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Low-temperature behavior of the statistics of the overlap distribution in Ising spin-glass models
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Using Monte Carlo simulations, we study in detail the overlap distribution for individual samples for several
spin-glass models including the infinite-range Sherrington-Kirkpatrick model, short-range Edwards-Anderson
models in three and four space dimensions, and one-dimensional long-range models with diluted power-law
interactions. We study three long-range models with different powers as follows: The first is approximately
equivalent to a short-range model in three dimensions, the second to a short-range model in four dimensions, and
the third to a short-range model in the mean-field regime. We study an observable proposed earlier by some of
us which aims to distinguish the “replica symmetry breaking” picture of the spin-glass phase from the “droplet
picture,” finding that larger system sizes would be needed to unambiguously determine which of these pictures
describes the low-temperature state of spin glasses best, except for the Sherrington-Kirkpatrick model, which is
unambiguously described by replica symmetry breaking. Finally, we also study the median integrated overlap
probability distribution and a typical overlap distribution, finding that these observables are not particularly
helpful in distinguishing the replica symmetry breaking and the droplet pictures.
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I. INTRODUCTION

Despite much debate, there is still no consensus as to
the nature of the spin-glass state. According to the “replica
symmetry breaking” (RSB) picture of Parisi [1–3], there are
many “pure states,” a nontrivial order parameter distribution,
and a line of transitions in a magnetic field, the de Almeida–
Thouless (AT) [4] line. By contrast, according to the droplet
theory [5–9], there is only a symmetry-related pair of pure
states in zero field (one state in a nonzero field), the order
parameter distribution is trivial in the thermodynamic limit,
and there is no AT line. The nature of the spin-glass state has
been investigated in a series of papers by Newman and Stein
(see, for example, Ref. [10] and references therein), and most
recently in a paper by Read [11]. A discussion from an RSB
point of view can be found in Ref. [12].

The averaged order parameter distribution P (q), defined in
Eqs. (11) and (12) below, is predicted to be nonzero in the
vicinity of q = 0 as the size of the system N ≡ Ld tends to
infinity, according to RSB theory [3], whereas it is expected to
vanish [5] as L−θ in the droplet picture where θ is a positive
“stiffness” exponent. Results from simulations [12–15] seem
close to the predictions of RSB, but it has been argued [16,17]
that the sizes which can be simulated are too small to see the
asymptotic behavior.

Consequently, there has recently been interest [17–19] in
studying other quantities related to P (q) but where more
attention is paid to the overlap distribution of individual
samples, PJ (q), rather than just calculating the sample
average. Accurately determining PJ (q) for each sample is
more demanding numerically than just computing the average,
but computer power has advanced to the point where this is
now feasible.

In this paper we study in detail these new quantities
for a range of models. In addition to short-range Edwards-

Anderson (EA) Ising spin-glass models in three (3D) and four
(4D) space dimensions, and the infinite-range Sherrington-
Kirkpatrick [20] (SK) model, we also study diluted long-
range (LR) Ising spin-glass models in one space dimension
(1D) in which the interaction falls off with a power of the
distance between two spins. Varying the power is argued to be
analogous to changing the space dimension d of a short-range
model [15,21–25]. An important advantage of the LR models
is that one can study them in effective space dimensions
d � 6 that are not easily accessible for short-range models
via computer simulations. In this regime the number of spins
for short-range (SR) models N = Ld increases so fast with the
linear system size L that one cannot simulate the range of sizes
that is necessary for finite-size scaling (FSS). It is important to
study d � 6 because it is conjectured that d = 6 is the upper
critical dimension above which mean-field behavior is seen.
Finally, verifying the consistency of our results for both SR
and LR models gives us additional confidence in our numerical
results.

The plan of this paper is as follows. Section II describes
the several models that we study, while Sec. III discusses the
Monte Carlo technique. In Sec. IV we explain the quantities we
compute to try to understand better the nature of the spin-glass
state, and the results are given in Sec. V. We summarize our
results and give our conclusions in Sec. VI.

II. MODELS

We study several classes of Ising spin-glass models. These
are long-range one-dimensional models, three- and four-
dimensional short-range models known as Edwards-Anderson
models, and the infinite-range spin glass known as the
Sherrington-Kirkpatrick model. In all cases the Hamiltonian
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can be written in the form

H = −
∑
i,j

Jij SiSj , (1)

where the Si (i = 1,2, . . . ,N ) represent Ising spins that take
values ±1, and the Jij are statistically independent, quenched
random variables. The summation is defined over all pairs
of interacting spins. All of the models studied here have
finite-temperature spin-glass transitions. The models differ
according to which spins interact and the strength of the
couplings.

A. Edwards-Anderson models on hypercubic lattices

The three- and four-dimensional EA models that we study
are defined on (hyper)cubic lattices with periodic boundary
conditions. The nearest-neighbor interactions are chosen from
a Gaussian distribution with zero mean and unit variance,

[Jij ]av = 0,
[
J 2

ij

]
av = 1, (2)

where [· · · ]av indicates a quenched average over the couplings.
From numerical studies it is known that the transition temper-
atures are Tc = 0.951(9) [26] in 3D and Tc = 1.80(1) [27]
in 4D.

