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The electronic, thermodynamical, and transport properties of ordered Fe3X (X = Al,Si) alloys are studied from
first principles. We present here a unified approach to the phase stability, the estimate of the Curie temperature,
the temperature dependence of sublattice magnetizations, magnon spectra, the spin-stiffnesses, and residual
resistivities. An important feature of the present study is that all calculated physical properties are determined
in the framework of the same first-principles electronic structure model combined with the effective Ising
and Heisenberg Hamiltonians used for study of the thermodynamical properties of alloys. Curie temperatures,
spin-stiffnesses, and magnon spectra are determined using the same calculated exchange integrals. Finally, the
transport properties are calculated using the linear-response theory. Our theoretical estimates compare well
with available experimental data. In particular, calculations predict (in agreement with experiment) the ordered
D03 phase as the ground-state alloy structure, demonstrate that a correct relation of Curie temperatures of
Fe3Al/Fe3Si alloys can be obtained only by going beyond a simple mean-field approximation, provide reasonable
estimates of spin-stiffnesses, and give resistivities compatible with structural disorder observed in the experiment.
Although the calculated temperature dependences of the Fe magnetization on different sublattices are similar,
they nevertheless deviate more than in the experiment, and we discuss a possible origin.
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I. INTRODUCTION

Iron-rich metal alloys are interesting materials for various
technological applications. Among these alloys, those contain-
ing sp metals such as aluminum and silicon have, in addition,
high strength and resistance to oxidation. Regarding their
magnetic properties, one can mention the high magnetic per-
meability and large magnetostriction. Specifically, at around
25% of the sp element, they form ordered Fe3Al and Fe3Si
compounds crystallizing in the D03 structure, which is formed
by four fcc sublattices A-B-C-D along the [111] direction with
the order Fe[A]-Fe[B]-Fe[C]-X[D], X = Al,Si.

In Fe3Al, the high-temperature disordered body-centered-
cubic structure after cooling orders first into the B2 (CsCl-type)
structure, and, after further cooling, it orders into the D03

structure. Stoichiometric Fe3Si exhibits D03 order up to very
high temperatures (1500 K). We refer the reader to Ref. [1]
for a detailed experimental account of the phase diagrams.
Another interesting feature of these materials is related to the
fact that two kinds of iron sites exist: the first type—containing
Fe[B] atoms—with its nearest neighbors being only iron atoms
as in bcc Fe, and the other type—comprised of Fe[A] and
Fe[C] atoms—which have as nearest neighbors both iron and

sp-metal atoms. As a result, the transition-metal impurities
show a selective preference site occupation on the above two
types of sublattices [2]. At higher impurity concentrations,
these alloys have a direct relation to the Heusler-type alloys
with the L21 structure. The above-mentioned two types of
sites exhibit also very different magnetic behavior under an
external pressure. While the bcc-type site behaves similarly
to bcc Fe, the other two exhibit an interesting metamagnetic
behavior close to the equilibrium volume [3,4].

The electronic structure and ground-state properties of
these materials were studied intensively in the past using
first-principles approaches. We therefore mention just two
early studies, namely Refs. [5] and [6] for Fe3Al and Fe3Si,
respectively. On the other hand, a number of interesting
properties, such as, e.g., the order-disorder phase transition,
exchange integrals, Curie temperatures, magnetization ther-
modynamics, or transport properties, have not yet been studied
systematically, in particular not on the first-principles theory
level. The main feature that distinguishes the present paper
from a number of related studies of these and similar alloys
is that we evaluate a large number of physically different
quantities, such as the Curie temperature, residual resistiv-
ity, magnetic moments, spin stiffness, the phase stability,
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J. KUDRNOVSKÝ et al. PHYSICAL REVIEW B 90, 134408 (2014)

and magnon dynamics using the same electronic structure
model, rather than evaluating them using different individually
tailored inputs. Conventionally, just a few closely related
quantities, such as, e.g., the band structure and densities
of states, equilibrium volume, etc., are presented. Without
estimation of other, physically different quantities within a
given approach, one obtains only an incomplete understanding.
As a byproduct, we also estimate physical properties that were
not evaluated to date from first-principles. The above alloys
represent a suitable object for such a project because a lot of
reliable experimental data were gathered in the past that are
missing for many recently prepared materials.

