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Exact ground states of a spin-1/2 Ising-Heisenberg model on the Shastry-Sutherland lattice with Heisenberg
intradimer and Ising interdimer couplings are found by two independent rigorous procedures. The first method
uses a unitary transformation to establish a mapping correspondence with an effective classical spin model,
while the second method relies on the derivation of an effective hard-core boson model by continuous unitary
transformations. Both methods lead to equivalent effective Hamiltonians providing a convincing proof that the
spin-1/2 Ising-Heisenberg model on the Shastry-Sutherland lattice exhibits a zero-temperature magnetization
curve with just two intermediate plateaus at one-third and one-half of the saturation magnetization, which
correspond to stripe and checkerboard orderings of singlets and polarized triplets, respectively. The nature of
the remarkable stripe order relevant to the one-third plateau is thoroughly investigated with the help of the
corresponding exact eigenvector. The rigorous results for the spin-1/2 Ising-Heisenberg model on the Shastry-
Sutherland lattice are compared with the analogous results for the purely classical Ising and fully quantum
Heisenberg models. Finally, we discuss to what extent the critical fields of SrCu,(BO;), and (CuCl)Ca,Nb;Oyy

can be described within the suggested Ising-Heisenberg model.
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I. INTRODUCTION

The spin-1/2 quantum Heisenberg model on a two-
dimensional orthogonal-dimer lattice has attracted consid-
erable attention since the pioneering work by Shastry and
Sutherland, which has rigorously proved that the ground state
is exactly dimerized provided the interdimer coupling is not
stronger than a half of the intradimer coupling [1]. Later on,
it has been verified by numerous analytical and numerical
methods that the singlet-dimer state remains the true ground
state even in a wider parameter range, which is limited just by
the upper value J'/J ~ 0.675 of the interaction ratio between
the interdimer and intradimer couplings [2-9]. A lot of efforts
have been subsequently devoted to the magnetization process
of this frustrated quantum spin model, which additionally
reveals several intriguing quantum ground states that macro-
scopically manifest themselves as intermediate magnetization
plateaus [10-17]. Despite considerable efforts, there is still
controversy and intense debate about the total number, size,
and microscopic nature of some intermediate magnetization
plateaus.

Almost two decades after the spin-1/2 quantum Heisen-
berg model on the Shastry-Sutherland lattice was originally
invented, the first experimental realization of this rather curious
theoretical model has been found in the layered copper-
based compound SrCu,(BO;),. The magnetic compound
SrCu,(BOs3), has thus offered a long sought experimental
verification of the singlet-dimer state theoretically predicted
by Shastry and Sutherland [1], because the actual ratio
between the interdimer and intradimer couplings J'/J ~
0.63 is sufficiently small in order to fall into the parameter
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range where the product of singlet dimers is the exact
ground state. Early high-field magnetization measurements
for SrCu,(BOj), have come up with convincing evidence
of three sizable plateaus at 1/8, 1/4, and 1/3 of the full
magnetization in addition to the expected plateau at zero
magnetization that corresponds to the singlet-dimer state
[18-20]. Subsequent torque measurements performed by
Sebastian et al. [21] suggested the presence of several
additional plateaus besides the three most sizable plateaus
mentioned previously. Steady field experiments supported by
NMR results [16] have established the low-magnetization
sequence of plateaus to be 1/8, 2/15, 1/6, and 1/4. At very
high field, the first report in favor of a 1/2 plateau [21,22] has
been confirmed by recent magnetization data for SrCu,(BOs);
recorded at ultrahigh magnetic fields, which definitely estab-
lished the presence of a robust magnetization plateau at 1/2
of the saturation magnetization, the width of which is nearly a
half of that recorded for the most extensive 1/3 plateau [23].

Another excellent realization of a magnetic structure rele-
vant to the Shastry-Sutherland lattice is provided by a rather
extensive class of isostructural rare-earth tetraborides RB4
(R = Dy, Er, Tm, Tb, Ho) [24-32]. However, the magnetic
behavior of the rare-earth tetraborides RBy is basically affected
by the Ising (easy-axis) anisotropy due to strong crystal-
field effects acting on rare-earth ions in contrast to the
almost isotropic magnetic behavior of the transition-metal
copper ions in SrCu,(BOs),. The metallic character along
with the substantial Ising anisotropy make a comprehensive
description of magnetic properties of the rare-earth tetra-
borides much more complex, because one has to take into
account the coupling between spin and electronic subsystems
described in terms of Ising (or X X Z Heisenberg) and Falicov-
Kimball models on the Shastry-Sutherland lattice, respectively
[33,34].
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FIG. 1. (Color online) Schematic illustration of the spin-1/2 Ising-Heisenberg model on the Shastry-Sutherland lattice with the XXZ
Heisenberg intradimer interaction J(A) and the Ising interdimer interaction J'. Thin (blue) lines show the Ising coupling and thick (red) lines
denote the Heisenberg coupling. Spins inside the Heisenberg dimers are enumerated from left to right and from bottom to top, respectively (see

also Fig. 2).

In the present work, two independent rigorous analytical
methods will be employed for investigating the ground state
of the spin-1/2 Ising-Heisenberg model on the Shastry-
Sutherland lattice in a magnetic field, which accounts for the
X X Z Heisenberg intradimer and Ising interdimer couplings.
The main goal for our study is to identify the microscopic
nature of spin arrangements emerging within intermediate
magnetization plateaus through exact eigenstates of the spin-
1/2 Ising-Heisenberg model on the Shastry-Sutherland lattice,
which may also have interesting implications for the mag-
netization plateaus experimentally observed for SrCu,(BOs),
and RB4, as well as exact eigenstates of the full quantum
Heisenberg counterpart model.

The outline of this paper is as follows. In Sec. II, the Ising-
Heisenberg model on the Shastry-Sutherland lattice is defined
and the basic steps of its rigorous treatment are explained. The
most interesting results for the ground-state phase diagram and
the nature of the spin arrangements emerging in intermediate
magnetization plateaus are discussed in Sec. III. Finally, the
most important outcomes of our work are briefly summarized
in Sec. IV.