B. Sherrington-Kirkpatrick model

For the SK [20] model each spin interacts with every other
spin. A coupling is chosen from a Gaussian distribution with
zero mean and variance,[

J 2
ij

]
av = 1/N. (3)

The variance of the coupling is inversely proportional to
the number of spins N so that there is a well-defined
thermodynamic limit. The transition temperature for this
model is Tc = 1 [20].

C. One-dimensional diluted long-range model

For the diluted LR models the mean coupling is zero but the
variance depends on the distance between the spins according
to [

J 2
ij

]
av ∝ r−2σ

ij , (4)

where σ is the range parameter, and rij is the chord distance
between sites i and j when the sites are arranged on a ring [15],
i.e.,

rij = N

π
sin

(
π |i − j |

N

)
. (5)

We choose a distribution P (Jij ) that satisfies Eq. (4) at a large
distance while allowing for efficient computer simulation. In
this diluted model [24,28], most of the interactions between
two spins are absent (i.e., most of the Jij are zero) and it
is the probability of there being a bond between two spins
(rather than its strength) that falls off with their separation
(asymptotically as 1/r2σ

ij ). More precisely,

P (Jij ) = (1 − pij )δ(Jij ) + pij

1√
2π

e−J 2
ij /2, (6)

where pij ∝ 1/r2σ
ij at a large distance. It is convenient to fix the

mean number of neighbors z. The pairs of sites with nonzero
bonds are then generated as follows. Pick a site i at random.
Then pick a site j with probability p̃ij = A/r2σ

ij , where A is
determined by normalization [28]. If there is already a bond
between i and j , repeat until a pair i,j is selected which does
not already have a bond [29]. At that point set Jij equal to a
Gaussian random variable with mean zero and variance unity.
This process is repeated Nz/2 times so the number of sites
connected to a given site has a Poisson distribution with mean
z. Because each site has, on average, z neighbors, and the
variance of each interaction is unity, we have∑

j

[
J 2

ij

]
av = z. (7)

This prescription has the advantage that Monte Carlo updates
require only a time proportional to Nz rather than N2 that
would be required if all bonds were present [24,28].

We consider three values of the range parameter: σ = 0.6,
which is in the mean-field region [23], σ = 0.784, which
represents, at least approximately, a short-range system in
four dimensions [23,25,30,31], and σ = 0.896, which approx-
imately represents a three-dimensional system [23,25,30,31].
The values of Tc are approximately equal to [31] 1.35 and
0.795 for σ = 0.784 and 0.896, respectively. For σ = 0.6 we
find Tc ≈ 1.953.

III. METHODS

We have carried out parallel tempering/replica-exchange
Monte Carlo simulations [32–34] of the models described
in Sec. II. In parallel tempering, NT replicas of the system
with the same couplings are each simulated at a different
temperature in the range Tmin–Tmax. In addition to standard
Metropolis sweeps at each temperature, there are parallel
tempering moves that allow replicas to be exchanged between
neighboring temperatures. A single sweep consists of a
Metropolis sweep at each temperature, followed by a set of
parallel tempering moves between each pair of neighboring
temperatures. The power of parallel tempering is that the
temperature swap moves permit replicas to diffuse from low
temperatures, where equilibration is very difficult, to high
temperatures, where it is easy, and back to low temperature.
These round trips greatly accelerate equilibration at the
lowest temperatures. The simulation parameters are shown in
Tables I–IV. The parameter b determines the number of
sweeps: 2b for equilibration followed by 2b for data collec-
tion. The parameter Nsa is the number of disorder samples
simulated.

For each model we have chosen the lowest temperature to
be less than or equal to 0.4Tc, the approximate temperature for
which we report most of our results.

To test our simulations for equilibration, we use an
equilibrium relationship between sample-averaged quantities,
valid for systems with Gaussian interactions, which has been
discussed before [14,15]. Except for the SK model, the relation
is [15]

U = − z

2T
(1 − ql), (8)
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TABLE I. Simulation parameters for the 1D models. For each
value of σ and size N , Nsa samples were equilibrated for 2b sweeps
and then measured for an addition 2b sweeps, using replica-exchange
Monte Carlo with NT temperatures distributed between Tmin and Tmax.

σ N b Tmin Tmax NT Nsa

0.6 64 24 0.82 3 50 4992
0.6 128 24 0.82 3 50 4800
0.6 256 24 0.82 3 50 4800
0.6 512 24 0.82 3 50 4684
0.6 1024 25 0.82 3 50 4800

0.784 64 24 0.55 2 50 4377
0.784 128 24 0.55 2 50 5060
0.784 256 24 0.55 2 50 5470
0.784 512 24 0.55 2 50 5207
0.784 1024 25 0.55 2 50 5988

0.896 64 24 0.31 1.2 50 2600
0.896 128 24 0.31 1.2 50 4468
0.896 256 24 0.31 1.2 50 4749
0.896 512 24 0.31 1.2 50 4749
0.896 1024 25 0.31 1.1788 25 4749

where z is the (mean) coordination number, T is the tempera-
ture,

U = − 1

N

∑
〈i,j〉

[Jij 〈SiSj 〉]av (9)

is the energy per spin and ql is the link overlap,

ql = 2

Nz

∑
〈i,j〉

[εij 〈SiSj 〉2]av, (10)

where εij = 1 if there is a bond between i and j and
zero otherwise. For the SK model one obtains formally the
corresponding relation by putting z = 1 in Eqs. (8) and (10)
and setting all the εij equal to 1. For the EA models z = 2d

and εij is defined by the associated hypercubic lattices with
periodic boundary conditions.

