
PHYSICAL REVIEW B 90, 134418 (2014)

Discovery of metastable states in a finite-size classical one-dimensional planar spin chain with
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A theoretical method recently developed is used to find all possible equilibrium magnetic states of a finite-size
classical one-dimensional planar spin chain with competing nearest-neighbor (nn) and next-nearest-neighbor
(nnn) exchange interactions. The energy of a classical planar model with N spins is a function of N absolute
orientational angles or equivalently, due to the absence of in-plane anisotropy, of (N − 1) relative orientational
angles. The lowest energy stable state (ground state) corresponds to a global minimum of the energy in the
(N − 1)-dimensional space, while metastable states correspond to local minima. For a given value of the ratio,
γ , between nnn and nn exchange couplings, all the equilibrium configurations of the model were calculated with
great accuracy for N � 16, and a stability analysis was subsequently performed. For any value of N , the ground
state was found to be “symmetric” with respect to the middle of the chain in the relative angles representation.
For the chosen value of γ , the ground state consists of a helix whose chirality is constant in sign along the chain
(i.e., all the spins turn clockwise, or all anticlockwise), but whose pitch varies owing to finite-size effects; e.g.,
for positive chirality we found that the chiral order parameter χ (N ) > 0 increases monotonically with increasing
N , approaching the value (χ = 1) pertinent to the ground state in the limit N → ∞. For finite but not too small
values of N , we found metastable states characterized by one reversal of chirality, either localized just in the
middle of the chain [“antisymmetric” state, with chiral order parameter χ (N ) = 0], or shifted away from the
middle of the chain, to the right or to the left [pairs of “ugly” states, with equal and opposite values of χ (N ) �= 0;
the attribute “ugly” refers to the absence of a definite symmetry in the relative angles representation]. Concerning
the stability of these states with one reversal of chirality, two main results were found. First, the “antisymmetric”
state is metastable for even N and unstable for odd N . Second, an additional pair of “ugly” states is found
whenever the number of spins in the chain is increased by 1; the states in each additional pair are unstable for
even N and metastable for odd N . Analysis of stable and metastable configurations in the framework of a discrete
nonlinear mapping approach provides further support for the above results.
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I. INTRODUCTION

Phase transitions are accompanied by spontaneous symme-
try breaking. The situation may be very complex in frustrated
systems, where both continuous and discrete symmetries are
present at the same time. In some rare-earth magnetic systems,
such as Ho, Dy, and Tb [1], as well as in many alloys, such as
MnAu2 [2,3], frustration is due to the fact that along a certain
direction the nearest-neighbor (nn) exchange interaction (J1)
competes with the next-nearest-neighbor (nnn) one (J2):

H =
∑

i

(−J1 Si · Si+1 − J2 Si · Si+2). (1)

Assuming, e.g., J1 > 0 and J2 < 0, the ground state in the
thermodynamic limit turns out [4–6] to be ferromagnetic if
γ = J2/J1 � −1/4. In contrast, for γ < −1/4 the ground
state is a modulated helical phase, with a critical wave vector
Q whose modulus determines the constant angle ᾱ between
two neighboring spins (a is the lattice constant):

cos(Qa) = − 1

4γ
= J1

4|J2| = cos ᾱ. (2)
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Clearly, a right-hand and a left-hand helix with pitch ±ᾱ are
energetically degenerate. Following Villain [7], the helical
ground state is characterized, in addition to the local spin
variable Si , by another order parameter: the vector chirality
κ i , which is related to the mutual orientation of spins on
neighboring sites,

κ i = Si × Si+1

sin ᾱ
. (3)

In the case, considered in the present work, of a planar spin
chain, the spins are confined to lie in a plane (xy) perpendicular
to the chain direction (z), so the chirality has just the z

component which, for T = 0, takes only the values κz
i = ±1

(like an Ising variable) on each lattice site. For a planar spin
chain of N spins one can define the chiral order parameter,
χ (N ), in terms of the sum

χ (N ) = 1

N − 1

N−1∑
i=1

κz
i . (4)

In the thermodynamic limit N → ∞, the helical ground state
has a twofold chiral degeneracy, in addition to the usual
continuous spin rotation degeneracy: the onset of helical
order is related to spontaneous breaking of the Z2 × SO(2)
symmetry [8]. In some cases, it is even possible that the helical
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ground state is reached via a two-step magnetic ordering
mechanism [9]. For systems described by Hamiltonian (1),
many studies were addressed [1,10–12] to find the stable
configurations at T = 0. In the limit N → ∞, in addition to
the doubly degenerate helical ground state with constant helix
pitch ᾱ given by Eq. (2), two kinds of nonuniform magnetic
configurations were found [11,12] by transforming (1) into a
continuum functional and solving it by analytical methods,
namely, (i) isolated domain walls between helical spin ar-
rangements with the same pitch and opposite chirality, and (ii)
modulated structures with periodically alternating chirality. It
is interesting to note that the latter structures are similar to the
multisoliton solutions investigated by Aubry [13] in the dis-
crete Frenkel-Kontorova (FK) model [14] which, as model (1),
includes incommensurability and frustration in a natural way.
It was proved some years ago [15] that the FK model falls out
of equilibrium when cooled at a finite rate. Thus, it may happen
that the system freezes into some metastable configurations,
corresponding to local minima of the energy. It is curious
to observe that a similar phenomenon of metastability can
occur in quite different nonmagnetic systems, such as stretched
elastomer strips. In fact, helical structures characterized by
a single reversal or multiple reversals of chirality were
experimentally found to be metastable [16] depending on the
strip’s cross section. In that context, the reversals of chirality
were named “perversions” [17], and the metastable helical
structures “hemihelices” [16].