The following problems are addressed: (i) the study of or-
dering from the disordered bcc phase into the D03 structure for
Fe3Al and Fe3Si using an alloy Ising model constructed from
first principles and clarifying the role of magnetic moments in
the order-disorder transition; (ii) evaluation of exchange inte-
grals and construction of a corresponding classical Heisenberg
Hamiltonian, which can be used to estimate the Curie tempera-
ture of Fe3Al and Fe3Si, in particular to explain the larger Curie
temperature of Fe3Si, and to determine the magnon spectra;
(iii) the thermodynamic study of sublattice magnetizations,
motivated by the fact that the measured sublattice-resolved
Fe hyperfine fields behave very similarly [7] despite their
different local environment (bcc-like for the Fe[B] sublattice
and mixed iron and sp metal for the Fe[A,C] sublattices).
Since the hyperfine fields are not the main subject of this
study, a simple model relating the sublattice magnetizations
and the hyperfine fields is presented in the Appendix;
(iv) the low-temperature transport properties, in particular the
role played by native disorder that causes the finite resistivity
of stoichiometric compounds. All results are compared with
the available experimental data.

II. FORMALISM AND COMPUTATIONAL DETAILS

The electronic structure calculations were performed using
the scalar-relativistic tight-binding linear muffin-tin orbital
(TB-LMTO) scheme [8] within the local density approxima-
tion (LDA). The Vosko-Wilk-Nusair exchange-correlation po-
tential [9] was used for the parametrization of the local density
functional. A possible effect of disorder (e.g., disordered bcc
phase used for study of phase transformations or the use of
native disorder in transport calculations) is described by the
coherent-potential approximation (CPA) as formulated in the
framework of the TB-LMTO Green’s function method [10].
The same atomic sphere radii were used for all constituent
atoms, lattice constants were taken from the experiment, and
the s,p,d,f basis was used in all calculations.

The phase stability of the alloy AxB1−x is described by the
Ising alloy Hamiltonian

H I =
∑

i �=j

Vij ηiηj , (1)

where i,j are site indices and ηi is the occupation index,
which is 1 if the site i is occupied by atom A and 0
otherwise. The quantities Vij are the effective interatomic
(chemical) interactions. The chemical interactions Vij are
determined using the generalized perturbation method (GPM)
of Ducastelle [11]. Their determination within the TB-LMTO

is described in Ref. [12]. It should be noted that Vij depend on
the presence of magnetic moments [12]. The positive/negative
values of effective pair interactions indicate the tendency to
prefer unequal/similar atom pairs in the alloy. It should be
noted that the GPM method derives chemical interactions
from the reference disordered system without assuming any
ordered structure. Possible ordered phases are then obtained
on the basis of thermodynamics either using the Monte Carlo
approach or simpler mean-field approaches, the concentration-
wave method in the present case [11]. It should be noted that
the Ising alloy Hamiltonian can also be constructed assuming a
set of possible ordered structures using the so-called Connolly-
Williams approach [13].

The magnetic structure is described by the classical
Heisenberg Hamiltonian

H H = −
∑

i �=j

Jij ei · ej . (2)

Here i,j are again site indices, ei is the unit vector in the
direction of the local magnetic moment at site i, and the
quantities Jij are exchange integrals between sites i and j .
The exchange integrals Jij are determined using the method
of infinitesimal rotations of Liechtenstein [14]; its implemen-
tation within the TB-LMTO method can be found in Ref. [15].
The exchange integrals, by construction, contain magnetic
moments of atoms; their positive (negative) values indicate
a tendency to ferromagnetic (antiferromagnetic) coupling.