II. THE ISING-HEISENBERG MODEL

Let us consider the spin-1/2 Ising-Heisenberg model on the
Shastry-Sutherland lattice with X X Z Heisenberg intradimer
interaction J(A) and Ising interdimer interaction J' defined

through the following Hamiltonian:

N N
H=17Y (suij-saija—hy (si,;+55,;)

ij=1 ij=1

N
+J' Z/(sii,j + sé,i,j)(sii-&-l,j + sé,i—l,j)

ij=1

N
+J/ //( z + z )( z + b4 ) (1)
Stij 82, )\S1ij+1 T52-1)
ij=1

where (S1.ij - S2.0.)08 = A(sy, 183, + s]y,i’jsii’j) +
S{;jS3: ;. S[;; denotes spatial projections (o = x,y,z)
of the spin-1/2 operator, the first index / = 1,2 enumerates
the spins inside of the Heisenberg dimer, the second and
third indexes determine the position of the dimer on a virtual
square lattice by specifying its column and row, respectively
(see Fig. 1). The first and second summations are carried out
over all dimers in order to account for the anisotropic XX Z
Heisenberg intradimer interaction J(A) and the Zeeman’s
magnetostatic energy of the spins in an external magnetic
field &, while the third (fourth) summation Y~ (3_") restricted
by the constraint i + j = odd (i + j = even) extends over all
vertical (horizontal) dimers to account for the Ising interdimer
interaction J'.
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FIG. 2. (Color online) Schematic representation of the local cluster Hamiltonian Hj;_;.;41;,; formed by three consecutive dimers in the

horizontal direction and of its reduction to the Ising-like form.

The model defined by the Hamiltonian (1) can be al-
ternatively viewed as an assembly of spin-1/2 Heisenberg
dimers on a fictitious square lattice composed of two inter-
penetrating sublattices: one sublattice of horizontal dimers
(i + j = even) and one of vertical dimers (i + j = odd). The
nearest-neighbor spins from the dimers belonging to different
sublattices are coupled by the Ising interdimer interaction. For
further convenience, it is useful to rewrite the total Hamiltonian
(1) as a sum of local cluster Hamiltonians:

N N
’ "
H= Z Hipj—1jen+ Z Hy_1ivn,j, 2)

ij=1 ij=1
Hij—viyi,j = J(S1j - $2i,/)a — ( S +S21j)
4 z Z
+J [(sl,i—l,j +s2,i—1,j)sl,i,j
Z Z Z
+ s2,i,j(s1,i+l,j +s2,i+1,j)]’
Hifjmrjan = J 1 - S2i)a —h(si,; ;+53, ;)
+‘][( llj 1+Sle l)sllj
+ Si,i,j(sl,i,jﬂ +S§,i,j+1)]’ 3
which include all interaction terms between the nearest-
neighboring spins from spin clusters constituted by three
consecutive dimers arranged either in a horizontal or vertical

direction (see the spin cluster on the left-hand side of
Fig. 2). Owing to the specific form of the Hamiltonian, the z

J

Z Z
_ J' (SI-H J Sz 1, 1) . _
cosq; j = > S, ;j =
272 72 (Qz _z
\/A 2+ IS5 = S)
/ Z Z
J( RS i,jfl) .
Cosq; j = s SInd; j =

\/AZ‘]2 + le( i,j+1 SlZJ 1)2

component of the total spin S; L= = sy, ; + 55, ; ofeach Heisen-
berg dimer commutes with the total Hamiltonian (2) as well as
with each local cluster Hamiltonian (3). Hence it follows that
the z component of the total spin S‘ is a conserved quantity
with well defined quantum spin numbers and, consequently, all
local cluster Hamiltonians (3) also commute with each other.
This property is of fundamental importance for the reduction of
the total Hamiltonian (2) into a diagonal (Ising-like) represen-
tation, which can be performed by two independent approaches
either based on local or continuous unitary transformations.

A. Local unitary transformations

At first, let us briefly describe the basic steps of the
first method based on the local unitary transformation for
the spin-1/2 Heisenberg dimers. It is worthy to notice that
the local cluster Hamiltonians (3) are already diagonal in
a particular subspace S; . i ; = £1 of the Heisenberg dimers
with equally oriented spins. To diagonalize the local cluster
Hamiltonians (3) in the other subspace S} ; = 0 spanned by
two oppositely oriented spins of the Heisenberg dimers, one
may use the local unitary transformation acting nontrivially
in this subspace only:

U, = (l +251zij55ij)
+exp [12061 is1 zJSth]( 2s1ljS2[ j) (4)

where the parameter o; ; is defined as follows:

AJ
= for i+ j =even,
\/AZJZ + (S50 = Si)
AJ
= for i+ j = odd. (®)]
\/AZJZ"'J/Z(SDH iz,jfl)

Itis quite evident from Eq. (5) that the transformation parameter «; ; for the horizontal (vertical) Heisenberg dimer depends on the
z component of the total spin on two adjacent vertical (horizontal) Heisenberg dimers. Applying the unitary transformation (4) to
the local cluster Hamiltonian (3) one obtains the following diagonal (Ising-like) representation of the local cluster Hamiltonians:

|AJ]| .
) (s2,i,j
J/
+?(Sfi

[AJ]

Ui jHivin, Ul =
¥4 Z
it S2,i,j)(Sz+l it S
+
UijHijj-1.j40U;; =

J/
+5 (s

1 .
11;) + Jsi; Jszlj h(sf,i,j +s§,i,j) + E(sé,i,j - Si'.i,j) (| i+l
1)
. . 1, .
T(si,i,j - Sii,j) + Jsf,i,jsi,i,j - h(sii,j +s§,i,j) + E(si,i,j - Sii,/) (| ij+1

Z Z Z
i 550 ) (55 + 57

1 l,j|)

lj—l |)

(6)

134413-3



VERKHOLYAK, STRECKA, MILA, AND SCHMIDT PHYSICAL REVIEW B 90, 134413 (2014)

where
(|85 = Sic ) = 8(1S5, = S5, [ = DV A2+ 02— |AT1) +8(|S7, ;= S| —2) (VA2I2 +402 = |AT]) > 0
7
8( S:—H i Sl‘z—l,ji - 1) [(S:+1 /) (SIZ 1 /) ] (\SH—I j z l]| _2) - ;S; 1 JSIZ-H /(Siz—l,jSI;H,j - 1)' ®)

Here, the symbol §(...) is used for the Kronecker delta function. It can be readily understood from Eq. (6) that the transverse
X X part of the Heisenberg intradimer coupling produces due to the local unitary transformation (4) an effective staggered
field of magnitude AJ/2 and a more complex effective multispin interaction, whose specific form depends basically mainly
on the difference between the z components of the total spin on two adjacent Heisenberg dimers. A graphical representation
of the unitary transformation (4) is depicted in Fig. 2. Another important implications follow from the commutation relation
(Ui j,Hir—tvir411,7] = (Ui j, Hifjr—1:54111 = 0 for i # i’ or j # j’. Owing to this fact, one may separately apply the unitary
transformation (4) to each Heisenberg dimer and consequently, the whole Hamiltonian (2) can be reduced to the following

Ising-like (diagonal) representation:

"~

N N
~=ZFI,'(,),-+ZVU 11+11+Z Vii—ti+11,j» ©)
i,j=1 ij=1

where

Viictivn,j =

S]lj)+JS1l]S21]

E(Sé,i,j _Sf,i,j)l(|sii+l,j +S§,i+1.j _siifl,j
X

i,j=1

h(si,;+ sé,i,j)’
/

_55,,'71,/'“ + ?(Slz,i,j +521.,i,j)

z z z z
(Sl,i+1,j 8541, TSTio1, T82i— l,j)’

!/

- 1 , J
Vilj—1:j+11 = E(Sé,i,j - slz,i,j)l(|slé,i,j+l + 80 1 ST~ 82— )+ E(sfi,.i +s§,i,.i)

Z 4 Z z
X (Sl,i,jJrl 854181 +S2,i,j71)' (10)

The schematic representation of the classical spin model
defined by the effective Hamiltonian (9) is presented in Fig. 3.