In recent times, the availability of very sophisticated growth
and characterization techniques allowed the study of the
behavior of ultrathin magnetic films, and thus the investigation
of the consequences of the loss of translational invariance in
the direction normal to the film plane. Nanometric objects are
very important not only on the fundamental point of view, but
also for their implementation in nanotechnologies. Even in the
case of rare-earth elements, such as Ho and Dy, ultrathin films
could be obtained [18,19] whose thickness is comparable with
the modulation period of the helix. Moreover, striking effects
such as the onset of a block phase [20], where outer ordered
layers coexist with inner disordered ones, are expected as the
temperature is varied. Also thin films of antiferroelectric liquid
crystals [21] can be modeled by Hamiltonian (1). In Fe/Ni
bilayers grown epitaxially on Cu(100), Néel-type domain
walls with fixed chirality were recently observed [22] in the
magnetic stripe phase, depending on the film growth order
(right-handed in Fe/Ni bilayers and left-handed in Ni/Fe bi-
layers). Another recent experimental investigation, performed
using spin-polarized scanning tunneling microscopy in Fe
chains deposited on the (5 × 1) reconstructed surface of Ir,
displayed a spiral magnetic order; it was suggested that the
latter could provide a new transport mechanism based on
chirality [23].

Within this context, we aim at investigating all possible
stable states of model (1) in the presence of a finite number
of spins, N . In particular, for a given value of the ratio
γ = J2/J1, we will consider the case N ≈ 2π

ᾱ
; i.e., the size

of the chain is comparable with the period of helix modulation
of an infinite chain with the same value of γ . We will
assume a 1D planar model, with the spins confined to a
plane (xy) perpendicular to the chain axis (z). In the presence
of competing nearest-neighbor (J1 > 0) and next-nearest-

neighbor (J2 < 0) exchange interactions, the energy then reads

E(N ) = −J1

N−1∑
i=1

cos(θi − θi+1)

− J2

N−1∑
i=1

cos(θi − θi+2)(1 − δi,N−1), (5)

where θi (i = 1, . . . ,N) denotes the absolute angle formed
by the spin Si with the x axis. The spins are supposed to
be classical vectors of unit length: Sx

i = cos θi , S
y

i = sin θi .
Equivalently, in terms of the relative angles αi = θi+1 − θi

(i = 1, . . . ,N − 1), one can rewrite Eq. (5) in the reduced
(and more symmetric) form

ε(N ) = E(N )

J1
= −

N−1∑
i=1

cos αi

− γ

2

N−1∑
i=1

cos(αi−1 + αi)(1 − δi,1)

− γ

2

N−1∑
i=1

cos(αi + αi+1)(1 − δi,N−1). (6)

In this paper, we will consider the case γ = J2/J1 � −1/4.
The chiral order parameter, χ (N ), of a finite chain with N

spins can be explicitly expressed in terms of the N − 1 relative
angles, αi , as

χ (N ) =
∑N−1

i=1 sin αi

(N − 1) sin ᾱ
. (7)

Notice that in (5), or equivalently in (6), open boundary
conditions were introduced through the Kronecker’s delta
functions.

Regarding the applicability of model (5) to real magnetic
systems, such as ultrathin magnetic films or chains of magnetic
adatoms on metal surfaces, we observe that the presence of a
magnetic anisotropy and possibly an external magnetic field
should in principle be taken into account, leading one to
consider energy terms dependent on the spin orientation of
single atoms, in addition to the interactions between nn and nnn
spin pairs. The study of such an extended model is deferred to
future work since, as shown by Belobrov et al. [24] in the case
of an infinite chain, it requires some attention particularly with
regard to magnetic anisotropy. As for an additional external
field, a very weak one is not expected to change the stable
states in a relevant way. In fact, considering that the finite spin
chain turns out to have a nonzero magnetization, a weak field
will essentially rotate the whole magnetic structure as a giant
molecule, tending to align its vector magnetization along the
field direction. This rotation takes place due to the interactions
of the spin chain with a thermal bath, in accordance with the
relaxation mechanism involved in the reorientation process.

Other phenomenological models which allow one to de-
scribe a magnetic helical state, e.g., a model where the an-
tisymmetric Dzialoshinskii-Moriya interaction [25,26] (DMI)

EDM =
∑
i,j

Dij · (Si × Sj ) (8)
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competes with symmetric exchange, will be considered in a
future publication. Actually, low-dimensional systems lack
structural inversion symmetry owing to the presence of
interfaces and surfaces, and the effect of including DMI is
expected to be that of breaking the chiral symmetry, giving rise
to a homochiral spin structure. However, such a structure has
generally a long period with respect to the lattice constant [27].

It appears that, in the regime of finite size for model (6),
it is mandatory to take into account the discreteness of the
chain. In this work this task is accomplished using a theoretical
method [28,29] which was recently developed to find, in a
very accurate way, the noncollinear canted magnetic states of
ultrathin films with competing surface and bulk anisotropies.
The method is presented in Sec. II. It is based on the fact that
imposing the necessary conditions for minima of the energy to
exist, the so-obtained set of equations for orientational angles
allow one to express all the angles in terms of just the first one.
After the substitution of these angles in the expression for the
energy, the latter becomes a function of only one parameter,
the first orientational angle. Plotting the energy versus the
first orientational angle allows one to visualize both local and
global minima of the energy. Standard subsequent analysis
of these minima leads one to establish which are the stable,
metastable, and unstable magnetic states of the chain.

The main results obtained in the present work are presented
in Sec. III and can be summarized as follows. For a given value
of the ratio, γ , between nnn and nn exchange couplings, all
the equilibrium configurations of the model were calculated
with great accuracy for N � 16, and a stability analysis was
subsequently performed. For any value of N , the ground state
was found to be “symmetric” with respect to the middle of
the chain in the relative angles representation. For the chosen
value of γ , the ground state consists of a helix whose chirality
does not change, but whose pitch varies owing to finite-size
effects. For finite but not too small values of N , we found
metastable states characterized by one reversal of chirality. The
reversal can be either localized just in the middle of the chain
[“antisymmetric” state, with chiral order parameter χ (N ) =
0], or shifted away from the middle of the chain, to the right
or to the left [pairs of “ugly” states, with equal and opposite
values of χ (N ) �= 0]. The attribute “ugly” was chosen referring
to the absence of a definite symmetry in the relative angles
representation. Concerning the stability of these states with
one reversal of chirality, two main results were found. First, the
“antisymmetric” state is metastable for even N and unstable
for odd N . Second, an additional pair of “ugly” states is found
whenever the number of spins in the chain is increased by 1;
the states in each additional pair are unstable for even N and
metastable for odd N . A discrete nonlinear mapping approach
provides further support for the above results. Clearly such
even-odd effects, being a consequence of discretization, cannot
be evidenced using a continuous approximation to Eq. (5)
or (6). However, they may be important when the model is
applied to the investigation of real systems.