The Curie temperatures can be estimated from calculated
exchange interactions using the mean-field approximation
(MFA),

kBT MFA
c = 2

3

∑

i �=0

J0i , (3)

and the random-phase approximation (RPA) [16],

(
kBT RPA

c

)−1 = 3

2

1

N

∑

q

[J (0) − J (q)]−1, (4)

where J (q) is the lattice Fourier transform of Jij ’s. For
multisublattice versions of these formulas, we refer the reader
to Ref. [17].

The residual resistivities are determined by the linear-
response theory as formulated in the framework of the
TB-LMTO-CPA method using the Kubo-Greenwood (KG)
formula [18] including the disorder-induced vertex correc-
tions [19]. Such vertex corrections are equivalent to the
backward scattering in the collision term of the Boltzmann
transport theory. The relevance of vertex corrections depends
on the specific alloy and should be checked for each system.
Their importance for calculated resistivities was demonstrated
in Ref. [20]. We refer the readers to Refs. [18,19] for details
concerning the formulation of transport theory.

III. RESULTS AND DISCUSSION

In this section, we present theoretical estimates of various
physical quantities related to Fe3Al and Fe3Si.
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TABLE I. Calculated local magnetic moments (th) of Fe atoms on the A/C and B sites are compared with available experimental data
obtained from the neutron measurements done at room temperature (RT). We also show values extrapolated down to the zero (0) temperature [22],
which are the most suitable for comparison with theoretical results.

Local magnetic moments in μB

Alloy MFe
A,C(RT) MFe

B (RT) MFe
A,C(0) MFe

B (0) MFe
A,C(th) MFe

B (th)

Fe3Si [23] 1.07 ± 0.06 2.23 ± 0.06 1.15 2.40 1.24 2.53
Fe3Si [24] 1.20 ± 0.12 2.40 ± 0.06 1.29 2.58 1.24 2.53
Fe3Al [25] 1.50 ± 0.10 2.18 ± 0.10 1.66 2.41 1.79 2.35

A. Local magnetic moments

The Fe[B] moment with the bcc-type environment is large,
being of order 2.5μB, while the Fe[A] and Fe[C] moments (the
same by symmetry) are much smaller. Even more important is
the fact that while the Fe[B] moment is rigid with respect to
spin rotations, the Fe[A,C] moments are not. More specifically,
while in the ferromagnetic and in the disordered local moment
(DLM) [21] states the moments on the Fe[B] sites are similar,
the Fe[A,C] moments collapse to zero in the DLM.

We have summarized the calculated and experimental
values of local moments MFe

A,C and MFe
B in Table I. We find a

reasonable agreement of calculated and experimental values,
in particular for those extrapolated to zero temperature. Our
results also agree with other theoretical calculations for Fe3Al,
Ref. [26], and Fe3Si, Ref. [27]. Calculated local moments on
sp-metal atoms are small and negative, being −0.07μB and
−0.11μB for Fe3Si and Fe3Al, respectively.

For completeness, we also mention the calculated DLM
moments of ordered compounds: MFe

B = ± 2.68 (±2.51)μB

for Fe3Si (Fe3Al), respectively while MFe
A,C moments (and sp

moments on Al and Si) are zero.

B. Alloy phase stability

We illustrate the present approach in detail on the determi-
nation of the alloy phase stability of the Fe3Al alloy. First, it is
well known [11] that the bcc lattice cannot order directly into
the D03 phase. Experimentally [28], the completely disordered
high-temperature (A2) phase (or bcc-Fe75Al25 alloy) after
cooling exhibits the first phase transition into the ordered B2
phase at around 1020 K [CsCl-type, the sublattice order is
Fe-(Fe50,Al50)-Fe-(Fe50,Al50)]. After further cooling to 820 K,
the secondary transition from the B2 phase into the D03 phase
occurs.

