are not the same as those proposed in
Ref. [29]. However, the thermal conductivity measurements,
which essentially probe the low-energy density of states,
cannot unambiguously determine the location of the nodes in
the momentum space. Thus, the order parameters (24) and (25)
also adequately describe the low-temperature thermodynamic
properties of the superconducting state based on the available
experiments. Notice that in order to compare the lattice to the
continuum case, one needs to rescale the anisotropic lattice
constants a′ and c in the diagonal planes; i.e., to rescale the
pink rectangles in Fig. 1 into squares.

IV. DISCUSSION

Notice that the meron-antimeron pair which constitutes a
skyrmion is not the same as the meron-meron Cooper pair as
shown in Fig. 4. This is the reason why a skyrmion has zero
angular momentum [27] while a Cooper pair formed by the
merons may have nonzero angular momentum. Our theory is
consistent with quantum oscillation measurements, carried out
at mK temperature and high enough field to destroy supercon-
ductivity, once the three-dimensional character of the structure
is taken into account. Of course, our simple band structure
cannot correctly obtain all the observed frequencies [12].

In three dimensions, one possible pairing function (24)
gives only point nodes in agreement with the specific-heat
measurements [30], whereas another possible pairing function
(25) has both line nodes and point nodes, as inferred from
the thermal conductivity measurements [29]. The actual nodal
structure will ultimately be determined by experiments, which,
to date, have not been able to rule out any of the possibilities
of the pairing functions (24) and (25). Of course, there is
also the possibility of replacing cos(ky ′a′) in (25) with other
cosine functions such as cos (kz′c) and cos

(
ky ′a′/2

)
, which

also give Eq. (23) in the long-wavelength limit. However,
without the knowledge of the actual Fermi surface and
available momentum-sensitive experiments that would reveal
the locations of the nodes, the pairing function cannot be
unambiguously determined.

A rough dimensional estimate of the magnitude of the PKE,
if present, can be obtained from the imaginary part of the Hall
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conductivity, σ ′′
xy ∼ e2

h
(�
�

)2, where � is the laser frequency
(∼0.8 eV). Broken TRS is a necessary condition for a nonzero
PKE [48]. Barring unknown effects, it is very likely that the
experiments of PKE in the superconducting state is a reflection
of the TRS breaking of our chiral order parameter. Clearly
there is room for much future improvements, but PKE [31]
can establish the nature of the superconducting state, a chiral
d-wave condensate made out of fractionalized particles. This
is consistent with the latest measurements of Kapitulnik and
his collaborators in the superconducting state [42]. In their
measurements, the signals in the HO state become weaker in
samples with higher quality while those in the superconducting
state appear to be robust. The signals in the superconducting
state can be trained by magnetic field independently of the HO
state, indicating that they have different origins. Moreover, the
magnitude of the HO signals depend on the training field, and
arise above THO when the training field is large. Therefore, it
is likely that PKE in the HO state is extrinsic, whereas TRS is
actually broken in the superconducting state.

In addition, in PKE measurements, there is an anomaly
at T ∼ 0.8–1.0 K within the superconducting phase. It is
tempting to suggest that the subdominant order in the � = 4
channel is excited by the large laser frequency. This could be
very similar to 3He where the subdominant pairing in the f -
wave channel is visible only in collective-mode measurements
[49,50]. It would be interesting to vary the laser frequency,
if possible. A less direct measurement of broken TRS in the
superconducting state was recently presented in Ref. [51]. On
the other hand, a NMR experiment [52] finds conflicting results
of broken TRS in the HO state itself. There appear to be no
data below 5 K. So, we do not know how the signature of the
broken TRS found in the HO state relates to that below the
superconducting transition temperature below 1.5 K. Clearly
further experiments will be necessary.
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APPENDIX A: TOPOLOGICAL INVARIANT

The topology of the system can be studied by computing the
Berry phase of the eigenstates. We define the Berry curvature,
��σ,±, as

��σ,± ≡ ��k × 〈�σ,±(k)|i ��k|�σ,±(k)〉, (A1)

where |�σ,±(k)〉 are the corresponding eigenstates. The Berry
phase will be the integral of the Berry curvature over the
reduced Brillouin zone (RBZ).