In Sec. IV we present another theoretical formulation of
the problem, based on a nonlinear mapping approach [24,30–
32] in the appropriate phase space, where the discreteness
of the lattice is preserved. This method is useful since it is
based on very general principles, originally developed in the
study of dynamical systems, and it provides an overview of all

equilibrium states of the system in terms of a phase portrait.
Belobrov et al. [24] performed such an analysis for classical
models of spin chains in the limit N → ∞, while Trallori
et al. [30] showed that the equilibrium configurations of a finite
open chain can be represented by trajectories of a nonlinear
mapping satisfying opportune boundary conditions. In the case
of our model (6), the various roots (obtained in Sec. III using
the method described in Sec. II) are then revisited in Sec. IV in
terms of the topological properties of such trajectories. Finally,
the conclusions are drawn in Sec. V.

II. THEORETICAL METHOD TO FIND THE T = 0
MAGNETIC STRUCTURE

Starting from Eq. (6), the equilibrium configurations for the
open chain with N spins are obtained imposing the following
(N − 1) conditions on the (N − 1) relative angles αi :

∂ε

∂αi

= 0 = sin αi + γ sin(αi−1 + αi)(1 − δi,1)

+ γ sin(αi + αi+1)(1 − δi,N−1) (1 � i � N − 1).

(9)

The essence of the method [28] is to use the ith equation to
express αi+1 in terms of αi and αi−1, for i = 1, . . . ,(N − 2).
For the chain of N spins in Eq. (5), involving (N − 1) relative
angles in Eq. (6), one has explicitly

α2 = −α1 + arcsin

[
− 1

γ
sin α1

]
for i = 1,

αi+1 = −αi + arcsin

[
− 1

γ
sin αi − sin(αi−1 + αi)

]
for 2 � i � N − 3,

αN−1 = −αN−2 + arcsin

[
− 1

γ
sin(αN−2)

− sin(αN−3 + αN−2)

]
for i = N − 2. (10)

It is important to note that in writing the previous (N − 2)
equations, we have always taken the principal value of the
arcsin(y) function, defined as the solution of equation sin(x) =
y in the interval x ∈ [−π/2, + π/2]. This is justified provided
that the nnn antiferromagnetic interaction (J2 < 0) does not
dominate in the system so that, ∀i, the condition (αi + αi+1) <

π/2 is fulfilled. Otherwise, the other branch x = π − arcsin(y)
has to be taken. Moreover, we observe that if the system of
Eqs. (9) is satisfied by the set of positive angles αi > 0 (i =
1, . . . ,N − 1), then it is satisfied by the set of negative angles
(−αi < 0), too. Therefore, in the following we will consider
only positive angles.

Now we draw the reader’s attention to the fact that, to
obtain the (N − 2) equations in the set (10), we did not
use the last (N − 1)th equation in the set (9). Therefore, the
set (10) determines a line in the (N − 1)-dimensional space of
angles α1,α2(α1), . . . ,αN−1(α1). When these (N − 1) angles
are substituted in the expression for the reduced energy (6),
the latter takes the form of a function of only the first angle,
α1:

�(α1) ≡ ε[α1,α2(α1), . . . ,αN−1(α1)]. (11)
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In this way, the rather complex problem of finding the
minima of energy in the (N − 1)-dimensional space of angles
α1,α2, . . . ,αN−1 is reduced to the much simpler problem of
finding the minima of a function, �(α1), of only one argument,
the first angle α1. This function can be plotted and its minima
are easily visualized.

However, it must be realized that the minima of �(α1) are
not necessarily also minima of the reduced energy (6), because
the last of Eqs. (9) was not used to construct the function �(α1).
The first derivative of �(α1) is

d�(α1)

dα1
= ∂ε

∂α1
+ ∂ε

∂α2

∂α2

∂α1
+ · · ·

+ ∂ε

∂αN−2

∂αN−2

∂α1
+ ∂ε

∂αN−1

∂αN−1

∂α1
, (12)

where, by construction, all the terms in the summation on the
right-hand side are zero, except the last one. Now we observe
that the condition d�(α1)/dα1 = 0 can be satisfied in either
of the two cases: (i) ∂ε/∂αN−1 = 0; or (ii) ∂ε/∂αN−1 �= 0, but
∂αN−1/∂α1 = 0. Let us now define the function F (α1) of only
the first angle α1 as follows:

F (α1) ≡ ∂ε

∂αN−1
= sin[αN−1(α1)]

+ γ sin[αN−2(α1) + αN−1(α1)]. (13)

Clearly, among the minima of �(α1), only those satisfying
F (α1) = 0 [i.e., satisfying the last equation in the set (9)]
can be minima also of the energy (6). Therefore, to find the
minima of the energy of a classical planar chain of N spins
with competing nn and nnn exchange constants, we adopt the
following operative procedure:

(1) We numerically solve the equation F (α1) = 0 with the
desired degree of accuracy and we obtain the first relative angle
α

(0)
1 . Clearly, for a given interval of α1, one will find several

zeros of the function F (α1). Then, using the set of (N − 2)
Eqs. (10), from α

(0)
1 we determine the remaining relative angles

α
(0)
i , with i = 2, . . . ,N − 1.

(2) We substitute the so-obtained configuration in Eq. (11).
We plot the function �(α1) versus α1 and determine its global
and local minima.

(3) We perform a stability analysis to determine whether
a given stationary configuration, α

(0)
i (i = 1, . . . ,N − 1),

corresponds to a stable, metastable, or unstable state of
the finite chain. Namely, for each configuration of relative
angles, we calculate the eigenvalues of the matrix Amn ≡
∂2ε/(∂αm∂αn)|(0). If all eigenvalues are negative, the config-
uration corresponds to a maximum of the energy. If, among
the N − 1 eigenvalues of the Hessian matrix Amn, at least one
negative eigenvalue is found, the configuration is rejected as
unstable (saddle point of the energy surface). If all eigenvalues
are positive, the configuration corresponds to a minimum of the
energy, either global (the ground state) or local (a metastable
state).

(4) For each configuration of relative angles α
(0)
i (i =

1, . . . ,N − 1) corresponding to a global or local minimum
of the energy, we obtain the corresponding configuration of
absolute angles θ

(0)
i (i = 1, . . . ,N).