While Eq. (8) is a useful criterion for the equilibration of
sample-averaged quantities such as the energy and overlap,
we must be more careful when studying quantities that may
be sensitive to the equilibration of individual samples, such

TABLE II. Simulation parameters for the 3D EA spin glass. For
each number of spins N = L3 we equilibrate and measure for 2b

Monte Carlo sweeps. Tmin (Tmax) is the lowest (highest) temperature
used and NT is the number of temperatures. Nsa is the number
of disorder samples. For T � 0.42 all system sizes are in thermal
equilibrium.

N L b Tmin Tmax NT Nsa

64 4 18 0.2000 2.0000 16 4891
216 6 24 0.2000 2.0000 16 4961
512 8 27 0.2000 2.0000 16 5130
1000 10 27 0.2000 2.0000 16 5027
1728 12 25 0.4200 1.8000 26 3257

TABLE III. Simulation parameters for the 4D EA spin glass. For
details, see the caption of Table II. Here N = L4.

N L b Tmin Tmax NT Nsa

256 4 23 0.7200 2.3800 52 3252
625 5 23 0.9101 2.3800 42 4086
1296 6 23 0.7200 2.3800 52 3282
2401 7 23 0.9101 2.3800 42 4274
4096 8 23 0.7200 2.3800 52 3074
6561 9 24 0.7200 2.3800 52 3010

as those considered in Sec. IV. To study such quantities we
run our simulations for many times the number of sweeps
needed to satisfy Eq. (8). In fact, we require that at least three
logarithmically spaced bins agree within error bars.

Figure 1 shows an example of the equilibration test for the
1D LR model with σ = 0.896 for the largest size at the lowest
temperature, and also for the 3D EA model with L = 8, again
at the lowest temperature. The vertical axis is the difference
between the two sides of Eq. (8) while the horizontal axis is
the number of Monte Carlo sweeps on a logarithmic scale.
This difference vanishes within the error bars at around 105

sweeps in both cases, but the simulation continues for much
longer than this to ensure that good statistics are obtained for
all samples.

As an additional check on equilibration for the 1D LR
models, Fig. 2 shows several quantities of interest, defined in
Sec. IV, as a function of the number of sweeps on a log scale,
for the lowest temperature studied and for each value of σ .
The data appear to have saturated.

The 3D EA data set has also been tested for equilibration
using the integrated autocorrelation time, as discussed in
Ref. [35].

IV. MEASURED QUANTITIES

For a single sample J ≡ {Jij }, the spin overlap distribution
PJ (q) is given by

PJ (q) =
〈
δ

(
q − 1

N

N∑
i=1

S
(1)
i S

(2)
i

)〉
, (11)

where “(1)” and “(2)” refer to two independent copies of
the system with the same interactions, and 〈· · · 〉 denotes a
thermal (i.e., Monte Carlo) average for the single sample. In
most previous work, PJ (q) is simply averaged over disorder

TABLE IV. Simulation parameters for the SK spin glass. For
details, see the caption of Table II.

N b Tmin Tmax NT Nsa

64 22 0.2000 1.5000 48 5068
128 22 0.2000 1.5000 48 5302
256 22 0.2000 1.5000 48 5085
512 18 0.2000 1.5000 48 4989
1024 18 0.2000 1.5000 48 3054
2048 16 0.4231 1.5000 34 3020
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FIG. 1. (Color online) Absolute difference between ql and the
quantity q ′

l (U ) ≡ (2T/z)U + 1, obtained from the equilibrium rela-
tionship of Eq. (8), for the LR model with N = 1024, σ = 0.896 (top
panel) and the 3D EA model with L = 8 (lower panel) as a function
of Monte Carlo sweeps (t) on a log-linear scale. At large times the
difference is zero, but the simulation continues well beyond this point
to ensure that good statistics are obtained for all samples. Error bars
are smaller than the symbols. Both panels have the same horizontal
scale.

samples to obtain P (q) defined by

P (q) = [PJ (q)]av. (12)

In order to gain additional information that might distin-
guish the RSB and droplet pictures, several investigators have
recently introduced other observables related to the statistics of
PJ (q). Yucesoy et al. [18] proposed a measure that is sensitive
to peaks in the overlap distributions of individual samples. A

sample is counted as “peaked” if PJ (q) exceeds a threshold
value κ in the domain |q| < q0. The quantity �(q0,κ) is then
defined as the fraction of peaked samples. More precisely, for
each sample let