Since the mixed st-DDW order is on the diagonal planes,
one may expect that the nonzero contribution to Berry phase
arises from the component of the Berry curvature perpendicu-
lar to the diagonal planes. This is indeed the case, and in order
to simplify the calculation, we first rotate the coordinate along
z axis by 45◦, i.e., x ′ = (x − y)/

√
2, y ′ = (x + y)/

√
2, and

z′ = z,

ε1k = 4t

[
cos

(
kx ′a′

2

)
+ cos

(
ky ′a′

2

)]
cos

(
kz′c

2

)
, (A2)

ε2k = 4t ′ cos

(
kx ′a′

2

)
cos

(
ky ′a′

2

)
+2t ′′[cos(kx ′a′) + cos(ky ′a′)], (A3)

Wk = W0 sin

(
kx ′a′

2

)
sin

(
kz′c

2

)
, (A4)

�k = �0

2
[cos(kx ′a′) − cos(kz′c)] (A5)

with a′ = √
2a. The crystal structure is shown in Fig. 1 in

the main text, where we can find that the primitive vectors in
the rotated coordinate are a′

2 (x̂ ′ + ŷ ′), a′
2 (−x̂ ′ + ŷ ′) and cẑ′.

Therefore, the RBZ is bounded by |kx ′a′ ± ky ′a′| = 2π and
|kz′c| = π . The spin-current patterns are now in the x ′z′ planes
(y ′ = const). We choose the spin quantization axis to be y ′ axis,
so σ = ±1 means the spin is along ±ŷ ′ direction. We will see
below that the nonzero contribution to the Berry phase is only
from the y ′ component.

The mean-field st-DDW Hamiltonian can be written as

Hst-DDW =
∑
k,σ

(c†k,σ ,c
†
k+Q,σ )(ε2kτ

0 + �hσ · �τ )

(
ck,σ

ck+Q,σ

)
,

(A6)
where τ 0 is 2 × 2 identity matrix and �τ are the Pauli matrices
acting on the two-component spinor. Here the pseudospin
vector is defined as �hσ ≡ (�k, − σWk,ε1k). We have shown
that the Berry curvature can be written in terms of the
pseudospin vector �hσ [26]. The x ′, y ′, and z′ components of
the Berry curvature have the following forms:

(�σ,±)x ′ = ∓ 1

2E3
k

�hσ ·
(

∂ �hσ

∂ky ′
× ∂ �hσ

∂kz′

)
, (A7)

(�σ,±)y ′ = ∓ 1

2E3
k

�hσ ·
(

∂ �hσ

∂kz′
× ∂ �hσ

∂kx ′

)
, (A8)

(�σ,±)z′ = ∓ 1

2E3
k

�hσ ·
(

∂ �hσ

∂kx ′
× ∂ �hσ

∂ky ′

)
. (A9)

Notice that the Berry curvature does not depend on the t ′,t ′′
terms. To be explicit, we have

(�σ,±)x ′ = ∓ (−σ )

2E3
k

∣∣∣∣∣∣∣∣∣∣

�k Wk ε1k

∂�k

∂ky′
∂Wk

∂ky′
∂ε1k

∂ky′

∂�k

∂kz′
∂Wk

∂kz′
∂ε1k

∂kz′

∣∣∣∣∣∣∣∣∣∣
= ±σ

tW0�0a
′c

4E3
k

sin

(
kx ′a′

2

)
sin

(
ky ′a′

2

)

× cos2

(
kz′c

2

)
[−2 + cos(kx ′a′) + cos(kz′c)].

(A10)
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For the y ′ component, we have

(�σ,±)y ′ = ∓ (−σ )

2E3
k

∣∣∣∣∣∣∣∣∣∣

�k Wk ε1k

∂�k

∂kz′
∂Wk

∂kz′
∂ε1k

∂kz′

∂�k

∂kx′
∂Wk

∂kx′
∂ε1k

∂kx′

∣∣∣∣∣∣∣∣∣∣
= ±σ

tW0�0a
′c

8E3
k

[2 − cos(kx ′a′) − cos(kz′c)]

×
{

2 + cos
(
kx ′a′)+ cos (kz′c)

+ cos

(
kx ′a′

2

)
cos

(
ky ′a′

2

)
[3 + cos (kz′c)]

}
.

