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Electron-hole imbalance and large thermoelectric effect in superconducting hybrids
with spin-active interfaces
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We argue that spin-sensitive quasiparticle scattering may generate electron-hole imbalance in superconducting
structures, such as, e.g., superconducting-normal hybrids with spin-active interfaces. We elucidate a transparent
physical mechanism for this effect demonstrating that scattering rates for electrons and holes at such interfaces
differ from each other. Explicitly evaluating the wave functions of electronlike and holelike excitations in
superconducting-normal bilayers we derive a general expression for the thermoelectric current and show that—in
the presence of electron-hole imbalance—this current can reach maximum values as high as the critical current
of a superconductor.
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I. INTRODUCTION

For several decades thermoelectric effect in superconduc-
tors was and remains one of the most intriguing topics of
modern condensed matter physics [1]. While theoretically this
effect in ordinary superconductors is expected to be rather
small [2], a number of earlier experimental studies [3–5] indi-
cated a much larger result differing from theoretical predictions
by several orders of magnitude. A similar conclusion was also
reached in a very recent experimental work [6], although the
reported discrepancy between theory and experiment appears
to be somewhat smaller in this case.

Which factors determine the magnitude of the thermo-
electric effect in a metal? In the case of a normal metallic
conductor, simultaneous application of an electric field E and
a temperature gradient ∇T yields an electric current

j = σN E + αN∇T , (1)

where σN is the standard Drude conductivity and αN defines
the thermoelectric coefficient of a normal metal. Provided the
temperature is sufficiently low and elastic electron scattering
on nonmagnetic impurities remains the dominant mechanism
of its momentum relaxation, the thermoelectric coefficient αN

can be estimated by means of the well known Mott formula

αN = 2π2

9
eT

∂

∂μ
[N (μ)τ (μ)v2(μ)]μ=εF

, (2)

where εF is the Fermi energy. This formula demonstrates
that αN may differ from zero only provided the product of
the electron density of states N , its elastic scattering time
τ , and the square of its velocity v substantially depends
on energy in the vicinity of the Fermi surface. In generic
metals, however, this dependence is usually pretty weak
and, hence, the thermoelectric coefficient is typically small
αN ∼ (σN/e)(T/εF ).

One can also demonstrate [2] that the same small factor
T/εF � 1 also controls the thermoelectric coefficient αS in
superconductors. In this case Eq. (1) does not apply anymore,
since no electric field can penetrate into a superconductor.
Instead, a supercurrent j s can be induced by applying a tem-
perature gradient to the system. In uniform superconductors
this supercurrent is exactly compensated by the thermoelectric

current j s = −αS∇T , i.e., the net current just vanishes in
this case. In contrast, in nonuniform structures, such as,
e.g., bimetallic rings, no such compensation is expected
[7,8] and, hence, such structures can be employed in order
to experimentally investigate the thermoelectric effect in
superconductors.

Note that the above arguments explaining small values
of the thermoelectric coefficient both in normal metals and
superconductors apply only provided electron-hole asymmetry
is weak in such systems. If, however, the symmetry between
electrons and holes is violated, one can expect a dramatic
increase of thermoelectric currents. Recently it was demon-
strated that this is indeed the case, for instance, in con-
ventional superconductors doped by magnetic impurities [9],
in unconventional superconductors with quasibound Andreev
states near nonmagnetic impurities [10], or in superconductor-
ferromagnet hybrids with the density of states spin split by
the exchange or Zeeman fields [11,12]. In this paper we
will consider a different structure—a superconducting-normal
(SN) bilayer (see Fig. 1) with a spin-active interface separating
two metallic layers. We will demonstrate that scattering rates
for electrons and holes at such interface—being strongly
energy dependent at the scale of a superconducting energy
gap � � εF —may drastically differ from each other thereby
generating strong electron-hole imbalance in the system. As
a result, one can observe a dramatic enhancement of the
thermoelectric effect which may result in huge thermoelectric
currents reaching maximum values of order of the critical
(depairing) current of a superconductor.