B. Continuous unitary transformations

Next we are aiming at an alternative derivation of an
effective low-energy model based on continuous unitary
transformations which also gives the magnetization curve of
the Ising-Heisenberg model. In its perturbative formulation
[35,36], which can be applied for A = 1, this method has been
already applied successfully for the full quantum Heisenberg
model on the two-dimensional Shastry-Sutherland lattice [14]
as well as on quasi-one-dimensional variants of the lattice
[37,38]. Here we apply also the method of perturbative
continuous unitary transformations (pCUTs) along the same
lines, but more importantly, we show that the recently
formulated nonperturbative graph-based continuous unitary
transformations (gCUTs) [39] yield the exact low-energy
model for any A in agreement with the approach of the
previous section based on local unitary transformations.

First, we rewrite the Ising-Heisenberg model in the form

%

A

H . S
~ D5 Si+x ) Sisi+
(i,J) (.0

3\ h o
_<Z> +thva+x(T_1+TO+T1)+ A,

a N N N h
=E0+Q+X(Tf1+To+T1)+7Hh, (1D

(

where we use different notation for the sake of convenience,
i.e., i, j enumerate the spins, and (i,j) (({(7,j))) stands for
the summation over all intradimer (interdimer) interaction.
Finally, x = J'/J corresponds to the natural perturbation
parameter inside the singlet-dimer phase and 7/ , (7, ,) denote
triplet creation (annihilation) operators on dimer v with
magnetic quantum number o € {—1,0 +1}, i.e., |t,) = fuﬂs)
on a single dimer. The latter operators are used to split the
intradimer interactions, proportional to x, into operators 7}, so
that 7, contains all processes, which change the number of
triplets by n € {—1,0,1}. For the Ising-Heisenberg model, all
operators with n = O represent triplet-triplet interactions while
operators with n = 1 (n = —1) create (destroy) a triplet if a
second triplet is present on an appropriate nearest-neighbor
dimer.

The essential goal is now to transform Eq. (11) into
an effective model conserving the number of triplons so
that the effective Hamiltonian after the continuous unitary
transformation commutes with the counting operator Q.
Triplons with total spin one are the elementary excitations of
coupled-dimer systems and can be viewed as triplets dressed
with a polarization cloud [40]. In a finite magnetic field, the
relevant processes for the magnetization process above the
singlet-dimer phase have maximum values of total S* as long
as bound states of triplons with different quantum numbers
do not become relevant at low energies [37]. Here we focus
on this channel, but we stress that also all other channels
with different quantum numbers could be calculated within the
same framework. The general form of the effective low-energy
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FIG. 3. (Color online) Schematic representation of the effective classical spin model on the Shastry-Sutherland lattice obtained by applying

the local unitary transformation (4) to each Heisenberg dimer.

model is then given by

7—leff
J

h
_ f
= Eo+ S Hy + Ej 8 1 b!, sb,

0 i T
+ Z Vs 6.8 PivsPivs,bivs by - (12)

i,6n

where the sums run over the sites i of the effective square
lattice built by dimers of the Shastry-Sutherland model and
o € {v,h} gives the orientation vertical or horizontal of dimer
i. The dots “...” represent terms containing more than four
operators. The hardcore boson operator bj (b; ) corresponds to
the creation (annihilation) of a triplet |#') on dimer i. Note that
the constant E is the same as the one before the continuous
unitary transformation since the product state of singlets is an
exact eigenstate.

Often the effective low-energy model is derived as a
high-order series expansion in x = J’/J using the pCUT
method. For the problem at hand, this is only possible for
A = 1 where the unperturbed part of the Hamiltonian (x = 0)
has an equidistant spectrum. To this end the amplitudes of the
effective model are determined in the thermodynamic limit
by exploiting the linked-cluster theorem, i.e., calculations
on finite clusters are sufficient in order to treat all quantum
fluctuations of a finite perturbative order correctly. The
conventional quantum Heisenberg model on the Shastry-
Sutherland is already special with regards to the linked-cluster
expansion since the singlet ground state is an exact eigenstate

and therefore no quantum fluctuations are present in the
ground state. This is different for excitations, since triplets
can be excited on neighboring dimers if a triplet is already
present. As a consequence, there exist virtual fluctuations of
triplets whose spatial extension scales with the perturbative
order. The resulting effective hardcore boson model therefore
contains quantum fluctuations, e.g., correlated hopping terms
or many-body interactions, to arbitrary distances and the
problem cannot be solved exactly [14,38].

This is fundamentally different for the Ising-Heisenberg
model. Here one has exact local conservation laws since
the magnetic quantum number on dimers is a conserved
quantity. This has dramatic consequences. First, single triplets
|t;) remain static. The only quantum fluctuation existing is
the conversion of singlets into triplets |f)) for two of the
four dimers being nearest neigbors of a triplet |¢;). Quantum
fluctuations are therefore confined to nearest-neighbor dimers
and the extension does not scale with the perturbative order.
Second, the operator f"o does not link different dimers. As a
consequence, the range and the number of operators in the
effective model Eq. (12) is finite, which sets the basis for an
exact solution.

All amplitudes of the effective model can be determined
on graphs consisting of at most three neighboring dimers in x
or y direction, i.e., the number and the size of graphs is tiny.
One can therefore derive these amplitudes easily by pCUTs
as a series expansion in J'/J for A = 1. More importantly,
one can determine the contibutions exactly on the finite set
of graphs with gCUTs for any value of A, which we would
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like to exemplify for the chemical potential w. First, there
is the local contribution u™™ = (1;|0|f) = (1 + A)/2 to the
chemical potential. The only other contribution to the chemical
potential can be calculated on a graph of two nearest-neighbor
dimers, e.g., oriented in x direction such that the left dimer
is a horizontal one. As a bare one-particle reference state we
take |0) = |s)|z;). The intradimer interaction ), T, creates
only the single state |1) = |fp)|f;) so that the calculation
reduces to the diagonalization of the single 2 x 2 matrix
(@'|(B'|H|a)|B) with «?, 8" € {0,1}. The lowest eigenvalue
of this matrix is A + 1 — 24/AZ + x2, which corresponds to
the sum pu" 4+ 1@, Exactly the same kind of contribution

J

(i,]) i vertical

where all three amplitudes are given exactly by

14 3A
W= ha — VA2 +x?