We have used as a reference state for estimation of the
effective pair interaction the disordered bcc-Fe75Al25 alloy
both in nonmagnetic (with zero atomic magnetic moments)
and ferromagnetic states to see the possible effect of magnetic
moments on the ordering [12]. The lattice Fourier transform
V (q) of Vij allows us to discuss the phase stability using the
method of the concentration waves [11,12]. The minimum of
V (q) at the high-symmetry point qord indicates an ordering
tendency to form a superstructure compatible with it [11]
while the minimum at qord = 0 corresponds to a segregation
of alloy components. An effective-medium order-disorder
temperature in a random alloy A1−xBx is T ord = −x(1 −
x)V (qord)/kB [12]. We have found qord = 2π (1,0,0)/a (a is
the bcc lattice parameter), which corresponds to the B2-type

ordering [11] for both nonmagnetic and ferromagnetic bcc-
Fe75Al25 alloys, in qualitative agreement with the experiment.
As expected, the effective-medium T ord = 1796 K for the
ferromagnetic reference state is overestimated, but in better
agreement with the experiment as compared to T ord = 7815 K
obtained for the nonmagnetic reference state. We have then,
starting from the B2-type nonmagnetic and ferromagnetic
alloy Fe-(Fe50,Al50)-Fe-(Fe50,Al50) in the original extended
structure, calculated new effective pair interactions and V (q)
on the corresponding disordered simple cubic lattice. The
segregation was obtained for the nonmagnetic case (qord =
0) while qord = 2π (1/2,1/2,1/2)/a was obtained in the
ferromagnetic case, which corresponds to the D03 lattice in
an extended four-sublattice structure. The estimated T ord =
1502 K is again overestimated, but in qualitative agreement
with experiment, i.e., T ord for the D03 ordering is smaller than
T ord for B2 ordering. This is a simple but nontrivial result.

The Fe3Si alloy has a stronger tendency to ordering than
the Fe3Al alloy. This can be understood from comparisons of
total energies and chemical interactions Vij . We first calculate
the differences

�(X,x,y) = Etot[(Fe1−xXx)(Fe1−yXy)(Fe1−xXx)

(X1−2x−yFe2x+y)] − Etot[Fe3X], (5)

where X = Al or Si and 2x + y = 0.06. The first term on
the right-hand side of Eq. (5) denotes the total energy of
randomly occupied four sublattices A-B-C-D, respectively,
with indicated compositions, and the second term denotes
the total energy of perfectly ordered Fe3X alloys. We ob-
tain �(Al,0.03,0) = 5.6 mRy, �(Al,0,0.06) = 4.3 mRy, but
�(Si,0.03,0) = 13.9 mRy, �(Si,0,0.06) = 6.2 mRy, which
shows a stronger tendency for ordering in the Fe3Si alloy. This
is in agreement with the values of interatomic interactions
Vij between the first and second neighbors calculated for
disordered alloys Fe75X25: V Al

1 = 13 mRy, V Al
2 = 7 mRy,

V Si
1 = 32 mRy, and V Si

2 = 9 mRy. On a qualitative level, this
is not surprising in view of the expected tendency of Si atoms
to form covalent bonds, in contrast with Al atoms that form
metallic bonds that are less sensitive to their neighborhood.
Moreover, it is also seen (both from the total energies and
from pair interactions) that the transfer of X atoms from
their original sublattice to the nearest-neighbor sublattice
requires higher energy than the transfer to the second-neighbor
sublattice.

We conclude this section by giving T ord for the formation of
the D03-Fe3Si phase. Using the same approach as for Fe3Al
above, we have obtained T ord = 3185 K, which has to be
compared to the experimental value of about 1500 K. Again,
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the calculated value is overestimated, being for both Fe3Al and
Fe3Si about two times larger as compared to the experiment.

There are two reasons for the overestimation of T ord

values: (i) An approximate determination of chemical inter-
actions, which neglect charge screening effects. This problem
can be formally solved by using the screened Coulomb
interactions [29] instead of conventional ones used here.
(ii) The mean-field concentration-wave approach is known to
overestimate critical temperatures. The use of the Monte Carlo
or cluster-variation approaches can solve this problem [11].
Such study is, however, beyond the scope of the present
paper. Summarizing, the present approach correctly describes
a two-step ordering from the disordered bcc phase into the
ordered D03 lattice. Despite the fact that T ord temperatures
are overestimated, the theory predicts, in agreement with the
experiment, much larger T ord for Fe3Si as compared to Fe3Al.