III. RESULTS

Using the theoretical method described in the previous
section, we have calculated the minima of the energy for
the model (5), or equivalently (6), of an open chain with a
finite number, N , of spins in the case γ = J2/J1 = −0.34.
In Table I we summarize our results on the existence and
stability of magnetic states in chains of various length, in
the range 4 � N � 16. In the Appendix we provide a table
with the calculated values of all nonzero solutions of equation
F (α1) = 0 [where the function F (α) is defined in Eq. (13)] for
an open chain with N = 16 spins, together with the energies
of the corresponding magnetic structures.

In Fig. 1 we provide a schematic view of the zeros of the
function F (α1), namely the solutions of the last equation in the
set (9), in three special cases (N = 12, 13, and 14). In Fig. 2
and Fig. 3 we show all the (stable, metastable, and unstable)
configurations of an open chain with N = 12 and N = 13

TABLE I. Stable/metastable (+) and unstable (−) configurations of an open chain with γ = J2/J1 = −0.34 and a finite number of spins,
N , ranging from 4 to 16. The absence of ± symbols in a cell denotes the absence of the related configuration. The leftmost column denotes
the unstable collinear ferromagnetic state (FM), while the rightmost column denotes the noncollinear ground state (lowest energy stable state,
S-1).

N FM AS-2 S-2 UA
−1 UB

−1 UC
−1 UD

−1 UE
−1 AS-1 UE

+1 UD
+1 UC

+1 UB
+1 UA

+1 S-1

4 − +
5 − +
6 − +
7 − − +
8 − − +
9 − − +
10 − − − +
11 − − − +
12 − − − + − +
13 − − − − + − + − +
14 − − − − + − + − + − +
15 − − − − + − + − + − + − +
16 − − − − + − + − + − + − + − +
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spins, respectively. The configurations are reported both in
terms of relative angles αi (i = 1, . . . ,N − 1), on the left
column, and of absolute angles θi (i = 1, . . . ,N), on the right
column. We remind the reader that, from each configuration
shown in the figures, one can obtain another configuration
(not shown) with the same reduced energy, ε(N ), and opposite
chiral order parameter, χ (N ), simply by replacing αi by its
opposite −αi , ∀i = 1, . . . ,N − 1.

In general, one can distinguish three types of solutions:
(1) “Symmetric” solutions, characterized by αN−i = αi ,

with i = 1, . . . ,N − 1.
(2) “Antisymmetric” solutions, characterized by αN−i =

−αi , with i = 1, . . . ,N − 1.
(3) “Ugly” solutions, for which the relative angles αi

(i = 1, . . . ,N − 1) do not show any particular symmetry with
respect to the middle of the chain. However, one should note
that “ugly” solutions always come in pairs (connected by a
segment in Fig. 1) and that, denoting by (+) and (−) the two
solutions belonging to a given pair, one has α

(+)
N−i = −α

(−)
i .

Before discussing in more detail the various types of
configurations of the finite chain, we would like to remark that
the “symmetry” or “antisymmetry” of the solutions refers only
to their representation in terms of the relative angles αi , and
not in terms of the absolute angles θi , as is apparent comparing
the left and the right column in Fig. 2 and Fig. 3.

FIG. 1. (Color online) Schematic view of the zeros of the func-
tion F (α1), defined in Eq. (13), for an open chain of N spins with
competing nn and nnn exchange coupling. The value of γ = J2/J1 =
−0.34 was kept fixed while N was varied. The various types of
solutions are labeled on the basis of their symmetry with respect to
the middle of the chain (“symmetric”, “antisymmetric”, or “ugly”)
and of their stability/instability (blue/red color of the label). Note that
“ugly” solutions always come in pairs (U±).

FIG. 2. (Color online) All (stable and metastable, in blue; unsta-
ble, in red) configurations for a chain with γ = −0.34 and N = 12
spins. Left column: relative angles αi (i = 1, . . . ,N − 1). Right
column: absolute angles θi (i = 1, . . . ,N ). The lines are guides to
the eye.

“Symmetric” configurations. As regards the “symmetric”
configurations, for all values of N we find that the S-1 state is
stable and has the lowest energy; i.e., it is the ground state (GS).
For 10 � N � 16 we find another “symmetric” configuration,
S-2, which is higher in energy and unstable. Note that the
ground state has a nonuniform profile of the relative angles. In
fact, owing to open boundary conditions and finite-size effects,
αi depends on the position i along the chain, with increasing
deviations of the relative angles from the bulk value ᾱ, given
in Eq. (2), as i approaches the end points of the chain. The
chiral order parameter in the GS with positive chirality is
0 < χ (N ) < 1, and for increasing N it is found to increase
monotonically, approaching the infinite chain limit (χ = 1) as
shown in Fig. 4.

“Antisymmetric” configurations. As regards the “antisym-
metric” configuration AS-1, we find that its existence and
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FIG. 3. (Color online) All (stable and metastable, in blue; unsta-
ble, in red) configurations for a chain with γ = −0.34 and N = 13
spins. Left column: relative angles αi (i = 1, . . . ,N − 1). Right
column: absolute angles θi (i = 1, . . . ,N ). The lines are guides to
the eye.

FIG. 4. Chiral order parameter χ of the ground-state configura-
tion of a chain with γ = −0.34 versus the number, N , of spins, as
calculated from Eq. (7). One has χ (N ) > 0 for a configuration with
αi > 0 (i = 1, . . . ,N − 1). The line is a guide to the eye.

stability depend on the number of spins, N , in the chain. More
precisely, in the case of a chain with γ = −0.34 the AS-1 state
is present provided that N � 7, and for small values of N it is
unstable. For higher values of N , its stability is found to depend
on the parity of N : for even N the AS-1 state is metastable,
while for odd N it is unstable. These features are illustrated in
Fig. 5 and Fig. 6, respectively: the “antisymmetric” AS-1 state
exists and is unstable for 7 � N � 11, while for 12 � N � 16
it is metastable provided that N is even. Moreover, from
Table I and Fig. 3 we observe that for sufficiently long chains
(N � 13) another “antisymmetric” state with higher energy
appears, AS-2, which is unstable.