2
1+Aa 1 , 1
- =_ - A 15
2 oAt Teast as)
Rk, S W
= — — X
! 2 2
| L, 1,
= x4 —x? 16
2T T Teas” (16)
V3=—A+\/A2+x2
L, 1,
e S v 17
TN Y an

The effective model is purely classical since it solely consists of
diagonal operators such as the chemical potential and density-
density interactions. Besides the two repulsive two-particle
interactions, there is also one attractive three-body interaction
for three neighboring particles in x or y direction depending on
the orientation. The leading perturbative order of all couplings
corresponds to the ones of the full quantum Heisenberg
model on the Shastry-Sutherland lattice for A = 1 [14]. The
essential difference is the absence of off-diagonal operators
such as correlated hopping processes which introduce quantum
fluctuations in the effective low-energy model. Finally, it
might be convenient to relate the interactions to the chemical
potential which gives V| = %(1 +x—wand V3=1— pu.

C. Correspondence

Both formulations are equivalent if we notice the correspon-
dence between spin states in (9) and hard-core bosons in (14).
The empty site (i, j) in the particle formulation corresponds to

1

. . : 1 _ 1 . .
the spin configuration Sii;=12:8,;; =—30na dimer, while

occupied sites have 57, ; = 3 S50 = 3

Let us briefly describe the correspondence between eigen-
states of the initial and diagonalized local cluster Hamilto-
nians, the latter being diagonal in the basis spanned over

four eigenstates of the spin operators s ; and s ;. Applying

PHYSICAL REVIEW B 90, 134413 (2014)

is obtained for the two-dimer graph in x direction such that
the triplet |#;) is located on a vertical dimer which is left.
Therefore the complete expression for the chemical potential

in the thermodynamical limit is given nonperturbatively
by

1+3A
p=pV+2u = _+2 —vAT+az (13

which reduces to the pCUT expresion for A =1 when
performing a Taylor series in x (see below). The same kind
of reasoning can be done for all other contributions to the
effective model. One obtains

ﬁeﬁ A A A A A ~ ~ ~ ~
7 = MXi:ni +Vi Zninj +Vs |: Z Ai(1 = Aige Miy2e, + Z i1 — ni+e}-)ni+25yj| , (14)

i horizontal

(

the inverse unitary transformation one obtains the following
relations between the relevant eigenstates:

.. +
it ) = Uit 2 = it )
- +
Wiijbai) = Ui jdai) = Naijdai )
.. ot
Frisdais) = Uljitdai)

o

= cos T|T1,i,j‘l’2,iv]’>
i
—sin == T )

- +
Wit = Uil it )

. O
= sin T|T1,i,j¢2,i,/‘>
o j
+ cos T"Nu,ﬂz,i,j)' (%)

Note that the mixing angle «; ; entering the two antiferro-
magnetic eigenstates of the central dimer depends, according
to Eq. (5), just on the difference between the total spin of
neighboring dimers. The first two polarized triplet states with
total spin S; ; = =£1 are not affected at all by the unitary
transformation since the initial local cluster Hamiltonian
was diagonal in this particular subspace, while the other
two antiferromagnetic states with total spin S; ;=0 are
quantum-mechanically mixed by the unitary transformation.
As aresult, the classical antiferromagnetic states |T1’l~, i lz,i, i)
and [{,; ;%5 ;) of the diagonalized cluster Hamiltonian corre-
spond to the quantum antiferromagnetic order that is subject to
a quantum reduction of the magnetization given by (s ;. =

| 1 .
—(sii,j) =tjcosa; ; ((si[-’j) = —(sé,i’j) = F5cosa; ;) in
the state [t j 42 ;) (411200

III. RESULTS AND DISCUSSION

In this section, we report all exact ground states of the spin-
1/2 Ising-Heisenberg model on the Shastry-Sutherland lattice,
which will be subsequently used for constructing the complete
ground-state phase diagram in a field. In what follows,
we consider only the particular case of antiferromagnetic
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interactions J > 0 and J' > 0. The z component of the X X Z
Heisenberg intradimer coupling will be used as the energy unit
by setting J = 1.

First, it can be easily checked that the diagonal form of
the local cluster Hamiltonian (6) has always lower energy
for the spin configuration s7 ; J= —% than for the

% 21 i
reverse spin configuration sy ; = %, 551, ; =% provided
the exchange anisotropy A > 0. Hence it follows that the
latter antiferromagnetic state can be thoroughly excluded from
further considerations when looking for the lowest-energy
eigenstates of the spin-1/2 Ising-Heisenberg model on the
Shastry-Sutherland lattice, but it cannot be neglected in the
special Ising limit A = 0. To find all possible ground states
of the Ising-Heisenberg model with A > 0, it is therefore
sufficient to consider all spin configurations accessible entirely
from three states of the diagonalized local cluster Hamil-
tonians: sy, =s$;, ; = 1, S{, ;= —S5;; =7 and sj; . =
3 i= 1 , which can be alternatively identlﬁed as fictitious
spin states SZ = +1,0,—1 of some classical effective spin-1
model. The dlagonal form of the Hamiltonian (9) and (10) can

be then rewritten into the following form:

N

N
7 = Z Hi?j + Z/ Vi li—1:j+1]
ij=1

"~
+ Z Vii—tis11)»

i,j=I

- 1+ A 7 \2 I4
== (S5) T+ 5 = hsi
- 1 . z
Vii—viv11.j = —5[1 - (SE,,-)Z]I( S Sizfl,j‘)
J/
+ ZSZ (Slz+1j+Sl )
N 1 .
Vilj—tj+11 =—§[1—( DTS = SE50)
J/
LSt )

It should be noted that the analogous spin-1 representation
is also valid for the particular case with A =0, which
corresponds to the purely classical spin-1/2 Ising model on the
Shastry-Sutherland lattice. Unlike the previous case, the effec-
tive staggered field AJ/2 completely vanishes in the limiting
Ising case A =0 and consequently, two antiferromagnetic
states sy ; i= =S5, ;= :I:% can have equal energies unless the
effective interaction among three consecutive dimers makes
the energy of the antiferromagnetic state sy ; J= 8= %
lower. Thus the twofold degeneracy of the antiferromagnetic
states s7; ; = =S5, ; = :t% on all dimers can lead to a highly
degenerate ground-state manifold for the spin-1/2 Ising model
on the Shastry-Sutherland lattice in contrast to the spin-1/2
Ising-Heisenberg model with A > 0.