II. MODEL AND BASIC FORMALISM

In order to proceed let us consider a metallic bilayer
consisting of superconducting (S) and normal (N) slabs, as
shown in Fig. 1. As we already pointed out, in what follows
we will assume that these S and N metals are separated by
a spin-active interface which can be produced, e.g., by an
ultrathin layer of a ferromagnet. For the sake of simplicity
here we will merely address the case of clean metals in which
quasiparticles move ballistically and can scatter only at the
SN interface. Finally, we will assume that the left and right
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FIG. 1. (Color online) SN bilayer with spin-active interface.

ends of our bilayer are maintained at temperatures T1 and
T2, respectively (see Fig. 1). Hence quasiparticles entering
our system from the left (right) side are described by the
equilibrium (Fermi) distribution function with temperature T1

(T2).
The wave functions of quasiparticles propagating in

our system obey the well known Bogolyubov–de Gennes
equations(−(1/2m)∇2 − μ �

�∗ (1/2m)∇2 + μ

)(
u

v

)
= ε

(
u

v

)
, (3)

together with the normalization condition∫
(u+

λ uλ′ + v+
λ vλ′)d r = δ(λ − λ′). (4)

Here u, v represent the two-component spinors, λ is the
quantum number distinguishing different solutions, μ is
the chemical potential, and � is the superconducting order
parameter which has no spin structure (i.e., it is proportional
to unity matrix in the spin space which can be achieved by
employing an appropriate basis of states) and which will be
chosen real in our subsequent analysis. The current density in
the system is expressed in the standard form

j (r) = e

2m

∑
ελ>0

Re[u+
λ (r) p̂uλ(r)nλ−v+

λ (r) p̂vλ(r)(1 − nλ)],

(5)

where p̂ = −i∇ is the momentum operator and nλ is the
occupation number for the state λ. In our model nλ just
coincides with the equilibrium Fermi distribution function
corresponding to temperatures T1 and T2 respectively for the
right and left moving quasiparticles.

The solutions of Eq. (3) both in a normal metal and in a
superconductor are expressed as a superposition of incoming
and outgoing waves(

uN

vN

)
=

∑
±

(
uN±
vN±

)
e±ipzzei p‖ρ, (6)

(
uS

vS

)
=

∑
±

(
uS±
vS±

)
e±ipzzei p‖ρ, (7)

where we defined ρ = (x,y), the quasiparticle momentum
components parallel ( p‖) and normal (pz = √

2mμ − p2‖ > 0)
to the SN interface, and introduced the envelope functions
uN,S±, vN,S± varying at scales much longer than the Fermi
wavelength.

In order to account for quasiparticle scattering at the spin-
active SN interface we introduce the scattering matrix and

match the Bogolyubov amplitudes at the interface by means
of the equation⎛

⎜⎝
uS+
uN−
vS+
vN−

⎞
⎟⎠ =

(
Ŝ+ 0
0 Ŝ−

)⎛
⎜⎝

uS−
uN+
vS−
vN+

⎞
⎟⎠, (8)

where Ŝ± represent the normal state electron and hole interface
S matrices

Ŝ± =
(

R̂
1/2
±σ e±iθ̂/2 iD̂

1/2
±σ e±iθ̂/2

iD̂
1/2
±σ e±iθ̂/2 R̂

1/2
±σ e±iθ̂/2

)
, (9)

with D̂±σ = 1 − R̂±σ and

R̂σ =
(

R↑ 0
0 R↓

)
, R̂−σ =

(
R↓ 0
0 R↑

)
. (10)

Here R↑ and R↓ denote the electron reflection coefficients
respectively for the spin-up and spin-down directions, θ̂ = θσ̂3

is 2 × 2 diagonal matrix in the spin space which accounts for
the scattering phase θ , and σ̂3 is the Pauli matrix.