(A11)

For the z′ component, we have

(�σ,±)z′ = ∓ (−σ )

2E3
k

∣∣∣∣∣∣∣∣∣∣

�k Wk ε1k

∂�k

∂kx′
∂Wk

∂kx′
∂ε1k

∂kx′

∂�k

∂ky′
∂Wk

∂ky′
∂ε1k

∂ky′

∣∣∣∣∣∣∣∣∣∣
= ±σ

tW0�0a
′2

8E3
k

cos

(
kx ′a′

2

)
sin

(
ky ′a′

2

)

× sin (kz′c) [−2 + cos(kx ′a′) + cos(kz′c)].

(A12)

Although (�σ,±)x ′ and (�σ,±)z′ are nonzero, their integrals
over the RBZ are zero. In other words, because of the planar
structure of the order parameter, the Berry curvature and
the topology will be similar to the two-dimensional model
[26]. Under time reversal, the ky ′a′ = π plane maps onto
the ky ′a′ = −π plane, which is equivalent to the ky ′a′ = π

plane because there is a reflection symmetry under ky ′ ↔
−ky ′ . Therefore, the ky ′a′ = π plane maps onto itself under
time reversal, so there is a topological invariant associated
with the ky ′a′ = π plane. On the other hand, the ky ′a′ = 0
plane, which also maps onto itself under time reversal, is
not fully gapped, so the topological invariant is not well
defined on this plane. In addition, for ky ′a′ = π , the spectrum
is fully gapped, which leads to an exponential behavior of
the specific heat consistent with experiments and therefore
implies that the relevant physics is on the ky ′a′ = π plane.

For the y ′ component, we thus project the Berry curvature
to the ky ′a′ = π plane and perform the integral. The Chern
number for each band will be

Nσ,± = 1

2π

∫ π/a′

−π/a′
dkx ′

∫ π/c

−π/c

dkz′ (�σ,±)y ′

= ±σ, (A13)

which does not depend on the details of the band parameters as
long as t,W0, and �0 are all nonzero. Therefore, the topology
of the system is nontrivial, and there will be a quantized spin
Hall conductance on the x ′z′ planes, σ

spin
x ′z′ = e

2π
.

APPENDIX B: SKYRMIONS IN THE SYSTEM

1. Low-energy action

As mentioned above, because of the planar structure of
the order parameter, the interesting physics, such as the spin
current patterns and the quantized spin Hall conductance, will
be on the diagonal x ′z′ planes (y ′ = const). So we may project
the system onto the x ′z′ planes to construct the linearized
low-energy action. Again, the spin quantization axis is along
the y ′ axis, which is perpendicular to the x ′z′ planes.

Defining the spinor ψ
†
k,α ≡ (c†k,α,c

†
k+Q,α) with spin index α

(not to be confused with the meron operator in the main text),
the Hamiltonian can be written as

Hst-DDW =
∑
α,β

∑
k

ψ
†
k,α[δαβτ zε1k + δαβτ x�k

−(�σ · N̂ )αβτ yWk]ψk,β, (B1)

where τ i (i = x,y,z) are Pauli matrices acting on the two-
component spinor. For simplicity we have set t ′ = t ′′ = μ = 0
and ky ′a′ = π . Then, we can construct the low-energy effective
model by linearizing the action around the following points:

�K1 ≡ π

c
ẑ′, (B2)

�K2 ≡ π

a′ x̂
′, (B3)

�K3 ≡ π

a′ x̂
′ + π

c
ẑ′, (B4)

where �K1 and �K2 are the nodal points in the absence of the
singlet component (�0 = 0), and �K3 is the nodal point in the
absence of the triplet component (W0 = 0).