C. Exchange integrals

The calculated exchange interactions for the D03 Fe3Al
and Fe3Si ordered alloys are shown in Figs. 1 and 2. There are
four different interactions among Fe sites, namely J[A,A] =
J[C,C], J[B,B], J[B,A] = J[B,C], and J[A,C]. The interactions
on fcc sublattices, namely J[A,A] = J[C,C] and J[B,B], are
small as they correspond to the fcc lattices with relatively large
distances (the shortest distance is 0.707a, where a is the lattice
constant). The dominating interactions are those between
different sublattices: J[B,A] = J[B,C] types with the shortest
intersite distance (0.433a), and also J[A,C] interactions with
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FIG. 1. The sublattice-resolved exchange interactions among
various Fe sites for the ordered Fe3Al alloy on the D03 lattice as
a function of the distance (d) in units of the lattice constant (a). Four
fcc sublattices along the [111] direction have the structural formula
Fe[A]-Fe[B]-Fe[C]-Al[D]. Very small interactions involving Al sites
are not shown.
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FIG. 2. The same as in Fig. 1, but for the ordered Fe3Si alloy.

the second shortest intersite distance (0.5a). The interactions
are rather similar for both alloys, but we shall see below that
their small differences are important for estimation of their
Curie temperatures. These results also agree qualitatively with
a model of Stearns [7] based on a fit to the experiment. In her
study, just one effective value for sublattice interactions of each
type is given, her D sublattice is our B one, and interactions
J[A,A] and J[A,C] form a single effective interaction (see
Table II in Ref. [7]). It may be interesting to compare exchange
integrals of bcc Fe calculated for the lattice constant of, e.g.,
Fe3Si. We have determined them in the D03 lattice with the
sublattice order Fe[A]-Fe[B]-Fe[C]-Fe[D]. Results are shown

TABLE II. Calculated Curie temperatures (in K) for Fe3X,
X = Si,Al alloys in the D03 structure: the MFA, RPA, MC, and
renormalized RPA approximations were tested. The experimental
values 800 K [1], 830 K [46], 840 K [43], and 853 K [7] for Fe3Si, and
713 K [7,43] and 745 K [1] for Fe3Al, can be found in the literature.
The RPA values fluctuate as a function of the number of shells of
exchange integrals included in simulations (see the text for details),
which is reflected by the error bars. The MC values were determined
for the cutoff radii of 4a and 2a (in brackets), where a is the lattice
constant. Also shown are corresponding theoretical estimates for a
completely disordered bcc-Fe75Al25 alloy. The experimental Curie
temperature is around 825 K [1].

Curie temperatures

Alloy MFA RPA MC rRPA Expt.

Fe3Si 1062 691 ± 1 732 (741) 920 800–853
Fe3Al 1178 615 ± 25 695 (662) 740 713–745
Fe75Al25 999 740 878 825
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FIG. 3. The exchange interactions between Fe sites in the D03

structure for all sites occupied by iron with the formula Fe[A]-Fe[B]-
Fe[C]-Fe[D] plotted as a function of the distance (d) in units of the
lattice constant (a). The calculations were done for the lattice constant
of Fe3Si.

in Fig. 3. The dominating exchange interactions resemble
an “envelope” of all Fe-Fe interactions found in Fe3Si (see
Fig. 2), although some differences for more distant shells can
be found.

D. Curie temperatures

From calculated exchange integrals, we have estimated
Curie temperatures (TC) of Fe3X (X = Al,Si) using the
multisublattice versions of the MFA, RPA [17], and Monte
Carlo (MC) methods. In the last case, we used the UPPASD

package [30], which also contains the MC code with the
METROPOLIS algorithm to estimate TC. In all cases, we refer the
interested reader to the above references for technical details.
The results for various approximations are summarized in
Table II together with experimental data.