III. ELECTRON-HOLE ASYMMETRY

In order to construct a complete set of solutions of
Eq. (3) we will employ the standard scattering problem
analysis and distinguish 16 different processes illustrated in
Fig. 2. Depending on whether incident electronlike or holelike
excitations come from the normal metal or the superconductor
one can classify all these processes into four groups labeled
respectively as (a), (b), (c), and (d) in Fig. 2. Consider,
for instance, the four scattering processes of an electronlike
excitation arriving at the NS interface from the normal metal
side. These four processes are depicted in Fig. 2(a). Provided
the energy of this excitation ε does not exceed �, it cannot
penetrate deep into the superconductor and gets reflected back
into the normal metal either in the form of an electron (specular
reflection) or, alternatively, as a hole (Andreev reflection). In
the latter case, as usually, the charge conservation is assured by
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FIG. 2. (Color online) Four different electron and hole scattering
processes in a superconducting-normal bilayer.
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an extra Cooper pair going into the superconductor, implying
transferring the charge 2e across the NS interface. These
processes are described by the wave functions (6) if we choose(

uN+
vN+

)
=

(
1
0

)
eiεz/vz + C1

(
0
1

)
e−iεz/vz (11)

(where vz = pz/m > 0) and(
uN−
vN−

)
= C2

(
1
0

)
e−iεz/vz . (12)

Here the first and the second terms in the right-hand side of
Eq. (11) account for the wave functions of respectively an
incident electron and a reflected hole, while the wave function
of a reflected electron is defined in Eq. (12). Accordingly, the
reflection probabilities for both these processes are determined
simply as Re−e

NS,σ = |C2|2 (normal reflection) and Re−h
NS,σ =

|C1|2 (Andreev reflection).
At electron energies ε exceeding � in addition to the above

two processes there also exist two extra ones: an electron
can penetrate into the superconductor from the normal metal
both as an electronlike excitation and as a holelike one; see
Fig. 2(a). The latter process is again accompanied by creation
of an extra Cooper pair in the superconductor, as required by
charge conservation.

The corresponding outgoing amplitudes are expressed as a
linear combination of electronlike and holelike waves as(

uS+
vS+

)
= C3

(
ue(z)
ve(z)

)
,

(
uS−
vS−

)
= C4

(
uh(z)
vh(z)

)
, (13)

For the chosen real order parameter � the hole amplitudes are
linked to the electron ones by means of the relations

uh(z) = v∗
e (z), vh(z) = u∗

e (z), (14)

enabling one to express the wave functions (13) only in terms
of the functions ue and ve. These functions can be found from
the quasiclassical (Andreev) equation(−ivz∂z �

� ivz∂z

)(
ue

ve

)
= ε

(
ue

ve

)
, (15)

combined with the asymptotic behavior deep in the supercon-
ducting bulk (z → ∞)(

ue(z)
ve(z)

)
∼

{
ei

√
ε2−�2z/vz , ε > �,

e−√
�2−ε2z/vz , 0 < ε < �.

(16)

As a result, one can derive the transmission probabilities for
these two processes De−e

NS,σ and De−h
NS,σ .

After a straightforward calculation (see the Appendix) we
obtain

Re−e
NS,σ = ∣∣u2

e(0)
√

Rσ − v2
e (0)

√
R−σ eiσθ

∣∣2Lσ , (17)

Re−h
NS,σ = |ue(0)|2|ve(0)|2D↑D↓Lσ , (18)

De−e
NS,σ = [|ue(0)|2 − |ve(0)|2]|ue(0)|2DσLσ , (19)

De−h
NS,σ = [|ue(0)|2 − |ve(0)|2]|ve(0)|2R−σ DσLσ , (20)

where σ = ±, D↑(↓) = 1 − R↑(↓) is the normal state transmis-
sion probability for a spin-up (spin-down) electron,

Lσ = ∣∣u2
e(0) − v2

e (0)
√

R↑R↓eiσθ
∣∣−2

, (21)

and ue(0) and ve(0) are the interface values of the Bogolyubov
amplitudes. With the aid of the above expressions it is easy
to verify that the total scattering probability for an incident
electron in Fig. 2(a) equals one:

Re−e
NS,σ + Re−h

NS,σ + De−e
NS,σ + De−h

NS,σ = 1. (22)