Therefore, the linearized low-energy action will be

S =
∫

d3x

{
ψ

†
1

[
−∂τ + 2tτ zc

(
1

i
∂z′

)
− τ x�0 + (�σ · N̂ )τ y W0

2
a′
(

1

i
∂x ′

)]
ψ1

+ψ
†
2

[
−∂τ + 2tτ za′

(
1

i
∂x ′

)
+ τ x�0 + (�σ · N̂ )τ y W0

2
c

(
1

i
∂z′

)]
ψ2 + ψ

†
3[−∂τ + (�σ · N̂ )τ yW0]ψ3

}
, (B5)

where we have introduced the imaginary time i∂t = −∂τ .
Notice that there is no spatial derivative in the ψ3 term since the expansion of the form factor Wk around the nodal point �K3 is

WK3+q = W0

(
1 − q2

x ′a′2

8
− q2

z′c2

8
+ . . .

)
, (B6)
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where the second- (and higher-)order derivative terms are
dropped when linearizing the action. In other words, the Wk

term behaves as a mass term at the �K3 point.

2. The charges of the skyrmions: An adiabatic argument

We will compute the charge of skyrmions in the system
by the adiabatic argument [43]. Consider the action around
�K1 when the order parameter is uniform (say, N̂ = ŷ ′). The

results for �K2 and �K3 follow identically:

S1 =
∫

d3xψ
†
1

[
−∂τ + 2tτ zc

(
1

i
∂z′

)
− τ x�0

+σy ′
τ y W0

2
a′
(

1

i
∂x ′

)]
ψ1. (B7)

As mentioned above, the spin quantization axis is now
along the y ′ axis, so σ = ±1 means the spin is along the
±ŷ ′ direction, and the Pauli spin matrices are

σx ′ =
(

0 −i

i 0

)
; σy ′ =

(
1 0
0 −1

)
; σ z′ =

(
0 1
1 0

)
.

(B8)

In the previous section we have shown that the nontrivial
topology leads to a quantized spin Hall conductance on the
x ′z′ planes. The quantized spin Hall conductance implies
that the external gauge fields Ac and As couple to spin
and charge currents, respectively. In the presence of these
external gauge fields, we add minimal coupling in the action by
taking

1

i
∂μ → 1

i
∂μ + Ac

μ + σy ′

2
As

μ, (B9)

and the action can be written as

S1[Ac,As] =
∫

d3xψ
†
1

[
−i

(
1

i
∂τ + Ac

τ + σy ′

2
As

τ

)

+ 2tτ zc

(
1

i
∂z′ + Ac

z′ + σy ′

2
As

z′

)

−τ x�0+σy ′
τ y W0

2
a′
(

1

i
∂x ′+Ac

x ′+σy ′

2
As

x ′

)]
ψ1,

(B10)

where we set e = � = c = 1. The nonvanishing transverse spin
conductance implies that the low-energy effective action for
the gauge fields is given by

S1,eff = i

2π

∫
d3xεμνλAc

μ∂νA
s
λ, (B11)

and the charge current is induced by the spin gauge field

jc
μ = 1

2π
εμνλ∂νA

s
λ. (B12)

Notice that the prefactor comes from the quantized spin Hall
conductance σ

spin
x ′z′ = e

2π
, so this is a physical charge current.

Consider a static configuration of the N̂ field with Pontrya-
gin index 1,

N̂ (r,θ ) = [sin α(r) sin θ, cos α(r), sin α(r) cos θ ] , (B13)

where (r,θ ) is the polar coordinate defined on the x ′z′ planes
and α(r) satisfies the boundary conditions α(r = 0) = 0 and
α(r → ∞) = π . This field configuration corresponds to one
skyrmion, and now the action is

S1 =
∫

d3xψ
†
1

[
−∂τ + 2tτ zc

(
1

i
∂z′

)
− τ x�0

+(�σ · N̂ )τ y W0

2
a′
(

1

i
∂x ′

)]
ψ1. (B14)

We can perform a unitary transformation at all points in
space such that

U †(�σ · N̂ )U = σy ′
. (B15)