By inspection, we have found by minimizing the effective
Hamiltonian (19) six distinct ground states (see Fig. 4 for
a schematic illustration of individual ground states): (1)
the unique singlet-dimer (SD) phase constituted by a direct
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product over singlet-dimer states on the Heisenberg dimers
[see Figs. 4(a) and 4(b)]:

N N
SD) = [ [10:,) = [ ]IS0 (20)
iJj ij

1

ISi.j) = §(|T1,i,ji«2,i,j> =N jt2i)- (21)
(2) The highly degenerate Ising-dimer (ID) phase constituted
by a direct product over two-fold degenerate antiferromagnetic
states |1y ;, j 42, ;) and |} ; ;1 ;) on all dimers. This ground
state has a high macroscopic degeneracy proportional to the
total number of dimers 2V and it only exists in the Ising limit
A=0.

(3) The antiferromagnetic (AF) phase formed by a direct
product over two kinds of polarized triplet states S; j==%lof
the dimers, which regularly alternate in a such way that each
dimer is polarized in opposite direction with respect to all its
nearest-neighbor dimers [see Figs. 4(c) and 4(d)]:

N

N
[Th3n | TT 0
| ij=1

i,j=1

|AF)

i N ’ N "
= [T Wuboid) || T] Miiitein) |- @

i,j=1 ij=1

In these expressions, the symbols [  and []” denote the prod-
ucts over all vertical dimers (i 4+ j) = odd and all horizontal
dimers (i + j) = even, respectively. The AF ground state is
doubly degenerate, because another state can be created from
the eigenstate (22) by interchanging the states of the horizontal
and vertical dimers.

(4) The stripe 1/3-plateau phase in which each diagonal
stripe of the polarized dimers regularly alternates with two
stripes of dimers in a spin-singlet-like (nonmagnetic) state
[see Figs. 4(e) and 4(f)]:

Im = 1/3)

I al 4 N ” N "
= 1_[ wllj) 1_[ |6i-j> 1_[ |()i,j)

| i.j=1 i,j=1 ij=1
N N N
=TTt || TT e [ TT 1850 |
| i.j=1 i,j=1 i,j=1
(23)
(%) (&)

o
1655) = cos =112y —sin =1t jdai). 24)

i

Here, the symbols [], []’, J]” denote products over in-
dices i +j=3L+1,3L+23L or i —j=3L+1,3L +
2,3L (L is any integer), the mixing angle «'® in the spin-
singlet-like states |¢, ])) is defined as «™® = arctan(£AJ/J")
with a € [0,7]. The spin-singlet-like states capture the quan-
tum antiferromagnetic order on the Heisenberg dimers, which
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FIG. 4. (Color online) Schematic representation of exact ground states of the spin
lattice. The left and right panels show spin arrangements relevant to the classical effective spin model given by the Hamiltonian (19) and the

respectively. The rows from top to bottom correspond to the singlet-dimer

phase, the antiferromagnetic phase, the stripe 1/3-plateau phase and the checkerboard 1/2-plateau phase. Shaded (transparent) dimers on the

left panel denote the polarized triplet (singlet) states. On the right panel, the ellipse denotes a singlet-dimer state, filled circles denote spins

s

original quantum spin model defined through the Hamiltonian (2)

empty circles denote spins oriented in opposite to the external magnetic field, whereas the

reduced diameter of both kinds of circles corresponds to the quantum reduction of the local magnetization (25).

)

oriented in a direction of the external magnetic field
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can be characterized by a nonzero but not fully saturated
staggered magnetization related to the quantum reduction of
the local magnetizations depending on the mutual competition
between the Ising interdimer interaction and the transverse
X X part of the Heisenberg intradimer interaction:

1 J'

(sf.i,j>¢<i> = _(Sé,i,j>¢<i) = izm, (25)
where (- )gw = (¢,<(,J_;)| E |¢fﬁ)). This ground state is six-
fold degenerate, since other five states can be created from the
eigenstate (23) by translation and/or reflection.

(5) The checkerboard 1/2-plateau phase in which the
singlet-dimer state on the vertical dimers regularly alternates
with the polarized state on the horizontal dimers or vice versa
[see Figs. 4(g) and 4(h)]:

N N
!~ "~
m=1/2)=|[] 10 [1 1%
i,j=1 i,j=1

N/ N//
= [TSsH || T] tuten |- @6
| i.j=1 i,j=1

Here, the symbols [ and []” denote the products over all
vertical dimers (i + j) = odd and all horizontal dimers (i +
J) = even, respectively. This ground state is doubly degenerate
because of the possible interchange of the states of vertical and
horizontal dimers.

(6) The saturated paramagnetic phase with the fully
polarized dimers:

N
m=1)=[] %
t,j:

At this stage, we can adapt the procedure developed in
Refs. [41,42] for the classical spin-1/2 Ising model on the
Shastry-Sutherland lattice in order to find out whether or not
some of the exact eigenstates (20)—(27) represents true ground
state in a particular parameter range. For this purpose, it is
useful to rewrite at first the overall configurational energy as
a sum of energies of local cluster Hamiltonians that depend
solely on the z component of the total spin on all dimers:

’ Z P4
H[i71:i+1],j(Sz lj’Sl j’SlJrl j)

H it @D

i,j=1

- h
= Vii—titi1j — 4(Sf LT 28T A+ SE )
(14280 (1+8)]
4 2

X{y[( i— 1]) (Sterl j) ]+ (1 - 2y)(SiZ,j)2}’
Hi/,[jflzj+l](si;j l’Slzj’SlZ;j+1)

h
= Vipj-tj+11 — Z(Siz,j—l +2857; + S;]+1)

(+28)]  (1+8)]
4 2

<y [(5,2)" + (85,0) T+ =20(85,)°). @®)
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which involve a new free parameter y to be determined later
on. Let us also introduce the simplified notation E(S,S3,55)
for the configurational energy of the local cluster Hamiltonian
(28) involving three consecutive dimers either in a horizontal
or vertical direction. Thus the total energy of the model
is a sum of the configurational energies E(S7,S5,S3) of
all clusters (28). To get the ground state, we have to find
the cluster configurations (S7,S5,55) which attain the lowest
energy and to assemble a state of the whole system from
them. All states created by such a way correspond to the
ground state of the effective classical spin model. Finally,
the inverse transformations U, * [see Eq. (18)] is applied
to recover the ground state of the initial Ising-Heisenberg
model (1).