The remaining 12 scattering processes in Fig. 2 can be
treated analogously. For instance, the reflection and transmis-
sion probabilities for the scattering processes of a holelike
excitation depicted in Fig. 2(b) read

Rh−h
NS,σ = ∣∣u2

e(0)
√

R−σ − v2
e (0)

√
Rσeiσθ

∣∣2Lσ , (23)

Rh−e
NS,σ = |ue(0)|2|ve(0)|2D↑D↓Lσ , (24)

Dh−h
NS,σ = [|ue(0)|2 − |ve(0)|2]|ue(0)|2D−σLσ , (25)

Dh−e
NS,σ = [|ue(0)|2 − |ve(0)|2]|ve(0)|2RσD−σLσ . (26)

The scattering probabilities for electrons and holes coming
from the superconductor [Fig. 2(c) and 2(d)] are specified in
the Appendix.

Let us briefly analyze the above results. To begin with, we
notice that in the case of spin-independent scattering R↑ = R↓
and θ = 0 our Eqs. (17)–(20) and (23)–(26) reduce to the
standard BTK results [13]. In this case both transmission
and reflection probabilities remain symmetric under the
replacement of an electron by a hole and vice versa, i.e., we
have, e.g., Re−e

NS,σ = Rh−h
NS,σ , Re−h

NS,σ = Rh−e
NS,σ , and so on. These

observations just confirm that no electron-hole asymmetry can
be induced by spin-independent scattering at the SN interface.
Turning now to spin-sensitive scattering considered here we
notice that scattering probabilities are in general not anymore
equal to each other. Comparing, for instance, Eqs. (17)–(20)
and (23)–(26), we observe that for R↑ = R↓ and θ = 0 only
two reflection probabilities remain equal, Re−h

NS,σ = Rh−e
NS,σ ,

whereas all others differ, e.g., Re−e
NS,+ = Re−e

NS,−, Re−e
NS,σ =

Rh−h
NS,σ , Re−h

NS,+ = Rh−e
NS,−, etc. Thus we arrive at an important

conclusion: spin-sensitive quasiparticle scattering generates
electron-hole imbalance in superconducting structures which
manifests itself in different scattering rates for electrons and
holes in such systems.

This conclusion has important implications for the thermo-
electric effect in superconductors. As we already pointed out,
electron-hole imbalance can be considered as an important
prerequisite for strong enhancement of the thermoelectric
coefficient; see Eq. (2). Below we will explicitly evaluate ther-
moelectric currents in SN bilayers with spin-active interfaces
and demonstrate that an asymmetry in the scattering rates for
electrons and holes indeed yields large thermoelectric effect
in such systems.
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IV. THERMOELECTRIC CURRENTS

Making use of the above results for the quasiparticle wave
functions and employing Eq. (5) together with the normal-
ization condition (4) we can now evaluate thermoelectric
currents both in the superconductor (z > 0) and in the normal
metal (z < 0). As these currents are directed along the SN
interface, below we will only be interested in the x component
of the current density jx(z). Expressing the current in the
superconductor in terms of both reflection and transmission
probabilities as well as quasiparticle distribution functions for
the left and right movers at x → ±∞, we obtain

jx(z > 0) = − e

2m

∫ ∞

0

dε

2π

[
tanh

ε

2T1
− tanh

ε

2T2

]

×
∫

| p‖| < pF

px > 0

d2 p‖
(2π )2

px

vz

|ue(z)|2 + |ve(z)|2
|ue(0)|2 − |ve(0)|2

×
∑
σ=±

(
Re−e

SN,σ + Re−h
SN,σ − Rh−h

SN,σ − Rh−e
SN,σ

+De−e
NS,σ + De−h

NS,σ − Dh−h
NS,σ − Dh−e

NS,σ

)
. (27)