Defining ψ = Uψ ′, and plugging into Eq. (B14), we
obtain

S1 =
∫

d3xψ
′†
1 U †

[
−∂τ + 2tτ zc

(
1

i
∂z′

)
− τ x�0 + (�σ · N̂ )τ y W0

2
a′
(

1

i
∂x ′

)]
Uψ ′

1

=
∫

d3xψ
′†
1

[
−∂τ + 2tτ zc

(
1

i
∂z′

)
− τ x�0 + σy ′

τ y W0

2
a′
(

1

i
∂x ′

)]
ψ ′

1

+
∫

d3xψ
′†
1

[
−(U †∂τU ) + 2tτ zc

(
1

i
U †∂z′U

)
+ σy ′

τ y W0

2
a′
(

1

i
U †∂x ′U

)]
ψ ′

1. (B16)

Equating Eqs. (B16) and (B10), we have Ac
τ = As

τ = Ac
x ′ =

Ac
z′ = 0, and

1

i
U †∂x ′U = σy ′

2
As

x ′ , (B17)

1

i
U †∂z′U = σy ′

2
As

z′ . (B18)

In the far-field limit (r → ∞), the unitary matrix is

U (r → ∞,θ ) =
(

0 −e−iθ

eiθ 0

)
, (B19)

so we have

�As = −2 sin θ

r
ẑ′ + 2 cos θ

r
x̂ ′ = 2

r
θ̂ , (B20)

which is in the x ′z′ planes.
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In other words, threading a skyrmion into the system is
equivalent to adding an external gauge field �As with a flux
of 4π in the y ′ direction. Suppose we adiabatically construct
the skyrmionic configuration N̂ (r,θ ) from the ground state
ŷ ′ in a very large time period τp → ∞. During the process,
we effectively thread a gauge flux of 4π adiabatically into
the x ′z′ planes. The quantized spin Hall conductance implies
that a radial current will be induced by the 4π gauge flux
of �As(t), which is now time dependent: �As(t = 0) = 0 and
�As(t = τp) = �As . That is,

jc
r (t) = − 1

2π
∂tA

s
θ (t). (B21)

As a result, charge will be transferred from the center to the
boundary, and the total charge transferred during the process
can be computed by performing the integral

Qc =
∫ τp

0
dt

∫ 2π

0
rdθjc

r (t)

= −2. (B22)

Therefore, we obtain a skyrmion with charge 2e and flux 4π ,
as in the two-dimensional model [27].

One can also infer the existence of skyrmions by integrating
out the fermions and thereby formulating a nonlinear σ model
[43]. Here it is a lengthy and tedious exercise and is therefore
not reproduced.

APPENDIX C: THE SUPERCONDUCTING GAP

To save space, here we only write down the equations
explicitly for T = 0. For finite temperatures one merely has to
substitute

�sc
k′ (T )

2
√

ξ 2
k′ +

∣∣�sc
k′ (T )

∣∣2 → �sc
k′ (T )

2
√

ξ 2
k′ +

∣∣�sc
k′ (T )

∣∣2
× tanh

(
1

2kBT

√
ξ 2
k′ +

∣∣�sc
k′ (T )

∣∣2) .

(C1)

We begin with the ansatz for l-wave pairing (for brevity, we
shall drop the superscript sc on the gap �,without confusion,
we hope),

�k = |�k|eilφk , (C2)

where φk denotes the direction of the wave vector, and we
will choose it to be the angle between �k and �k′ for simplicity.
Plugging the ansatz into the gap equation, we have [45,46]

|�k| = −2πi

m

∫
d2k′

(2π )2

(�k × �k′)z
|�k − �k′|2

�k′√
ξ 2
k′ + |�k′ |2

= − i

2πm

∫ ∞

0
k′dk′

∫ 2π

0
dφ

kk′ sin φ

k2 + k′2 − 2kk′ cos φ

|�k′ |eilφ√
ξ 2
k′ + |�k′ |2

= − i

2πm

∫ ∞

0
k′dk′ |�k′ |√

ξ 2
k′ + |�k′ |2

∫ 2π

0
dφ

kk′ sin φeilφ

k2 + k′2 − 2kk′ cos φ

= − i

4πm

∫ ∞

0
k′dk′ |�k′ |√

ξ 2
k′ + |�k′ |2

∫ 2π

0
dφ

sin φeilφ

λkk′ − cos φ
, (C3)