The MFA overestimates the experimental values, as ex-
pected. However, the more important point is that the MFA
fails to give a proper order of calculated TC’s observed in
the experiment, namely TC[Fe3Si] > TC[Fe3Al]. On the other
hand, both the RPA and MC simulations give a proper order
of TC’s, although the calculated values are underestimated.
This fact has to be ascribed to the behavior of Fe[A,C]
moments mentioned above: the DLM moment of Fe[A,C]
sites collapses to zero, as contrasted with the rigid moment
on Fe[B] sites. The situation is similar to that known, e.g., in
fcc Ni. The cure is to use the renormalized magnetic force
theorem based on the constrained density functional theory
as suggested in Refs. [31,32]. We employ here the approach
of Bruno [31], called the renormalized RPA (rRPA), which

allows for a simple generalization to a more complex systems.
Recently, we have applied it successfully to random Ni-based
fcc alloys [34]. It should be mentioned that theory based on the
renormalized magnetic force theorem enhances the calculated
Curie temperature. The rRPA Curie temperature (T rRPA

C ) is thus
higher than the conventional RPA Curie temperature (T RPA

C ).
Both TC’s are related using the calculated magnetic moment
M and exchange splitting � due to the d electrons, which
dominate the magnetic behavior of transition metals. In the
present case, we use the effective moment Meff and exchange
splitting �eff obtained by averaging over four sublattices. The
result is

(
kBT rRPA

C

)−1 = (
kBT RPA

C

)−1 − 6

Meff�eff
. (6)

The renormalized value brings the theoretical estimate into
better agreement with the experiment. It should be noted,
however, that the above simple theory is just a step in the right
direction. The multisublattice version of the rRPA method has
been formulated [33] but not implemented yet.

At the end of this section, we discuss the MFA and RPA
Curie temperatures in some detail. The dependence of Curie
temperatures on the number of shells of exchange integrals
expressed in terms of the cutoff distance is shown in Fig. 4. The
MFA values are robust with respect to the cutoff distance, as
contrasted with the RPA. This is particularly true for the Fe3Al
alloy showing rather large fluctuations of T RPA with the cutoff
distance. Both the MFA and RPA depend on the lattice Fourier
transform J (q) of the real-space exchange integrals Jij , but
values close to q = 0 are important for the RPA, which
explains its sensitivity to the cutoff distance. In the numerical
implementation of the multisublattice RPA [17], a damping
parameter is introduced. This parameter somehow accounts
for fluctuations caused by a finite cutoff distance and helps to
stabilize TC, especially for Fe3Al. Corresponding error bars
for the RPA are also shown in Table II . We note that exchange
interactions for distances between 1.75a and 2.0a (a is the
lattice constant) seem to be relevant for flipping the wrong
order of TC’s of Fe3Al and Fe3Si.

1 2 3 4 5 6
Cut-off distance/ a

600

800

1000

1200

T C
 ( 

K
 ) Fe3Al, MFA

Fe3Si, MFA
Fe3Al, RPA
Fe3Si, RPA

FIG. 4. (Color online) The MFA (circles) and RPA (squares)
Curie temperatures as a function of the cutoff distance of exchange
integrals included in calculations. The cutoff distance is in units of
the lattice constant (a). Full and empty symbols correspond to Fe3Si
and Fe3Al alloys, respectively.
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J. KUDRNOVSKÝ et al. PHYSICAL REVIEW B 90, 134408 (2014)

The MC simulations are much more time-consuming, and
we show in Table II just values for the cutoff radii 2a and
4a. We observe the same trends, namely larger TC of Fe3Si as
compared to Fe3Al and the smaller sensitivity of TC of Fe3Si
with respect to the shell number.

Finally, we also show in Table II the results for TC of the
related random bcc-Fe75Al25 alloy for which the experimental
data exist in the literature [1]. The present results of MFA, RPA,
and renormalized RPA [34] are shown, and the latter estimates
agree reasonably well with the experiment. The higher TC of
the disordered phase than that of the ordered phase is due
the different statistics of neighborhoods of Fe atoms: in the
ordered phase, each atom Fe has on average 5.33 Fe nearest
neighbors, while in the disordered phase it has on average
6 Fe nearest neighbors.