A similar expression can also be derived for the thermoelectric
current in the normal metal. Combining both these expressions
with our results for the transmission and reflection probabili-
ties, we finally get

jx(z) = e

m

∫ ∞

0

dε

2π

[
tanh

ε

2T1
− tanh

ε

2T2

] ∫
| p‖| < pF

px > 0

× d2 p‖
(2π )2

px

vz

|ve(0)|2(R↑ − R↓)(L+ − L−)U(z), (28)

where we defined

U(z) =
{|ue(z)|2 + |ve(z)|2, z > 0,

|ve(0)|2 − |ue(0)|2, z < 0.
(29)

Equations (28) and (29) represent the key result of this work.
We observe that the thermoelectric current vanishes identically
[14] provided at least one of the two conditions, R↑ = R↓
or θ = 0, is fulfilled. If, however, both these conditions are
violated, the thermoelectric current differs from zero and can
become large.

Let us briefly analyze the above results. In the supercon-
ducting layer (z > 0) the thermoelectric current density (28),
(29) depends on the coordinate z in the vicinity of the interface
and tends to some nonzero value in the bulk. In the normal
metal, in contrast, jx remains spatially constant, i.e., it does
not depend on the distance |z| from the interface. This a
well known property of the ballistic model employed here
[15]. Within this model the electron elastic mean free path �

tends to infinity and no electron momentum relaxation occurs.
Relaxing this condition, i.e., assuming the mean free path to
be finite, one can demonstrate that jx(z) decays exponentially
into the normal metal at distances of order �. Hence, in this
case the thermoelectric current is essentially confined to the
SN interface. The analysis of this physical situation is beyond
the frames of this work and will be published elsewhere [16].

In order to explicitly evaluate the thermoelectric current it
is necessary to self-consistently determine both the functions
ue(z), ve(z) and the order parameter �(z) for any given values

of the parameters R↑, R↓, and θ . If, for simplicity, one neglects
the coordinate dependence of the order parameter by setting
�(z > 0) = �, one readily finds(

ue(z)
ve(z)

)
=

(
ε + √

ε2 − �2

�

)
ei

√
ε2−�2z/vz , (30)

where we define Im
√

ε2 − �2 > 0 for ε2 < �2. Combining
these expressions with Eqs. (28), (29) and splitting the
energy integral in Eq. (28) into subgap (|ε| < �) and overgap
(|ε| > �) parts, one observes that the overgap contribution
to the current vanishes because the condition L+ = L− holds
under this approximation. The subgap contribution to jx also
vanishes in the normal metal and remains nonzero in the
superconductor in the vicinity of the SN interface.

The subgap contribution to jx shows the same behavior
also if one relaxes the condition �(z > 0) = � and takes
into account the proximity induced suppression of the order
parameter �(z) near the SN interface. In this case L+ does
not in general coincide with L− and, hence, the overgap
contribution to the thermoelectric current differs from zero
both in normal and superconducting layers.

Estimating the magnitude of the thermoelectric current den-
sity at intermediate temperatures T1,T2 ∼ �, from Eqs. (28)
and (29) we obtain

jx ∼ evF N0(R↑ − R↓) sin θ (T1 − T2), (31)

where N0 ≡ N (εF ) = mpF /(2π2) is the normal state density
of states at the Fermi level. In contrast to the standard result [2],
the expression (31) does not contain the small factor T/εF �
1, i.e., the thermoelectric effect can be large. If one furthermore
sets (R↑ − R↓) sin θ ∼ 1 and T1 − T2 ∼ Tc, the thermoelectric
current density (31) becomes of the same order as the critical
one for a clean superconductor jx ∼ jc ∼ evF N0Tc.

In summary, we demonstrated that quasiparticle scattering
at spin-active interfaces is characterized by different scat-
tering rates for electrons and holes, thus being responsible
for electron-hole imbalance generation in superconducting
hybrids under consideration. As a result of this imbalance,
the thermoelectric currents in such structures can be greatly
enhanced and under certain conditions may reach remarkably
high values of order of the critical (depairing) current of a
superconductor. This thermoelectric effect can be reliably de-
tected in modern experiments with bimetallic superconducting
rings (see, e.g., Refs. [3–6] and a discussion in Ref. [9]) and
can be exploited in a number of novel devices, such as, e.g.,
thermoelectric bolometers.