In order to understand the even-odd behavior of the AS-1
state, let us first notice that the chiral order parameter of this
“antisymmetric” state is exactly χ = 0, owing to the presence
of a domain wall located just at the middle of the chain,
between regions with opposite chirality. On general grounds,
one expects that the AS-1 configuration will be metastable
provided that the energy cost of such a chiral domain wall is
not too high and surface effects are not too strong. The energy
cost of the chiral domain wall depends on the ratio γ ; e.g.,
when the nnn antiferromagnetic exchange does not dominate
over the nn ferromagnetic one, as is the case when γ = −0.34,
a configuration where two nearest-neighbor spins in the core of
the chiral domain wall are exactly parallel will be energetically
favored, and a configuration where two next-nearest-neighbor
spins are exactly parallel will be energetically disfavored.
For even N , it is apparent that the condition χ = 0 implies
by symmetry αN

2
= 0 (in the relative angles representation),

corresponding to an energetically favored configuration with
θN

2 +1 = θN
2

(in the absolute angles representation). In contrast,
for odd N the condition χ = 0 implies αN+1

2
= −αN−1

2
�= 0

(in the relative angles representation), corresponding to an
energetically disfavored configuration with θN+3

2
= θN−1

2
(in

the absolute angles representation).
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FIG. 5. (Color online) Unstable “antisymmetric” configurations,
AS-1, of a chain with γ = −0.34 and number of spins, N , ranging
between 7 and 11. Left column: relative angles αi (i = 1, . . . ,N − 1)
of the AS-1 configuration (red squares) with χ (N ) = 0 and of the two
degenerate ground state configurations (gray triangles), with equal
and opposite values of χ (N ) �= 0. Right column: absolute angles θi

(i = 1, . . . ,N ) of the AS-1 configuration. The lines are guides to the
eye.

Note that this simple “rule of thumb” based on the parity
of N is a sufficient condition for the metastability of the
AS-1 state provided that the chain is long enough, in order
that surface effects combined with the presence of the chiral
domain wall are not so strong to drive the system very far
from the ground-state configurations. In fact looking at Fig. 5,
where the unstable AS-1 states for 7 � N � 11 are shown
(red squares), one can notice that not only the spins in the
middle of the chain (i.e., the spins belonging to the chiral
domain wall) but also the spins near the end points of the chain
have values of α strongly perturbed with respect to the two
ground states degenerate in energy and with opposite chirality
(gray triangles). In contrast, for N � 12 (see Fig. 6), in the
AS-1 configuration all the spins of the chain, except those
belonging to the chiral domain wall, have values of α nearly
indistinguishable from the two ground states.

In other words, for sufficiently high values of N , the AS-1
configuration represents a solution with χ = 0 that connects

FIG. 6. (Color online) The same as in Fig. 5, but now the number
of spins, N , ranges between 12 and 16. For these values of N , the
“antisymmetric” configuration AS-1 turns out to be metastable for
even N , and unstable for odd N .

two stable solutions, degenerate in energy, with equal and
opposite values of χ �= 0. Then, if the energy cost of the chiral
domain wall is not too high, the AS-1 configuration can be
metastable. This concept will be further illustrated in Sec. IV
in the framework of a nonlinear map representation of the
problem. Finally we have calculated, in units of J1, the energy
cost of a chiral domain wall, �Ew = E(AS-1) − E(GS), as
a function of N . For even N = 14 and 16 we found �Ew =
0.15424, while for odd N = 13 and 15 the value was slightly
higher, �Ew = 0.15427. These results appear to be in good
agreement with the numerical estimation performed years ago
by Thomas and Wolf [35] in the case of the infinite chain (see
Fig. 5 in their paper).

“Ugly” configurations. As regards “ugly” configurations
of the type U±1, they are characterized by a chiral domain
wall shifted away from the middle of the chain. This type of
configuration can be metastable under the conditions to be
specified later on. First we observe that in our model (6) there
is no reason why an “ugly” configuration with a chiral domain
wall shifted to the right (U+1) should have a different energy
from an “ugly” configuration with a chiral domain wall shifted
by the same amount to the left (U−1). The two states differ only
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FIG. 7. (Color online) “Ugly” configurations U+, with positive
chiral order parameter χ > 0, of a chain with γ = −0.34 and number
of spins, N , ranging between 12 and 16. Whenever the number of
spins is increased by 1, an additional “ugly” state U+ is found, which
is unstable for even N and metastable for odd N .

for the sign of the chiral order parameter (χ > 0 for U+1 and
χ < 0 for U−1), while the absolute value is the same. This
is the reason why “ugly” configurations always come in pairs
with the same energy; see Figs. 1–3. It is important to note that
this degeneracy is distinct from the one mentioned above, i.e.,
the one obtained making the transformation αi → −αi with
i = 1, . . . ,N − 1.

From Table I it appears that the higher the number of spins in
the chain, the higher is the number of pairs of “ugly” metastable
states one can observe. In Fig. 7 the various metastable states of
a chain with γ = −0.34 and variable number of spins, N , are
shown in the relative angles representation, αi (i = 1, . . . ,N −
1). For the sake of clarity, only “ugly” configurations U+, with
positive chiral order parameter χ > 0, were drawn. One can
notice that increasing values of the chiral order parameter
correspond to increasing shifts of the chiral domain wall with
respect to the middle of the chain. Regarding the stability of
the “ugly” configurations, the latter is found to depend both
on the number of spins in the chain and on the shift of the

chiral domain wall. More precisely, from Fig. 7 one can note
that whenever the number of spins in the chain is increased
by 1, a new “ugly” state is found, which is unstable for even
N and metastable for odd N . As previously observed for the
AS-1 state, a sufficient condition for the metastability to be
realized by an “ugly” state is that the chain is long enough,
in order that surface effects combined with the presence of
the chiral domain wall are not so strong to drive the system
very far from the ground-state configurations. In fact from
Fig. 7 it appears that metastable “ugly” configurations occur
in correspondence of a quasi-vanishing relative angle, αj0 ≈ 0,
where j0 is an internal site which is shifted with respect to the
middle of the chain. In terms of absolute angles, this means
that one has two quasi-parallel nearest-neighbor spins, θj0 ≈
θj0+1. This represents an energetically favorable condition for
the investigated case, γ = −0.34, where the antiferromagnetic
nnn coupling does not dominate in the system.