where λkk′ ≡ k2+k′2
2kk′ . The angular integral can be computed by performing a contour integral in the complex plane. To do this, we

set z = eiφ and get

Il(λ) ≡
∫ 2π

0
dφ

sin φeilφ

λ − cos φ
=
∫ 2π

0
dφ

(
eiφ−e−iφ

2i

)
eilφ

λ − (
eiφ+e−iφ

2

) =
∮

dz

iz

1

i

(z − z−1)zl

2λ − (z + z−1)
= −

∮
dz

z

(z2 − 1)zl

2λz − z2 − 1
, (C4)

where we have used dφ = dz
iz

and converted the φ integral into a contour integral around the origin with unit radius,

Il(λ) =
∮

dz
(z2 − 1)zl−1

z2 − 2λz + 1
=
∮

dz
(z2 − 1)zl−1

(z − λ − √
λ2 − 1)(z − λ + √

λ2 − 1)
, (C5)

where the poles are at z = λ ± √
λ2 − 1. Since z = λ + √

λ2 − 1 � 1 for λ � 1, it is not enclosed by the contour. Thus, only
z = λ − √

λ2 − 1 contributes to the integral, and we get

Il(λ) = 2πi

[
(z2 − 1)zl−1

(z − λ − √
λ2 − 1)

]
z=λ−√

λ2−1

= 2πi(λ−
√

λ2 − 1)l−1

[
λ2+λ2 − 1−2λ

√
λ2 − 1−1

−2
√

λ2−1

]
= 2πi(λ −

√
λ2 − 1)l . (C6)
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Since λkk′ ≡ k2+k′2
2kk′ , we have

λkk′ −
√

λ2
kk′ − 1 = k2 + k′2

2kk′ −
√(

k2 + k′2

2kk′ + 1

)(
k2 + k′2

2kk′ − 1

)

= 1

2kk′ [k
2 + k′2 − |k2 − k′2|] =

{(
k′
k

)
as k > k′,(

k
k′
)

as k < k′.
(C7)

So,

Il(λkk′) = 2πi ×
{(

k′
k

)l
as k > k′,(

k
k′
)l

as k < k′.
(C8)

Putting back into the gap equation, we have

|�k| = 1

2m

⎡
⎣∫ k

0
dk′

(
k′

k

)l
k′|�k′ |√

ξ 2
k′ + |�k′ |2

+
∫ ∞

k

dk′
(

k

k′

)l
k′|�k′ |√

ξ 2
k′ + |�k′ |2

⎤
⎦ . (C9)

Hence we can see that |�k| ∝ k−l as k → ∞ and |�k| ∝ kl as k → 0. So we make the following ansatz, which solves the gap
equation self-consistently:

∣∣�(�)
k

∣∣ =
{

�
(�)
F

(
kF

k

)l
as k � kF ,

�
(�)
F

(
k
kF

)l
as k � kF ,

(C10)

with the Fermi wave vector kF . Dividing both sides by εF and letting u ≡ �
(�)
F

εF
= 2m�

(�)
F

k2
F

, we get

u =
∫ 1

0
dx

ux2l+1√
(x2 − 1)2 + u2x2l

+
∫ ∞

1
dx

ux1−2l√
(x2 − 1)2 + u2x−2l

. (C11)

We can further simplify the equation by setting y = x2 and obtain

u = 1

2

∫ 1

0
dy

uyl√
(y − 1)2 + u2yl

+ 1

2

∫ ∞

1
dy

uy−l√
(y2 − 1)2 + u2y−l

, (C12)

which is to be solved by iterating Eq. (C12) using Mathematica,

uout = 1

2

∫ 1

0
dy

uiny
l√

(y − 1)2 + u2
iny

l
+ 1

2

∫ ∞

1
dy

uiny
−l√

(y2 − 1)2 + u2
iny

−l
. (C13)
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