APPENDIX: BOGOLYUBOV WAVE FUNCTIONS

Resolving Bogolyubov equations (3) with appropriate
boundary and asymptotic conditions, we derive explicit ex-
pressions for the quasiparticle and hole wave functions in
the S and N parts of our bilayer. In general, the Bogolyubov
amplitudes u, v have the form of the following two component
spinors:

(
u

v

)
=

⎛
⎜⎝

u↑
u↓
v↑
v↓

⎞
⎟⎠. (A1)
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Within our model, interface electron scattering preserves
its spin projection. Hence the solutions of the Bogolyubov
equations can be split into two different classes,

(
u

v

)
=

⎛
⎜⎝

u↑
0
v↑
0

⎞
⎟⎠ and

(
u

v

)
=

⎛
⎜⎝

0
u↓
0
v↓

⎞
⎟⎠, (A2)

describing respectively spin-up and spin-down excitations in
our structure. For the sake of simplicity, here we will indicate

only nonzero components of the corresponding Bogolyubov
amplitudes.

As illustrated in Fig. 2, all scattering processes can be clas-
sified in four different groups (a), (b), (c), and (d) depending
on whether incident electronlike or holelike excitations come
from the normal metal or superconductor. For each of these
four groups one can evaluate the corresponding wave functions
and obtain the following.

(a) The wave function describing scattering of an electron-
like excitation coming from the bulk of the normal metal reads

S :

(
ue(z)
ve(z)

)
i
√

Dσue(0)eiσθ/2

u2
e(0) − v2

e (0)
√

R↑R↓eiσσ
eipzzei p‖ρ +

(
ve(z)
ue(z)

)
i
√

R−σDσve(0)eiσθ

u2
e(0) − v2

e (0)
√

R↑R↓eiσθ
e−ipzzei p‖ρ, (A3)

N :

(
1
0

)
eiεz/|vz|eipzzei p‖ρ +

⎛
⎜⎝eiσθ/2

√
Rσ u2

e (0)−√
R−σ v2

e (0)eiσθ

u2
e (0)−v2

e (0)
√

R↑R↓eiσθ
e−iεz/|vz|e−ipzz

√
D↑D↓ue(0)ve(0)eiσθ

u2
e (0)−v2

e (0)
√

R↑R↓eiσθ
e−iεz/|vz|eipzz

⎞
⎟⎠ei p‖ρ . (A4)

(b) For the wave function describing scattering of a holelike excitation coming from the bulk of the normal metal we obtain

S : −
(

ue(z)
ve(z)

)
i
√

RσD−σ ve(0)eiσθ

u2
e(0) − v2

e (0)
√

R↑R↓eiσθ
eipzzei p‖ρ −

(
ve(z)
ue(z)

)
i
√

D−σ ue(0)eiθσ /2

u2
e(0) − v2

e (0)
√

R↑R↓eiσθ
e−ipzzei p‖ρ, (A5)

N :

(
0
1

)
eiεz/|vz|e−ipzzei p‖ρ +

⎛
⎜⎝

√
D↑D↓ue(0)ve(0)eiσθ

u2
e (0)−v2

e (0)
√

R↑R↓eiσθ
e−iεz/|vz|e−ipzz

eiσθ/2
√

R−σ u2
e (0)−√

Rσ v2
e (0)eiσθ

u2
e (0)−v2

e (0)
√

R↑R↓eiσθ
e−iεz/|vz|eipzz

⎞
⎟⎠ei p‖ρ . (A6)

(c) The wave function describing scattering of an electronlike excitation coming from the superconductor bulk has the form

S :

(
vh(z)
uh(z)

)
e−ipzzei p‖ρ +

(
ue(z)
ve(z)

)
ue(0)vh(0) − uh(0)ve(0)

u2
e(0) − v2

e (0)
√

R↑R↓eiσθ

√
Rσeiσθ/2eipzzei p‖ρ

−
(

ve(z)
ue(z)