�J (q0,κ) =
{

1, if P max
J (q0) > κ,

0, otherwise,
(13)

where P max
J (q0) is the maximum value of the distribution in

the domain specified by q0,

P max
J (q0) = max{PJ (q) : |q| < q0}. (14)

We then define �(q0,κ) to be the sample average,

�(q0,κ) = [�J (q0,κ)]av. (15)

The quantity �(q0,κ) is a nondecreasing function of q0 and
a nonincreasing function of κ . This behavior follows simply
from the definition of �(q0,κ). A more important property
of �(q0,κ) is that it must go either to zero or one as N →
∞ [36]. All the scenarios for the low-temperature behavior of
spin-glass models predict that PJ (q) consists of δ functions as
N → ∞. The difference between scenarios lies in the number
and position of these δ functions. The RSB picture predicts
that there is a countable infinity of δ functions that densely fill
the line between −qEA and +qEA. Thus, for any q0 and any
κ , �(q0,κ) → 1 for models described by RSB. On the other
hand, for models described by the droplet scenario or other
single pair of states scenarios, �(q0,κ) → 0 for any q0 < qEA

and any κ . Thus, the quantity �(q0,κ) will sharply distinguish
the RSB and droplet scenarios if one can study large enough
sizes. We shall study the size dependence of � numerically
for all our models in Sec. V A.

As mentioned above, most previous work evaluated the
average probability distribution P (q), but recently Middle-
ton [17], and Monthus and Garel [19], have proposed measures
yielding a typical value of the sample distribution PJ (q)
in the hopes that these measures would provide a clearer
differentiation between the RSB and droplet pictures than the
average P (q).

Middleton [17] studied Imed(q), the median of the cumula-
tive overlap distribution of a single sample IJ (q), where IJ (q)
is defined by

IJ (q) =
∫ q

−q

PJ (q ′)dq ′. (16)
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(a) Δ(q0 = 0.2, κ = 1) (b) Iav(q = 0.2) (c) Imed(q = 0.2)

FIG. 2. (Color online) Plots of several observables obtained from the overlap distribution, defined in Sec. IV, vs the number of Monte Carlo
sweeps for the largest size studied, N = 1024, for the long-range model at the lowest temperature simulated for each value of σ . (See Table I.)
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FIG. 3. (Color online) �(q0,κ) as a function of system size N for the long-range models and the SK model for all available values of σ

and various values of the window q0 and threshold κ . In all cases the temperature is 0.4Tc. All panels have the same horizontal scale, and all
panels in a row have the same vertical scale.

We also denote the average cumulative distribution over
samples by I av(q), which is given by

I av(q) =
∫ q

−q

P (q ′)dq ′. (17)

The median is insensitive to the effect of samples with
unusually large values of IJ (q).

For the SK model P (q) tends to a constant as q → 0,
and so I av(q) ∝ q for small q. We can obtain a rough idea
of how Imed(q) varies with q for small q in the SK model
from the results of Mézard et al. [37]. First of all, to obtain
a notation which is more compact and is extensively used in
other work, we write x(q) ≡ I av(q). Mézard et al. [37] argue
that, at small q where x(q) is also small, the probability of a
certain integrated value IJ is given by

p(IJ ) ∝ xIx−1
J , (18)

where we recall that x is the average value of IJ . From Eq. (18)
we estimate the median in terms of the average as

Imed(q) ∝ e− ln 2/x(q) = e− ln 2/[2qP (0)] (19)

for q → 0, where we used that P (0) is nonzero so x(q) ≡
I av(q) � 2P (0)q in this limit [see Eq. (17)]. Hence the median
tends to zero exponentially fast as q → 0 whereas the average
only goes to zero linearly.

In the droplet picture, P (0) is expected to vanish with L

as [5] L−θ , so I av(q) ∝ L−θq for small q. The median value

Imed(q) will presumably also vanish for small q as L → ∞,
but we are not aware of any precise predictions for this. We
shall study the median cumulative distribution numerically in
Sec. V B.

Another measure related to the overlap distribution of
individual samples has been proposed by Monthus and
Garel [19]. They suggest calculating a “typical” overlap
distribution defined by the exponential of the average of the
log as

P typ(q) = exp[ln PJ (q)]av. (20)

We shall study this quantity numerically in Sec. V C.