E. Sublattice magnetizations

We have also studied the temperature dependence of
magnetization on the A/C and B sublattices. This study is
motivated by Ref. [7], in which, using an empirical model
employing the experimental data for the Fe hyperfine magnetic
fields, it was shown that the relative sublattice magnetizations
mα = Mα(T )/Mα(T = 0) plotted as a function of the relative
temperature T/Tc are similar to each other (α = A/C or B). It
is therefore interesting to test how this fact is reproduced by the
present parameter-free theory. The temperature dependence of
sublattice magnetizations was estimated from the Heisenberg
Hamiltonian (2) using the UPPASD package [30]. In general,
a different behavior is expected due to different exchange
integrals reflecting the different environments of Fe[A,C] and
Fe[B] atoms in both compounds (cf. Figs. 1 and 2). In the
present study, we have concentrated on the Fe3Si alloy, which
exists in an almost perfect D03 structural phase.

The theoretical results for the relative sublattice magneti-
zations are shown in Fig. 5(a). We first mention two facts,
namely (i) that the classical statistics used in the Monte Carlo
simulation in the UPPASD package gives an incorrect linear
decrease of magnetization for low temperatures (only the
quantum statistics gives a correct Bloch’s T 3/2 law [35]);
and (ii) that due to finite-size effects (i.e., the finite size
of the cell in Monte Carlo simulations), magnetizations do
not sharply vanish at the Curie temperature (or at T/Tc = 1
in the present case). Calculated temperature dependences
of relative magnetizations are similar despite their different
environments, although quantitatively not so much as for the
empirical model of Ref. [7] with parameters fitted to the
experiment. This becomes clear if we plot the ratio of relative
magnetizations mA,C:mB, which is shown as a dotted line in
Fig. 5(a). This ratio should equal to 1 in the case when the T

dependences of relative magnetizations are the same.
We demonstrate this point by showing in Fig. 5(b) the

experimental results [36] for the relative hyperfine fields
hα(T ) = Hα(T )/Hα(T = 0), where Hα are measured sub-
lattice hyperfine fields (α = A/C,B). Indeed, the ratio of
relative hyperfine fields, hA,C:hB, is very close to 1. While
the deviation of the ratio of relative magnetizations from 1
in Fig. 5(a) is partly due to the limitations of the present
model discussed above, there are some general reasons why
the relative hyperfine fields of different sublattices should
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FIG. 5. (a) The relative sublattice magnetizations mα(T ) =
Mα(T )/Mα(T = 0) (α = A/C or B) plotted as a function of relative
temperatures T/Tc for Fe3Si (see text for definitions). Magnetizations
are nonzero at T/Tc = 1 due to the finite-size effects close to Tc.
The dotted line shows the ratio of relative sublattice magnetizations
mA/C/mB. (b) The same but for relative sublattice hyperfine fields
hα(T ) = Hα(T )/Hα(T = 0) (α = A/C or B) as obtained from the
experiment [36]. The dotted line shows the ratio of relative sublattice
hyperfine fields hA/C/hB. The quantities M(0) and H (0) relate to
T = 0.

exhibit smaller deviations than the corresponding relative
magnetizations. In the Appendix, we present a simple model
that attempts to explain the different behavior of sublattice
magnetizations and hyperfine fields.

F. Magnon spectra

Magnetic excitations and in particular magnon spectra can
be accessed from atomistic spin dynamics (ASD) simulations.
We refer the readers to Ref. [37] for all details needed
to perform the ASD simulations including the temperature
effect. The method can be applied in a first-principles mode,
where all interatomic exchange interactions are calculated
self-consistently, or, as in the present case, calculated for
a fixed spin-configuration [parameters of the Heisenberg
Hamiltonian (2)]. The dynamics at finite temperature are
obtained in this method by solving the Landau-Lifshitz-Gilbert
(LLG) equations for all atomic moments in the system. In
particular, by calculating space and time averages of the
correlation function of magnetic moments and performing its
lattice Fourier transform, we obtain the dynamical structure
factor S(q,ω), the quantity probed in neutron scattering exper-
iments of bulk systems. Here, q and ω are the momentum and
energy transfer, respectively. We obtain the magnon spectra
by identifying the peak positions of |S(q,ω)| along particular
directions in the reciprocal space. Due to the stochastic nature
of simulations, the calculated S(q,ω) spectra are typically very
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FIG. 6. (Color online) Calculated magnon dispersion of Fe3Al at
T = 300 K.