IV. DISCRETE NONLINEAR MAP REPRESENTATION
FOR THE STABLE CONFIGURATIONS OF THE CHAIN

In this section we give an alternative representation of the
stable and metastable configurations in the form of trajectories
in an appropriate phase space, using a discrete nonlinear
map approach [24,30–32]. Following seminal works [33,34]
on the Frenkel-Kontorova elastic model and the axial next-
nearest-neighbor Ising (ANNNI) model, Belobrov et al. [24]
performed the analysis of classical models of spin chains in the
limit N → ∞. They showed that the fixed points of the map are
associated with commensurate configurations, while smooth
and continuous curves (known as Kolmogorov-Arnold-Moser,
KAM) in the space phase are associated with incommensurate
configurations [24]. Under certain circumstances, it was
shown [24] that a KAM curve can disintegrate into a chaotic
set of points of the mapping, representing a disordered state
of the chain. The presence of finite-size effects was first taken
into account in a classical spin model by Trallori et al. [30,31],
who showed that the equilibrium configurations of a finite open
chain can be represented by trajectories of a nonlinear mapping
satisfying opportune boundary conditions. The method was
implemented to determine, within mean-field approximation,
the stable and metastable states of a magnetic film in the
presence of surfaces [30,31]. In particular, it was shown [32]
that the effect of surfaces in the magnetic film model is
equivalent to the introduction of a discommensuration in a
Frenkel-Kontorova chain.

In the present work, we exploit the general topological
properties of nonlinear maps to provide an overview of the
equilibrium states of the system, both for N → ∞ and in the
case of finite size [36]. Starting from Eq. (6), the equilibrium
configurations for the open chain with N spins are given
as usual by Eq. (9); clearly, in the thermodynamic limit the
Kronecker’s δ functions should be discarded. Introducing
the auxiliary variables si+1 = sin(αi + αi+1), the equilibrium
conditions of the chain can be rewritten in the form of a discrete
nonlinear map in the (α,s) phase space [24,30–32]

si+1 = −si − 1

γ
sin αi,

(14)
αi+1 = −αi + νπ + (−1)νψ,

134418-8



DISCOVERY OF METASTABLE STATES IN A FINITE- . . . PHYSICAL REVIEW B 90, 134418 (2014)

where ψ = arcsin(si+1) denotes the principal value of the
function arcsin and ν = 0,1 the branch index. To select the
branch index, Belobrov et al. [24] proposed a criterion of local
minimization for the free energy, while Trallori et al. [31,32],
guessing the branch index to be a constant of the mapping,
suggested that even in the case of a system with one or two
surfaces the value of ν to adopt is the one which reproduces
the correct ground state for the associated infinite system. In
the following, we will adopt the latter criterion.

The fixed points of the map are readily found to be

P0 = (α0,s0) = (0,0),
(15)

P± = ±(ᾱ,s̄) = ±(ᾱ, sin 2ᾱ),

where cos ᾱ = − 1
4γ

. It turns out that, for J2/J1 = γ < −1/4,
the fixed point P0, corresponding to the uniform ferromagnetic
configuration, is energetically unstable and topologically
stable (“elliptic” fixed point), while the fixed points P±,
corresponding to helical configurations with constant pitch and
opposite chirality, are energetically stable and topologically
unstable (“hyperbolic” fixed points). This is proved performing
a linear stability analysis around the fixed points, i.e., finding
the eigenvalues λ1,2 of the Jacobian matrix

Ĵ =
(

∂si+1

∂si

∂si+1

∂αi

∂αi+1

∂si

∂αi+1

∂αi

)

=

⎛
⎜⎝ −1 − 1

γ
cos αi

−(−1)ν√
1−(si+ 1

γ
sin αi )2

(−1)ν (− 1
γ

cos αi )√
1−(si+ 1

γ
sin αi )2

− 1

⎞
⎟⎠ (16)

calculated in P0 and P±, respectively.
In the eigenvalue equation

λ2 − TrĴ λ + det Ĵ = 0 (17)

one always has det Ĵ = 1; i.e., the map is area-preserving in
the (α,s) phase space. In contrast, TrĴ depends on the fixed
point. More precisely, one has the following:

(1) TrĴ |P0 = −2 − 1
γ

, for the fixed point P0. In this case,

solving Eq. (17) one finds that for γ < − 1
4 the discriminant

�
4 = (− 1

2 TrĴ )2 − 1 = 1
4γ 2 + 1

γ
is negative, meaning that the

uniform ferromagnetic configuration is energetically unstable.
The two eigenvalues λ1 and λ2 are complex conjugate and
have modulus 1. The fixed point P0 is called elliptic because
the map trajectories are closed orbits around it.

(2) TrĴ |P± = −2 + (−1)ν 1
4γ 2

1√
1−( 1

2γ
sin ᾱ)2

, for the fixed

points P±. In this case, solving Eq. (17) one finds that for
γ < − 1

4 the discriminant is positive, provided that one takes
the branch ν = 0 for 0 < ᾱ < π

4 , and the other branch ν = 1
for π

4 < ᾱ < π
2 . The condition � > 0 means that the two

uniform helical configurations with pitch ±ᾱ, degenerate in
energy and with opposite chirality, are energetically stable.
Equation (17) has two real eigenvalues, such that λ1 > λ2 and
λ1λ2 = 1. Denoting by m1 (m2) the slope of the trajectory
outflowing from (inflowing in) the hyperbolic fixed points P±,
one has (m1 > m2)

m1,2 =
∂si+1

∂αi

λ1,2 − ∂si+1

∂si

∣∣∣∣
P±

=
1

4γ 2

λ1,2 + 1
. (18)

FIG. 8. (Color online) Phase portrait, obtained from the discrete
nonlinear map Eqs. (14), for the classical planar spin chain in
the case γ = −0.34. The red points P0 = (0,0) and P± = ±(ᾱ,s̄),
with cos ᾱ = −1/(4γ ) and s̄ = sin 2ᾱ, denote the elliptic and the
hyperbolic fixed points of the map, respectively. In the limit N → ∞,
P0 and P± correspond to the unstable collinear ferromagnetic state
and to the stable helical states with constant pitch ±ᾱ, respectively.
Red arrows denote the direction of the map trajectories, with slopes
given by Eq. (18), in the neighborhood of P±.