V. RESULTS

A. Fraction of peaked samples, �(q0,κ)

Plots of �(q0,κ) for the 1D long-range models for various
values of q0 and κ at T ≈ 0.4Tc are given in Fig. 3, while the
corresponding plots for the 3D and 4D models are shown in
Fig. 4. A comparison with the SK model is made in both
cases. The error bars for all plots in this section are one
standard deviation statistical errors due to the finite number
of samples. There are also errors in the data for each sample
due to the finite length of the data collection. For the EA and SK
models, we estimated these errors by measuring �+(q0,κ) and
�−(q0,κ), defined as in Eqs. (13)–(15) but from the q > 0 and
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FIG. 4. (Color online) �(q0,κ) as a function of system size N for the short-range models and the SK model for several values of the
window q0 and threshold value κ . The points connected by solid lines are for the EA models, while those connected by dashed lines are for the
SK model. The temperatures are 0.4Tc for the 3D data and 0.5Tc for the 4D data. All panels in a column have the same horizontal scale and all
panels in a row have the same vertical scale.

q < 0 components of PJ (q), respectively. These are expected
to be reasonably independent and their differences provide
an estimate of the error due to finite run lengths. For all
sizes, the average absolute difference between these quan-
tities, [|�+(q0,κ) − �(q0,κ)| + |�−(q0,κ) − �(q0,κ)|]/2, is
less than the statistical error. While a similar analysis was not
done for the 1D LR models, measurements of � versus the
number of sweeps shown in Fig. 2 suggest that the data have
saturated within statistical error.

One can draw several qualitative conclusions from these
plots. It is apparent that �(q0,κ) is an increasing function
of N for small N . As the system size increases, we expect
�(q0,κ) to increase because all the features of PJ (q) sharpen.
For the SK model, which is indisputably described by the
RSB picture, the number of features and their height should
both increase and �(q0,κ) should be a strongly increasing
function of N . Indeed, this behavior is seen except for κ = 0.5,
which is a sufficiently small value that �(q0,κ) is effectively
measuring whether or not there is a feature in the relevant
range, and this quantity increases relatively slowly for the
SK model.

However, as σ increases for the 1D models, the curves
become increasingly flat and the difference between σ =
0.896 and the SK model is striking; the former is nearly
flat while the latter increases sharply (see Fig. 3). The same
qualitative distinction holds between the 3D EA model and the
SK model (see Fig. 4). The similarity between the behavior of
the 1D model for σ = 0.896 and the 3D EA model is expected
since the two models are believed to have the same qualitative
behavior. The distinction between the SK model and the 1D
model with σ = 0.784 and the 4D EA model is less striking
but qualitatively the same.

It is interesting to compare results for the SK model with the
1D model with σ = 0.6, which is in the mean-field regime. For
κ = 0.5 the results for the two models are very similar, and do
not increase much with N , indicating that κ = 0.5 is too small
to give useful information for this range of sizes, as discussed
above. For κ = 1, the SK data increase most rapidly with N ,
and the σ = 0.6 data increase less quickly, but still faster than
the other values of σ . For κ = 2, the SK data increase quickly,
while for the value of σ furthest from the SK limit, 0.896,
the data are moderately large but roughly size independent
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FIG. 5. (Color online) Mean and median over samples of the integrated distribution IJ (q) for the long-range models and the SK model. In
all cases the temperature is close to 0.4Tc. For both the SK model and the 1D models, the median shows a relatively strong size dependence
compared with the mean, this difference being the least pronounced for σ = 0.896. The “theory” curve for the SK data [Eq. (19)] is expected
to be valid for small q only. The theory expression can be multiplied by an (unknown) constant which has been set to unity. All panels have the
same horizontal and vertical scales.

over the range of sizes simulated. Curiously, for intermediate
values of σ (0.6 and 0.784) the data are very small but show
an increase for the larger sizes. This increase is particularly
sharp for σ = 0.6. It seems that there is an initial value of �

for small N and a growth as N increases. We do not have a
good understanding of the initial value, e.g., why it is so small
for κ = 2 and σ = 0.6, and 0.784. The more important aspect
of the data is the increase observed, at least for most parameter
values, at large sizes. Given the rapid increase in the data for
σ = 0.6, κ = 2 for the largest size, we anticipate that for still
larger sizes, its value for � for κ = 2 would be closer to that
of the SK model than that of the intermediate σ values.

There are two possible interpretations of the trends dis-
cussed above. If one believes that the RSB picture holds
for all of the models studied here, then one can point to
the fact that all the � curves are nondecreasing and assert
that they will all approach unity as N → ∞, just extremely
slowly for the 3D EA model and the 1D σ = 0.896 model.
An argument supporting this idea is made in Ref. [38] and
rebutted in Ref. [39]. If, on the other hand, one believes the
droplet scenario or the chaotic pair scenario holds for finite-
dimensional spin glasses, then the flattening of the curves for
these models is a prelude to an eventual decrease to zero.
Unfortunately, the sizes currently accessible to Monte Carlo
simulation do not permit one to sharply distinguish between
these competing hypotheses. Using an exact algorithm for the
two-dimensional (2D) Ising spin glass with bimodal disorder,
Middleton [17] shows that the crossover to decreasing behavior

for �(q0,κ) in 2D does occur at large length scales. He
also shows, within a simplified droplet model, that the large
length scales are needed to see the predictions of the droplet
scenario manifest in the 3D EA model. Overall, we see that we
need larger sizes to unambiguously determine from �(q0,κ)
whether the droplet or RSB picture applies to 3D-like models.

B. Median Imed(q) and mean Iav(q) cumulative
overlap distribution

In this section, we compare the mean I av(q) and the median
Imed(q) of the cumulative overlap distribution. Figure 5 shows
results for I av(q) and Imed(q) for the SK model and several
long-range models for a temperature close to 0.4Tc. Figure 6
shows the same quantities for the 3D EA and 4D EA models.