In an absence of the external magnetic field & = 0, we
can choose the parameter y = 1/2 in order to satisfy the
condition that the configurational energy E(0,0,0) is the lowest
for J' < (1 4+ A)J/2, otherwise the configurational energies
E(1,—1,1) = E(—1,1,—1) achieve the lowest value. In this
respect, the singlet-dimer phase constitutes the zero-field
ground state for J' < (1 + A)J/2, since it totally consists of
the lowest-energy clusters with the configuration (0,0,0). On
the contrary, the lowest-energy clusters with the configurations
(1, —1,1) and (—1,1, —1) can regularly alternate in order to
produce the other zero-field antiferromagnetic ground state if
the reverse condition J' > (1 + A)J/2 is met.

The situation becomes a bit more involved in nonzero
magnetic field. It is clear from Figs. 4(e) and 4(f) that the
stripe 1/3-plateau phase can be established from the clusters
(0,1,0) and (1,0,0), each of which contains just one polarized
dimer from three consecutive dimers either at a central or a
side position. Thus it is necessary to verify that the energies
of such clusters may become equal to each other and that
they are simultaneously lowest in a certain parameter region
in order to check whether or not the stripe 1/3-plateau phase
may become the ground state. The appropriate value of the
parameter y can be therefore found according to the condition

E(0,1,0) = E(1,0,0):
2 Tl

== (i lil/arrsr)

v 3a+mJ<4+2+2 + ) 29

The calculation of this specific value (29) provides evi-
dence that the configurational energies satisfy the inequality
E(0,0,0) < E(0,1,0) = E(1,0,0) for J' < (1 + A)J/2 if the
magnetic field is smaller than the first critical value (h < hy),

1+3A)J
hlzu_,/AZ‘]Z_*_J/Z, (30)

2

while the configurational energies obey the inequality
E(1,—1,1) = E(—1,1,—1) < E(0,1,0) = E(1,0,0) for J' >
J(1 4+ A)/2 if the magnetic field is below the second critical
value (h < hy),

—V A2+ T2 (€28)

It should be noted that the energies of all other configurations
not mentioned in the inequalities above and below have even
higher values for the considered fields and interactions, and,
therefore, they are irrelevant. These results suggest that the
stripe 1/3-plateau phase is energetically favored with respect
to the singlet-dimer and antiferromagnetic phases for the

hy =3J —
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magnetic fields & > hy if J' < (1 + A)J/2 and h > h, if
J' > (1 + A)J/2, respectively. Furthermore, the configura-
tional energies pertinent to the stripe 1/3-plateau phase fulfill
the condition £(0,1,0) = E(1,0,0) < E(1,0,1) as long as the
magnetic field does not exceed the third critical value (h < h3),

h; = % + 2/ A2J2 4+ 1/2’ 32)
above which the checkerboard 1/2-plateau phase develops
in the ground state on account of a regular alternation of
the clusters (1,0,1) and (0,1,0). The special value of the
parameter y = 1/4 can be used to obtain the lower and upper
boundaries for the checkerboard 1/2-plateau phase defined by
the conditions £(1,0,0) < E(0,1,0) = E(1,0,1) < E(1,1,1).
The left inequality is valid for 4 > h3, while the right one is
satisfied if the magnetic field is smaller than a fourth critical
field given by

(1+A)J
—

It is quite evident from the previous argumentation that the
special value of the magnetic field hs corresponds to the
saturation field, above which the investigated system passes
to the saturated paramagnetic phase with the fully polarized
dimers into the direction of the external magnetic field.

Let us conclude our discussion about the ground state
of the spin-1/2 Ising-Heisenberg model on the Shastry-
Sutherland lattice by summarizing our findings. The zero-field
ground state is either formed by the singlet-dimer phase
for weaker Ising interdimer couplings J' < (1 + A)J/2 or
by the classical antiferromagnetic phase for stronger Ising
interdimer couplings J' > (1 + A)J/2. The singlet-dimer
phase remains the ground state at sufficiently small magnetic
fieldsh < hy when J' < (1 + A)J/2 and similarly the ground
state remains in the antiferromagnetic phase at small enough
magnetic fields 4 < h, when J' > (1 + A)J /2. The singlet-
dimer and antiferromagnetic phases are replaced with the
stripe 1/3-plateau phase, which becomes the ground state for
intermediate magnetic fields 43 > h > h provided J' < (1 +
A)J /2 and, respectively, hz > h > hy if J' > (14 A)J/2.
The checkerboard 1/2-plateau phase is energetically favored
over the stripe 1/3-plateau phase for magnetic fields 4 > h3,
and this ground state persists up to the saturation field 4 < hy.
For strong enough magnetic field 2 > hy, the system ends up in
the saturated paramagnetic phase with fully polarized dimers
along the external magnetic field.

The model with ferromagnetic Ising interaction J' < 0 can
be considered in the same manner as above. Taking y = 1/2,
we find that in zero field the singlet state remains the ground
state until |J'| < (1 + A)J/2, otherwise the ferromagnetic
phase becomes favorable. In contrast to J’ > 0, there are no
fractional plateaux. The magnetization jumps at

_(d+ay
2

from zero in nonmagnetic singlet-dimer phase to the maximal
value in the saturated phase. To prove this statement, one has
to use y determined from the condition £(1,0,0) = E(0,1,0)

To provide a more complete understanding of the overall
ground-state behavior, we have plotted in Fig. 5 ground-state

hy =2J" + (33)