The two elliptic trajectories encircling the fixed point P0 =
(0,0) in Fig. 8 were obtained applying the direct map Eq. (14)
to the points (0.1,0) and (0.2,0). Also the heteroclinic orbit
(i.e., the path in phase space which joins the two energetically
stable fixed points P±) was obtained applying the direct map
equation (14) to a collection of points chosen very near to P±
and lying on the line with smaller slope m1. It should be noted
that the branch ν = 0 was chosen in Eq. (14), according to the
criterion by Trallori et al. [31,32]. In fact, for γ = −0.34 one
has that the choice ν = 0 reproduces the correct ground state
of the infinite system.

Looking at Eqs. (9), it is apparent that for a finite chain
with N spins the boundary conditions can be introduced in the
nonlinear map via the two equations

s1 = sin(α0 + α1) = 0,
(19)

sN = sin(αN−1 + αN ) = 0,

which involve two fictitious relative angles, α0 and αN . In the
map approach, an equilibrium configuration of the finite chain
with N spins (i.e., N − 1 relative angles) and free ends is
represented by a trajectory in the (α,s) phase space, consisting
of N discrete points, related one to the other by the iterative
map Eqs. (14). It is important to note that, in order to satisfy
the boundary conditions (19), the first and the last point of the
trajectory must lie on the horizontal line, s = 0.

In Fig. 9 we show how the stable and metastable configura-
tions of a finite open chain, obtained by the method described
in Sec. II, appear in the (α,s) phase space. (We remind the
reader that for each of the configurations reported in Fig. 9,
one can obtain another configuration, with the same energy
and opposite chiral order parameter χ , simply by replacing
αi → −αi .) We refer to an open chain of N = 14 spins
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(a) (b)

(c) (d)

FIG. 9. (Color online) Nonlinear map representation of stable “symmetric” S-1 (ground state, GS), metastable “antisymmetric” AS-1, and
metastable “ugly” UB

±1 configurations of a finite chain with γ = J2/J1 = −0.34 and N = 14 spins. The physical relative angles are αi with
i = 1, . . . ,13, while α14 is a fictitious angle introduced to take into account open boundary conditions, Eq. (19), in the map formalism, Eq. (14).

with γ = −0.34, where the hyperbolic fixed points of the
nonlinear map are P± = ±(ᾱ, sin 2ᾱ) = ±(0.7447,0.9967),
and the slopes of the outflowing and inflowing trajectories
are m1 = 0.0846 and m2 = 2.0780, respectively.

(1) The ground state with positive chirality is depicted
in Fig. 9(a). It is a trajectory of 14 points, many of them
(3–11) lying very close to the hyperbolic fixed point P+, which
represents the helical ground state of the infinite chain with
constant pitch +ᾱ and chiral order parameter χ = +1. For a
finite chain, the helix pitch depends on the position, i. All the
physical relative angles αi (i = 1, . . . ,13) are positive, leading
to a configuration with χ = 0.8906 > 0. The configuration is
“symmetric” with respect to the middle of the chain since
αN−i = αi for i = 1, . . . ,13. Clearly, α1 and α13 present the
largest deviation from P+. The angle α14 (i.e., the last point of
the map trajectory) is nonphysical and, for the GS with χ > 0,
it has the property that α14 = −α1.

(2) The “antisymmetric” solution with one reversal of
chirality is depicted in Fig. 9(b). It is a trajectory of 14
points (with the nonphysical angle α14 = α1) representing a
configuration where the helix pitch αi depends on the position,
i. The configuration is “antisymmetric” (αN−i = −αi) with
respect to the middle of the chain; for i = N/2 the pitch
vanishes exactly (α7 = 0), separating the system into two
regions with opposite chirality. The chiral order parameter
of the configuration is then χ = 0.

(3) The couple of metastable “ugly” solutions, UB
± , are

depicted in Figs. 9(c) and 9(d). Each of them is a trajectory
of 14 points representing a configuration where the helix pitch
varies from site to site. The chain is divided in two regions with
opposite chirality. An “ugly” configuration is not “symmetric”

nor “antisymmetric” with respect to the middle of the chain.
The pitch nearly vanishes at a site shifted to the left or to the
right with respect to the middle of the chain (α6 ≈ 0 for the
state UB

−1 and α8 ≈ 0 for the state UB
+1). Note that for “ugly”

states the nonphysical angle αN is almost equal to α1, but does
not coincide exactly with it. More precisely, one has α1 < αN

for the UB
−1 state and α1 > αN for the UB

+1 state. From the map
representation one can regard the equal and opposite values of
the chiral order parameter, for the two “ugly” configurations
UB

±1 in the pair, as a direct consequence of the topological
(and energetic) equivalence between the two hyperbolic fixed
points, P±. The “ugly” state UB

+1 (UB
−1) has χ = 0.1583 > 0

(χ = −0.1583 < 0) because more points of its trajectory
are located near P+ (P−) than near P− (P+). On the same
grounds, one expects that the inclusion in the model of a chiral
symmetry-breaking interaction, as the one in Eq. (8), would
immediately remove the energetic degeneracy between the
“ugly states”, because one of the two hyperbolic fixed points
would be favored with respect to the other.

From the general topological properties of the nonlinear
map depicted in Fig. 8 one has that, for the infinite chain,
an isolated domain wall dividing the system into two regions
with opposite chirality is represented by a heteroclinic orbit,
i.e., a path in phase space which joins the fixed points P±,
corresponding to uniform (constant-pitch) helical configura-
tions of the infinite chain. From Fig. 9 we observe that, for
a finite chain with one chiral domain wall, the metastable
configurations are associated with trajectories in phase space
which (apart from the terminal points, and the points near the
center which are involved in the chiral domain wall) have many
representative points near P±. Therefore, with increasing N ,
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we expect configurations with an increasing number of chiral
domain walls to appear and become metastable. Moreover,
depending on the number of inversions of chirality being
even or odd, these metastable states are expected to be
“symmetric” or “antisymmetric”/“ugly”, respectively. Clearly,
any distinction between even and odd features is expected
to vanish for very long chains, N 	 2π

ᾱ
(i.e., in the limit

where a continuum model for modulated states is expected
to hold). We conclude this section by noticing that, in the quite
different (nonmagnetic) context of stretched elastomer strips,
metastable states with a single reversal or multiple reversals of
chirality were indeed observed [16] and named “hemihelices”.
In that case, the structural transition from a homohelical to a
“hemihelical” shape of the strip, as well as the number of
reversals of chirality (also named “perversions” [17]), was
found to depend on the height-to-width ratio of the strip’s
cross section. In the case of our model, it would be interesting
to investigate whether a similar transition can occur, e.g.,
depending on the ratio, γ , between the competing nnn and
nn exchange interactions and on the number, N , of spins in the
chain.