As noted in earlier work, the results for the average show
very little size dependence for all models. This is a prediction
of the RSB picture which certainly applies to the SK model.
By contrast, in the droplet picture I av(q) is predicted to
vanish as [5] L−θ . The observed independence of I av(q) with
respect to L is one of the strongest arguments in favor of the
RSB picture for finite-dimensional Ising spin-glass models.
However, it has been argued, e.g., Refs. [16,17], that there are
strong finite-size corrections and that the asymptotic behavior
predicted by the droplet model for I av(q) would only be seen
for sizes larger than those accessible in simulations. This is
why the median has been proposed [17] as an alternative to
the mean.
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FIG. 6. (Color online) Log-linear plot of Imed(q) and I av(q) vs
q plot for the 3D EA model at T � 0.42 (upper panel) and for the
4D EA model at T � 0.90 (lower panel). Both panels have the same
horizontal scale.

The data for the median of the SK model in Fig. 5 show
a rapid decrease at small q, which is very strongly size
dependent. As discussed in Sec. IV above, the rapid decrease
is expected in the RSB picture since it predicts that Imed(q)
is exponentially small in 1/q [see Eq. (19)]. The theoretical
result is shown as a solid line in the SK panel. It is plausible
that the data will approach the theory in the large N limit, but
there are strong finite-size effects at small q for the sizes that
can be simulated, so the data for the largest sizes are still far
from the theoretical prediction. This already indicates that the
median is not a very useful measure to distinguish the RSB
picture from the droplet picture.

The median data for the long-range 1D model with σ = 0.6,
which is in the mean-field region, shows similar trends to
that for the SK model. On the other hand, for the long-range
model furthest from mean-field theory, σ = 0.896, the data
also decrease rapidly at small q but are less dependent on
size. The data for the 3D and 4D EA models in Fig. 6 also
show a rapid decrease at small q, which is quite strongly size
dependent.

We have seen that even for the SK model it would be very
difficult to extrapolate the numerical data to an infinite system
size. For the long-range models, the most likely candidate
for droplet theory behavior, according to which the median
(such as the average) vanishes in the thermodynamic limit, is
σ = 0.896. However, for this model, the data are not zero for
small q and there is rather little size dependence, implying
that, if the droplet picture does hold, it will only be seen for
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FIG. 7. (Color online) Log-linear P typ(q) plot for the SK model
for N = 2048 showing the strong dependence on the zero-
replacement value ε/k. See the main text for details.

much larger sizes than can be simulated. This is the same
situation as for the mean (if the droplet picture is correct).
Consequently, it does not seem to us that the median of the
cumulative order parameter distribution is a particularly useful
quantity to distinguish the droplet and RSB pictures.

C. Typical overlap distribution, P typ(q)

Estimating P typ(q)—defined in Eq. (20) as the exponential
of the average of the logarithm—from Monte Carlo simula-
tions is problematic because the finite number of observations
means that the result can be precisely zero if the average is
comparable to, or smaller than, ε, the inverse of the number of
measurements. Such results make the typical value undefined
according to Eq. (20). One can regularize this problem by
replacing zero values of PJ (q) with the small value ε/k for
a reasonable range of k, in the hope that the result would not
be too sensitive to the choice of k. Unfortunately, there is
a strong dependence on k, as seen in Fig. 7, where P typ(q)
is plotted for several values of k for the SK model for
N = 2048. The dependence on k indicates that P typ(q) cannot
be reliably measured in Monte Carlo simulations with feasible
run lengths.

VI. SUMMARY AND CONCLUSIONS

We have studied the overlap distribution for several
Ising spin-glass models using recently proposed observables.
We consider 1D long-range models, 3D and 4D short-
range (Edwards-Anderson) models, and the infinite-range
(Sherrington-Kirkpatrick) model. The three observables are
all obtained from the single-sample overlap distribution PJ (q).
They are the fraction of peaked samples �(q0,κ), the integrated
median Imed(q), and the typical value P typ(q). These observ-
ables were proposed to help distinguish between the replica
symmetry breaking picture and two-state pictures such as the
droplet model. While none of these statistics unambiguously
differentiates between these competing pictures, it appears
that � does the best job. In particular, there is a qualitative
distinction between the behavior for the 3D EA model and
the long-range 1D model with σ = 0.896 that is expected
to mimic it, on the one hand, and the mean-field SK model
and the 1D model with σ = 0.6 that is expected to be in
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the mean-field regime, on the other hand. For a reasonable
range of q0 and κ , the two 3D-like models do not show an
increase in � for the largest sizes while the mean-field models
are sharply increasing for the largest sizes. The increase in
� for the mean-field model is exactly what we expect from
the RSB picture. The results for the 3D-like models are
ambiguous because eventually � must go either to zero or
one. It is possible that for much larger sizes � will begin
to increase, indicating RSB behavior, but simulating such
large system sizes at very low temperatures is unfeasible
at present.