he — 1] (34)
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phase diagrams of the spin-1/2 Ising-Heisenberg model on
the Shastry-Sutherland lattice for a few selected values of the
exchange anisotropy A. A comparison between the displayed
ground-state phase diagrams allows us to clarify the effect
of quantum fluctuations pertinent to the XXZ Heisenberg
intradimer interaction, the strength of which is controlled by
the exchange anisotropy A. It can be seen from Fig. 5(a)
that we have correctly recovered in the Ising limit A = 0 the
ground-state phase diagram of the spin-1/2 Ising model on the
Shastry-Sutherland lattice reported previously by Dublenych
[41], which involves the Ising-dimer phase, the antiferromag-
netic phase, the stripe 1/3-plateau phase and the saturated
paramagnetic phase. It is noteworthy that all aforementioned
phases become purely classical in the limiting case A = 0, i.e.,
there is no quantum reduction of local magnetizations within
the stripe 1/3-plateau phase and no quantum entanglement
between twofold degenerate antiferromagnetic states within
the Ising-dimer phase due to the complete lack of quantum
fluctuations. On the other hand, the macroscopically degener-
ate Ising-dimer phase is transformed into the unique singlet-
dimer phase with a perfect quantum entanglement between
two antiferromagnetic states once the exchange anisotropy in
the X X Z Heisenberg intradimer coupling becomes nonzero
(i.e., A > 0). It should be emphasized, moreover, that the
ground-state phase diagram of the spin-1/2 Ising-Heisenberg
model on the Shastry-Sutherland lattice remains qualitatively
unchanged for any nonzero value of the exchange anisotropy
A > 0 [c.f. Figs. 5(b)-5(d)]. The most fundamental difference
between the spin-1/2 Ising and Ising-Heisenberg models on
the Shastry-Sutherland lattice thus consists in the presence
of the checkerboard 1/2-plateau phase in the ground-state
phase diagram of the latter model, which is however totally
absent in the ground-state phase diagram of the former
model. A more subtle difference can be still found within
the stripe 1/3-plateau phase even though this phase is present
in the ground-state phase diagram of the Ising as well as
Ising-Heisenberg model. In fact, the stripe 1/3-plateau phase
undergoes according to Eq. (25) a quantum reduction of
local magnetizations of the Ising-Heisenberg model with
A > 0 in contrast to fully saturated local magnetizations
of the Ising model with A = 0. The quantum reduction of
local magnetizations within the stripe 1/3-plateau state is
the stronger, the greater the transversal part of the XXZ
Heisenberg intradimer interaction is (i.e., the greater the
parameter A is). As far as two intermediate plateau states are
concerned, one may generally observe the following general
trends: (i) the easy-axis exchange anisotropy shrinks the width
of the checkerboard 1/2 plateau until it completely disappears
in the Ising limit A =0, and (ii) the easy-plane exchange
anisotropy shrinks a width of the stripe 1/3 plateau although
this plateau state does not entirely vanish in the XX limit
A — oo.

Next, let us make a few comments on the ground-state
boundaries between different phases, where an extremely high
macroscopic degeneracy may come into play. For instance,
one may formulate an effective hard-core square model at the
boundary between the saturated paramagnetic phase and the
checkerboard 1/2-plateau phase, because the energies of three-
dimer clusters with the configurations (1,1,1), (1,1,0), (1,0,1),
and (0,1,0) must inevitably become equal. If starting from the
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FIG. 5. Ground-state phase diagram of the spin-1/2 Ising-Heisenberg model on the Shastry-Sutherland model in the J'-% plane for several
values of the exchange anisotropy: (a) A = 0.0, (b) 0.25, (c) 1.0, and (d) 2.0.

fully saturated state we may place the singlet state on a dimer
without cost of any energy. However, two singlets cannot be
placed on nearest-neighbor dimers due to the restriction on the
allowed configurations, which leads to an effective hard-core
repulsion between particles representing singlets.

On the other hand, the ground state can be built up from any
combination of the cluster configurations (0,0,0), (1,0,0), and
(0,1,0), which are of equal energy at the boundary between
the singlet-dimer phase and the stripe 1/3-plateau phase.
Therefore the triplon state can be created in the singlet-dimer
phase with the special conditions of hard-core repulsion: two
triplons cannot be placed on the nearest-neighbor dimers as
well as on the next-nearest-neighbor dimers in a vertical
(horizontal) direction for the horizontal (vertical) dimer,
respectively. It is worth mentioning that the identical hard-core
constraint for triplons was previously deduced for the spin-1/2
Heisenberg model on the Shastry-Sutherland lattice [23]. The
stripe 1/3-plateau phase can be thus viewed as the state
with maximally dense packing of triplets, which still satisfies
the afore-described hard-core constraint. Of course, other
states with a lower density of triplets are also allowed by
the hard-core constraint, whereas these states have the same
energy as the singlet-dimer and the stripe 1/3-plateau phase
at their ground-state boundary determined by the critical field
hy. This actually means that more complex ground states of

the Heisenberg model such as 1/8-, 1/6-, or 1/4-plateau states
coexist together with the singlet-dimer and the stripe 1/3-
plateau ground states along their ground-state phase boundary
[16,23].

The boundary between the antiferromagnetic phase and
the stripe 1/3-plateau phase is somewhat different. Namely,
the three-dimer configuration (— 1,1,0) can be additionally
realized at the respective boundary besides the configurations
1,-1,1), (—1,1,—1), and (1,0,0), (0,1,0), which are building
block of the antiferromagnetic and stripe 1/3-plateau phases.
With regard to this, the boundary between these two ground
states includes a lot of unexpected spin configurations. For
instance, the ferromagnetic chain in the stripe 1/3-plateau
phase can be extended to a set of ferromagnetically ordered
chains, whereas the neighboring chains are magnetized in
opposite directions with respect to each other and side
chains are directed along the magnetic field. The situation
at the boundary between the stripe 1/3-plateau phase and the
checkerboard 1/2-plateau phase is quite similar. Any random
spin configuration involving antiferromagnetic and ferromag-
netic stripes is possible whenever the ferromagnetic stripes
are separated from each other by one or two antiferromagnetic
stripes.

Last but not least, let us compare our exact results for
the ground state of the spin-1/2 Ising-Heisenberg model on
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FIG. 6. (Color online) Comparison between the ground-state
phase diagrams of the spin-1/2 Ising-Heisenberg and Heisenberg
models on the Shastry-Sutherland model. Solid (black) lines represent
the ground-state phase boundaries for the Ising-Heisenberg model
(2) with the isotropic Heisenberg intradimer coupling A = 1. Filled
circles are exact diagonalization data of the pure quantum Heisenberg
model for N = 36 spins and the broken curve represents the CORE
results for the same model adapted from Ref. [12]. Empty squares
and circles show the boundaries of the 1/3 and 1/2 plateaux obtained
with iPEPS in Ref. [23].

the Shastry-Sutherland lattice with the known results for the
analogous but fully quantum spin-1/2 Heisenberg model on
the Shastry-Sutherland lattice obtained within the framework
of various numerical approaches [5-17,23]. The zero-field
ground states of the Ising-Heisenberg and Heisenberg models
are quite similar in two limiting cases corresponding either
to the weak interdimer coupling J' <« 1 or to the strong
interdimer coupling J' > 1. As a matter of fact, the singlet-
dimer phase is the ground state of the Ising-Heisenberg as
well as of Heisenberg model in the limiting case of weak
interdimer coupling J' <« 1, while the quantum reduction of
local magnetization is the only relevant difference between the
classical and quantum antiferromagnetic ground state of the
Ising-Heisenberg and Heisenberg models in the other limiting
case of the strong interdimer coupling J’ >> 1. Hence, the most
substantial difference between the zero-field ground states
of both these models can be detected at moderate values of
the interdimer interaction J' &~ 1. It is worth recalling that
the Ising-Heisenberg model with the isotropic Heisenberg in-
tradimer interaction shows a direct first-order phase transition
between the singlet-dimer phase and the antiferromagnetic
phase at the specific value of the interdimer interaction J' = 1
in contrast to the more complex behavior of the full quantum
Heisenberg model, which exhibits an additional plaquette
zero-field ground state in a range of moderate values of the
interdimer coupling 0.675 < J' < 0.765 [5-9].