V. CONCLUSIONS

In conclusion, taking into account both the discrete nature
and the finite size of a one-dimensional planar spin chain
with competing nn and nnn exchange couplings, we were
able to calculate in a very accurate way all the equilibrium
states (stable, metastable, and unstable) of the system, using
a theoretical method [28,29] recently developed. The calcu-
lations were performed for a particular value of γ , the ratio
between nnn and nn couplings, which in the infinite chain
leads to a constant-pitch and homochiral helical ground state.
For chains with finite length (comparable with the period
of helix modulation), the ground state was found to be a
helix whose chirality is constant in sign along the chain,
but whose pitch varies owing to finite-size effects. For finite
but not too small values of the number of spins in the
chain, N , we found metastable states characterized by one

reversal of chirality, either localized just in the middle of
the chain [“antisymmetric” state, with chiral order parameter
χ (N ) = 0], or shifted away from the middle of the chain,
to the right or to the left [pairs of “ugly” states, with equal
and opposite values of χ (N ) �= 0]. Concerning the stability
of these states with one reversal of chirality, two main results
were found. First, the “antisymmetric” state is metastable for
even N and unstable for odd N . Second, an additional pair
of “ugly” states is found whenever the number of spins in
the chain is increased by 1. The states in each additional pair
are unstable for even N and metastable for odd N . Analysis
of stable and metastable configurations in the framework of
a discrete nonlinear mapping approach [24,30–32] provided
further support to the theory, and suggested that also states
with multiple reversals of chirality should become metastable
with increasing the number of spins above the maximum value
(N = 16) considered in the present work.

APPENDIX

In this appendix we provide a table with the calculated
values of all nonzero solutions of equation F (α1) = 0, where
the function F (α1) is defined in Eq. (13), for an open chain
with N = 16 spins and γ = −0.34. We found 14 positive roots
which are reported in the second column, denoted by the label
α

(0)
1 . The third column specifies the type of magnetic structure

associated with the root (whether “symmetric”, “antisymmet-
ric”, or “ugly”), and the fourth column its stability. Finally, the
fifth column specifies the energy of the configuration.

In the numerical calculations, the computer time required
to find the first orientation angle was found to increase with
increasing N . For N = 16 (the longest investigated chain
length), using an ordinary pc the computer time needed to
find a root α

(0)
1 with 30 digits was nearly 30 minutes. We note

that such a high number of digits in the first orientation angle is
necessary to get the other angles with enough precision [37],
so as to recognize the peculiar symmetry properties of the
various stationary configurations reported in Sec. III, and to
perform the analysis of stability in a reliable way.

TABLE II. The 14 positive roots, α
(0)
1 (2nd column), of the function F (α1) defined in Eq. (13), calculated for an open chain with N = 16

spins and γ = J2/J1 = −0.34; the related type of configuration (3rd column); the stability (4th column); the reduced energy ε (5th column),
calculated using Eq. (11).

Root α
(0)
1 (rad) Type Stability Energy ε (units of J1)

1 0.139439046248061848676383222937 AS-2 unstable −10.2429411764705882352941156471
2 0.264491481382757534472060225654 S-2 unstable −10.3428549058518829959680256709
3 0.275194885065826086527846629266 UA

−1 unstable −10.6461824282207617918810701027
4 0.275321854471931262846053070159 UB

−1 metastable −10.6462000922017083463635002161
5 0.275368099494097186444604357678 UC

−1 unstable −10.6461596868684236550328388525
6 0.275376350686316961814821188590 UD

−1 metastable −10.6461943155339302495063290620
7 0.275378058752456471531424476243 UE

−1 unstable −10.6461585756941485144576441228
8 0.275378403443466744841988143120 AS-1 metastable −10.6461940980319102697850279786
9 0.275378472763985432104826993291 UE

+1 unstable −10.6461585756941485144576441227
10 0.275378486841454490886111372119 UD

+1 metastable −10.6461943155339302495063290619
11 0.275378489640898454584912451796 UC

+1 unstable −10.6461596868684236550328388526
12 0.275378490238027539108091622662 UB

+1 metastable −10.6462000922017083463635002162
13 0.275378490329487734339367590766 UA

+1 unstable −10.6461824282207617918810701026
14 0.275378490369573279440991374919 S − 1 stable (GS) −10.8004322041729081015840664838
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From Table II one observes that, for N = 16, the first five
excited metastable states are quasidegenerate. However, by
the method described in Sec. II it is impossible to determine
the energy barriers that separate local minima from the global
minimum and/or from each other. In fact, the method does
not allow one to explore the details of the energy landscape
in the N -dimensional space because one judges about that
landscape on the basis of the behavior of a function of
only one argument, �(α1) in Eq. (11), which has “spurious”
minima in addition to “true” ones. Using the data reported
in Table II, one can only estimate the energy cost of a chiral
domain wall, �Ew. As a consequence of the finite size of
the chain, �Ew is found to weakly depend on the location of

the wall with respect to the middle of the chain: the closer
the wall is to the free ends of the chain, the lower is the
value of �Ew. In fact, for the AS − 1 “antisymmetric” state,
with a chiral domain wall located just at the middle of the
chain, we find E(AS − 1) − E(GS) = �Ew = 0.15423811
(in units of J1); for the UD

±1 “ugly” states, with the chiral
domain wall shifted by nearly one lattice site from the
middle of the chain, the energy difference is a bit lower,
E(UD

±1) − E(GS) = �Ew = 0.15423789; finally, for the UB
±1

“ugly” states, with the chiral domain wall shifted by nearly
two lattice sites from the middle of the chain, the energy
difference is further lowered, E(UB

±1) − E(GS) = �Ew =
0.15423211.
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