The other proposed measures do not appear to be useful
in numerical simulations for distinguishing scenarios. The
typical value of the overlap P typ(q) cannot be measured in
feasible Monte Carlo simulations while the median value of
the cumulative overlap Imed(q) is very small at small q even
for the SK model and has a very strong size dependence. For
the droplet model Imed(q) is presumably zero at small q for
N → ∞. However, the strong size dependence of the results
in this region of small q makes it impossible to tell numerically
if the data are going to zero or just to a very small value, even
for the SK model. Curiously, there is less size dependence for
the 3D model and the equivalent 1D with σ = 0.896 than for
the SK model.

Recently, we became aware of a related paper by Billoire
et al. [40]. Reference [40] argues that the data for Imed(q) for
the SK model “converge nicely to some limiting curve when
N increases” and that “trading the average for the median
does make the analysis more clear cut.” In contrast, we find a
strong finite-size dependence for Imed(q) for the SK model in
the important small-q region (clearly visible in a logarithmic
scale) and largely because of this we do not find that the
median is particularly helpful in distinguishing between the
droplet and RSB pictures.
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E. Marinari, V. Martin-Mayor et al., Proc. Natl. Acad. Sci. USA
109, 6452 (2012).

[26] H. G. Katzgraber, M. Körner, and A. P. Young, Phys. Rev. B 73,
224432 (2006).

[27] G. Parisi, F. Ricci-Tersenghi, and J. J. Ruiz-Lorenzo, J. Phys. A
29, 7943 (1996).

[28] H. G. Katzgraber, D. Larson, and A. P. Young, Phys. Rev. Lett.
102, 177205 (2009).

[29] Note that if zp̃ij � 1, then pij in Eq. (6) is given by pij = zp̃ij ,
but otherwise there are corrections due to the rejection of pairs
i,j when there is already a bond between them.

[30] H. G. Katzgraber and A. K. Hartmann, Phys. Rev. Lett. 102,
037207 (2009).

[31] D. Larson, H. G. Katzgraber, M. A. Moore, and A. P. Young,
Phys. Rev. B 87, 024414 (2013).

[32] C. Geyer, in 23rd Symposium on the Interface, edited by E. M.
Keramidas (Interface Foundation, Fairfax Station, VA, 1991),
p. 156.

[33] K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604
(1996).