The ground-state phase diagram of the spin-1/2 Ising-
Heisenberg model on the Shastry-Sutherland lattice in the J'-A
plane is confronted in Fig. 6 with the analogous ground-state
phase diagram of the spin-1/2 quantum Heisenberg model
on the Shastry-Sutherland lattice adapted from the numerical
data reported in Refs. [12,23]. Although there is still some
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controversy about the microscopic nature, size and total
number of magnetization plateaus of the spin-1/2 Heisenberg
model on the Shastry-Sutherland lattice in a nonzero magnetic
field, the microscopic nature of the stripe 1/3 plateau and
checkerboard 1/2 plateau has been firmly corroborated by
numerous precise numerical methods along with a few more
subtle 1/4 and 2/5 plateaus the nature of which is nowadays
under intensive debate [7,10-17,23,38]. It is quite remarkable
that the simplified Ising-Heisenberg model correctly repro-
duces the microscopic nature of the stripe 1/3 plateau and
the checkerboard 1/2 plateau of the full quantum Heisenberg
model, whereas it gives through the exact eigenvector (23)
some additional insight into the microscopic origin of the
stripe 1/3-plateau state and the related quantum reduction
of local magnetizations. In addition, it surprisingly turns out
that the ground-state phase diagrams of the Ising-Heisenberg
and Heisenberg models are in a relatively good quantitative
agreement not only in the limit of weakly interacting dimers
J’ — 0but up to moderate values of the interdimer interaction
J' =~ 0.5. Tt is quite tempting to conjecture, moreover, that
more subtle stripe 1/4- and 2/5-plateau states of the quantum
Heisenberg model are merely stabilized by means of the
transverse (XX) component of the interdimer interaction,
because these states coexist in the Ising-Heisenberg model at
the singlet-dimer versus stripe 1/3-plateau phase boundary and
respectively, at the stripe 1/3-plateau versus the checkerboard
1/2-plateau phase boundary. This result would imply that
the Ising-Heisenberg model can be considered as a good
starting point for the perturbative treatment of the full quantum
Heisenberg model.

Let us complete this section by the discussion of the
application to some real compounds. In SrCu,(BO;),, early
thermodynamic measurements [7] as well as the recent
determination of the boundaries of the 1/3 and 1/2 plateaux
[21,23] point to a ratio J'/J =~ 0.63. For this ratio, our Ising-
Heisenberg model shows quite close results for the boundaries
of the 1/3 plateau, while the boundaries of the 1/2 plateau
are quite different from those of the Heisenberg model (see
Fig. 6). This discrepancy is caused by the wide region of 1/3-
and 2/5-supersolid phases below 1/2 plateau and the spin-
liquid-like phase above it that were observed in the Heisenberg
model [23]. Therefore the upper boundary of 1/2 plateau
is rather related to the saturation field of the corresponding
Heisenberg model. We can briefly consider another compound
with the magnetic structure the Shastry-Sutherland model,
(CuCl)Ca,Nb30Oy [43-45]. It corresponds to the isotropic
Heisenberg model with strong antiferromagnetic intradimer
and ferromagnetic interdimer couplings, and shows a transition
from a spin-singlet ground state to the magnetized phase
at the critical field 7.8 T which correspond to a Zeeman
energy of 11.1 K [45]. From Eq. (34) we can estimate
the relation between intradimer and interdimer interactions
as J —|J'| = 11.1 K. The results for the Heisenberg and
Ising-Heisenberg model perfectly coincide in this particular
case, since they both describe a direct field-induced transition
from the phase of uncorrelated singlets to polarized dimers.
The main reason for this surprising quantitative agreement is
that the quantum (XY) part of the interdimer interaction has
no effect on both aforementioned phases of the corresponding
Heisenberg model.
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IV. CONCLUSIONS

The present work deals with the ground-state behavior
of the spin-1/2 Ising-Heisenberg model on the Shastry-
Sutherland lattice with the XXZ Heisenberg intradimer
interaction and the Ising interdimer interaction. Exact ground
states of the model have been obtained by two independent
procedures leading to equivalent effective Hamiltonians: the
former one takes advantage of a local unitary transformation
in order to establish a rigorous mapping correspondence
with an effective classical spin-1 model, while the latter
method leads to an effective hard-core boson model by a
graph-based continuous unitary transformation. Apart from
the exact ground states and ground-state phase diagrams we
have also studied in some detail the degeneracy at particular
phase boundaries.

It has been demonstrated that the spin-1/2 Ising-Heisenberg
model on the Shastry-Sutherland lattice exhibits a zero-
temperature magnetization curve with just two intermediate
plateaus at 1/3 and 1/2 of the saturation magnetization.
The 1/3 plateau corresponds to a regular alternation of
diagonal stripes of polarized dimers with two diagonal stripes
of spin-singlet-like dimers, while a checkerboard ordering
of singlets and polarized triplets takes place at the 1/2
plateau. The microscopic nature of the remarkable stripe 1/3
plateau has been thoroughly investigated with the help of
the corresponding exact eigenvector, which shows that the
quantum reduction of the local magnetization within this
peculiar ground state is due to the competition between the
Ising interdimer coupling and the transverse part of the X X Z
Heisenberg intradimer coupling.

The rigorous results for the spin-1/2 Ising-Heisenberg
model on the Shastry-Sutherland lattice have been also
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compared with the analogous results for the purely classical
Ising and full quantum Heisenberg models. It has been verified
that the ground-state phase diagrams of the Ising-Heisenberg
and Heisenberg models are in a relatively good quantitative
accordance up to moderate values of the interdimer coupling
J’ = 0.5. In addition, it has been shown that the 1/8, 1/6,
and 1/4 plateaus coexist at the phase boundary between
the singlet-dimer phase and the stripe 1/3-plateau phase and
similarly, the stripe 2/5 plateau coexists at the phase boundary
between the stripe 1/3 plateau and checkerboard 1/2 plateau.
This result suggests that the exactly solved Ising-Heisenberg
model could be used as a good starting point for a perturbative
treatment of its full quantum Heisenberg counterpart model in
order to find out how the transverse component of the XX Z
interdimer interaction can stabilize those plateau states. This
issue is a challenging task left for future investigation.
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