)
ue(0)uh(0) − ve(0)vh(0)

√
R↑R↓ei/2eiσθ

u2
e(0) − v2

e (0)
√

R↑R↓eiσθ
e−ipzzei p‖ρ, (A7)

N :
ue(0)vh(0) − uh(0)ve(0)

u2
e(0) − v2

e (0)
√

R↑R↓eiσθ

(
i
√

Dσue(0)eiσθ/2e−iεz/|vz|e−ipzz

i
√

RσD−σ ve(0)eiσθ e−iεz/|vz|eipzz

)
ei p‖ρ . (A8)

(d) For the wave function describing scattering of a holelike excitation coming from the superconducting bulk we find

S :

(
uh(z)
vh(z)

)
eipzzei p‖ρ −

(
ue(z)
ve(z)

)
ue(0)uh(0) − ve(0)vh(0)

√
R↑R↓eiσθ

u2
e(0) − v2

e (0)
√

R↑R↓eiσθ
eipzzei p‖ρ

−
(

ve(z)
ue(z)

)
ue(0)vh(0) − uh(0)ve(0)

u2
e(0) − v2

e (0)
√

R↑R↓eiσθ

√
R−σ eiσθ/2e−ipzzei p‖ρ, (A9)

N :
ue(0)vh(0) − uh(0)ve(0)

u2
e(0) − v2

e (0)
√

R↑R↓eiσθ

(
i
√

R−σ Dσve(0)eiσθ e−iεz/|vz|e−ipzz

−i
√

D−σ ue(0)eiσθ/2e−iεz/|vz|eipzz

)
ei p‖ρ . (A10)

Index σ distinguishes spin-up and spin-down wave functions.
Making use of the above expressions we recover both

normal and Andreev reflection and transmission probabilities
for all 16 processes depicted in Fig. 2. Equations (17)–(20)
and (23)–(26) define scattering probabilities for eight of these
processes. The remaining eight probabilities are

Re−e
SN,σ = [|ue(0)|2 − |ve(0)|2]2RσLσ , (A11)

Re−h
SN,σ = |ue(0)v∗

e (0) − ve(0)u∗
e (0)

√
R↑R↓eiσθ |2Lσ , (A12)

De−e
SN,σ = [|ue(0)|2 − |ve(0)|2]|ue(0)|2DσLσ , (A13)

De−h
SN,σ = [|ue(0)|2 − |ve(0)|2]|ve(0)|2RσD−σLσ , (A14)

Rh−h
SN,σ = [|ue(0)|2 − |ve(0)|2]2R−σLσ , (A15)
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Rh−e
SN,σ = |ue(0)v∗

e (0) − ve(0)u∗
e (0)

√
R↑R↓eiσθ |2Lσ , (A16)

Dh−h
SN,σ = [|ue(0)|2 − |ve(0)|2]|ue(0)|2D−σLσ , (A17)

Dh−e
SN,σ = [|ue(0)|2 − |ve(0)|2]|ve(0)|2R−σ DσLσ , (A18)

where Lσ is again defined in Eq. (21).
In order to evaluate the electric current in our sys-

tem it is necessary to properly normalize the above
wave functions. This task can be accomplished with the
aid of Eq. (4). The wave functions describing scatter-
ing of electronlike and holelike excitations coming from
the superconductor bulk obey the following normalization

condition:∫
[u∗

p‖,ε(r)u p′
‖,ε′ (r) + v∗

p‖,ε(r)v p′
‖,ε′ (r)]d r

= (2π )3|vx |
√

ε2 − �2

ε
δ(ε − ε′)δ( p‖ − p′

‖). (A19)

At the same time, the normalization condition for the wave
functions of electrons and holes coming from the side of the
normal metal take a slightly different form, i.e.,∫

[u∗
p‖,ε(r)u p′

‖,ε′ (r) + v∗
p‖,ε(r)v p′

‖,ε′ (r)]d r

= (2π )3|vx |δ(ε − ε′)δ( p‖ − p′
‖). (A20)
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