134419-9

http://dx.doi.org/10.1103/PhysRevLett.43.1754
http://dx.doi.org/10.1103/PhysRevLett.43.1754
http://dx.doi.org/10.1103/PhysRevLett.43.1754
http://dx.doi.org/10.1103/PhysRevLett.43.1754
http://dx.doi.org/10.1088/0305-4470/13/3/042
http://dx.doi.org/10.1088/0305-4470/13/3/042
http://dx.doi.org/10.1088/0305-4470/13/3/042
http://dx.doi.org/10.1088/0305-4470/13/3/042
http://dx.doi.org/10.1103/PhysRevLett.50.1946
http://dx.doi.org/10.1103/PhysRevLett.50.1946
http://dx.doi.org/10.1103/PhysRevLett.50.1946
http://dx.doi.org/10.1103/PhysRevLett.50.1946
http://dx.doi.org/10.1088/0305-4470/11/5/028
http://dx.doi.org/10.1088/0305-4470/11/5/028
http://dx.doi.org/10.1088/0305-4470/11/5/028
http://dx.doi.org/10.1088/0305-4470/11/5/028
http://dx.doi.org/10.1103/PhysRevLett.56.1601
http://dx.doi.org/10.1103/PhysRevLett.56.1601
http://dx.doi.org/10.1103/PhysRevLett.56.1601
http://dx.doi.org/10.1103/PhysRevLett.56.1601
http://dx.doi.org/10.1088/0305-4470/20/15/013
http://dx.doi.org/10.1088/0305-4470/20/15/013
http://dx.doi.org/10.1088/0305-4470/20/15/013
http://dx.doi.org/10.1088/0305-4470/20/15/013
http://dx.doi.org/10.1103/PhysRevB.38.386
http://dx.doi.org/10.1103/PhysRevB.38.386
http://dx.doi.org/10.1103/PhysRevB.38.386
http://dx.doi.org/10.1103/PhysRevB.38.386
http://dx.doi.org/10.1088/0022-3719/17/18/010
http://dx.doi.org/10.1088/0022-3719/17/18/010
http://dx.doi.org/10.1088/0022-3719/17/18/010
http://dx.doi.org/10.1088/0022-3719/17/18/010
http://dx.doi.org/10.1103/PhysRevE.90.032142
http://dx.doi.org/10.1103/PhysRevE.90.032142
http://dx.doi.org/10.1103/PhysRevE.90.032142
http://dx.doi.org/10.1103/PhysRevE.90.032142
http://dx.doi.org/10.1023/A:1018607809852
http://dx.doi.org/10.1023/A:1018607809852
http://dx.doi.org/10.1023/A:1018607809852
http://dx.doi.org/10.1023/A:1018607809852
http://dx.doi.org/10.1103/PhysRevLett.64.1859
http://dx.doi.org/10.1103/PhysRevLett.64.1859
http://dx.doi.org/10.1103/PhysRevLett.64.1859
http://dx.doi.org/10.1103/PhysRevLett.64.1859
http://dx.doi.org/10.1103/PhysRevB.63.184422
http://dx.doi.org/10.1103/PhysRevB.63.184422
http://dx.doi.org/10.1103/PhysRevB.63.184422
http://dx.doi.org/10.1103/PhysRevB.63.184422
http://dx.doi.org/10.1103/PhysRevB.67.134410
http://dx.doi.org/10.1103/PhysRevB.67.134410
http://dx.doi.org/10.1103/PhysRevB.67.134410
http://dx.doi.org/10.1103/PhysRevB.67.134410
http://dx.doi.org/10.1103/PhysRevLett.81.4252
http://dx.doi.org/10.1103/PhysRevLett.81.4252
http://dx.doi.org/10.1103/PhysRevLett.81.4252
http://dx.doi.org/10.1103/PhysRevLett.81.4252
http://dx.doi.org/10.1103/PhysRevB.87.220201
http://dx.doi.org/10.1103/PhysRevB.87.220201
http://dx.doi.org/10.1103/PhysRevB.87.220201
http://dx.doi.org/10.1103/PhysRevB.87.220201
http://dx.doi.org/10.1103/PhysRevLett.109.177204
http://dx.doi.org/10.1103/PhysRevLett.109.177204
http://dx.doi.org/10.1103/PhysRevLett.109.177204
http://dx.doi.org/10.1103/PhysRevLett.109.177204
http://dx.doi.org/10.1103/PhysRevB.88.134204
http://dx.doi.org/10.1103/PhysRevB.88.134204
http://dx.doi.org/10.1103/PhysRevB.88.134204
http://dx.doi.org/10.1103/PhysRevB.88.134204
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1103/PhysRevB.72.184416
http://dx.doi.org/10.1103/PhysRevB.72.184416
http://dx.doi.org/10.1103/PhysRevB.72.184416
http://dx.doi.org/10.1103/PhysRevB.72.184416
http://dx.doi.org/10.1088/1742-6596/95/1/012004
http://dx.doi.org/10.1088/1742-6596/95/1/012004
http://dx.doi.org/10.1088/1742-6596/95/1/012004
http://dx.doi.org/10.1088/1742-6596/95/1/012004
http://dx.doi.org/10.1103/PhysRevB.81.064415
http://dx.doi.org/10.1103/PhysRevB.81.064415
http://dx.doi.org/10.1103/PhysRevB.81.064415
http://dx.doi.org/10.1103/PhysRevB.81.064415
http://dx.doi.org/10.1103/PhysRevLett.101.107203
http://dx.doi.org/10.1103/PhysRevLett.101.107203
http://dx.doi.org/10.1103/PhysRevLett.101.107203
http://dx.doi.org/10.1103/PhysRevLett.101.107203
http://dx.doi.org/10.1073/pnas.1203295109
http://dx.doi.org/10.1073/pnas.1203295109
http://dx.doi.org/10.1073/pnas.1203295109
http://dx.doi.org/10.1073/pnas.1203295109
http://dx.doi.org/10.1103/PhysRevB.73.224432
http://dx.doi.org/10.1103/PhysRevB.73.224432
http://dx.doi.org/10.1103/PhysRevB.73.224432
http://dx.doi.org/10.1103/PhysRevB.73.224432
http://dx.doi.org/10.1088/0305-4470/29/24/018
http://dx.doi.org/10.1088/0305-4470/29/24/018
http://dx.doi.org/10.1088/0305-4470/29/24/018
http://dx.doi.org/10.1088/0305-4470/29/24/018
http://dx.doi.org/10.1103/PhysRevLett.102.177205
http://dx.doi.org/10.1103/PhysRevLett.102.177205
http://dx.doi.org/10.1103/PhysRevLett.102.177205
http://dx.doi.org/10.1103/PhysRevLett.102.177205
http://dx.doi.org/10.1103/PhysRevLett.102.037207
http://dx.doi.org/10.1103/PhysRevLett.102.037207
http://dx.doi.org/10.1103/PhysRevLett.102.037207
http://dx.doi.org/10.1103/PhysRevLett.102.037207
http://dx.doi.org/10.1103/PhysRevB.87.024414
http://dx.doi.org/10.1103/PhysRevB.87.024414
http://dx.doi.org/10.1103/PhysRevB.87.024414
http://dx.doi.org/10.1103/PhysRevB.87.024414
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1143/JPSJ.65.1604


WITTMANN, YUCESOY, KATZGRABER, MACHTA, AND YOUNG PHYSICAL REVIEW B 90, 134419 (2014)

[34] E. Marinari, in Advances in Computer Simulation, edited by
J. Kertész and I. Kondor (Springer-Verlag, Berlin, 1998), p. 50.

[35] B. Yucesoy, J. Machta, and H. G. Katzgraber, Phys. Rev. E 87,
012104 (2013).

[36] C. Newman and D. L. Stein (private communication).
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