diffuse. The identification of peaks is not a simple task, and
one has to use specific schemes to overcome this problem
(see Ref. [38] and references there). In the present study, we
consider the broadening of the magnon dispersion due to the
transversal temperature fluctuations of the magnetic moments
originating from the coupled thermal bath. We neglect the
damping due to the longitudinal Stoner excitations.

For q vectors close to the � point in the Brillouin zone,
the magnon energy ω(q) for the cubic system has a quadratic
dependence on q, i.e., ω(q) = Dq2, where D is the spin-wave
stiffness and q = |q|. The calculated magnon dispersions
at room temperature of Fe3Al and Fe3Si, respectively, are
displayed in Figs. 6 and 7. The maximum peak value is marked
by yellow in the plots. The damping parameter α in the LLG
equations [37] was set to 0.05, but the spectra should not be too
sensitive to it. Overall, the magnon spectra are slightly softer
for Fe3Al than for Fe3Si, which is consistent with the lower
Curie temperature found for Fe3Al. Because the spin stiffness
is the curvature of the magnon dispersion in the limit q → 0,
one can conclude from Figs. 6 and 7 that the spin stiffness is
lower in Fe3Al as compared to Fe3Si.

The evaluation of the spin stiffness D is a delicate task [16].
We have determined D’s using the frozen magnon approach

FIG. 7. (Color online) Calculated magnon dispersion of Fe3Si at
T = 300 K.

in which the lattice Fourier transform of calculated exchange
integrals up to a distance of four lattice constants is fitted to
Dq2 for small q values (q < 0.3 Å−1) in the �-X direction
in the Brillouin zone. Since a very dense grid can be
employed, such fitting is much more reliable as compared
to the corresponding fit based on magnon spectra in Figs. 6
and 7, which were calculated using the ASD on a relatively
sparse grid. Calculated spin stiffnesses for Fe3Si and Fe3Al
are, respectively, 207 and 130 meV Å2. Experimental values
of the spin stiffness for Fe3Si are 145 ± 1 meV Å2, Ref. [39],
and 158 ± 2 meV Å2, Ref. [40], respectively. On the other
hand, a larger dispersion of measured values of spin stiffnesses
exists for Fe3Al, namely 83 ± 4 meV Å2, Ref. [41], and
139 ± 6 meV Å2 in a more recent study [42]. One can conclude
that experimental and calculated values are in an acceptable
agreement, and, in particular, the larger spin stiffness of Fe3Si
is reproduced.

G. Transport properties

In this section, we complete the study of various properties
of Fe3X alloys by adding the results of transport studies.
The experimental values of the total residual resistivity ρtot

at T = 0 K are around 5 μ	 cm for Fe3Si and 30 μ	 cm for
Fe3Al [43]. This illustrates the fact that Fe3Si alloys can be
prepared in a form close to the ideal D03 structure. For exam-
ple, for slowly cooled down Fe3Si specimens, the authors of
Ref. [44] report very low resistivity (0.6 μ	 cm), indicating an
almost perfect stoichiometric D03 crystal. On the other hand, a
much larger value of ρtot in the Fe3Al is present due to the native
disorder in this compound, illustrating the fact that the Fe3Al
is much more difficult to prepare as an ideal crystal. A detailed
analysis of the disorder in Fe3Al was done in Ref. [45]. The
corresponding structural model, in terms of sublattice disorder,
is (Fe97,Al3)-(Fe98,Al2)-(Fe97,Al3)-(Al92,Fe8) for Fe3Al. We
remark that in this notation, the ideal Fe3Al has the sublattice
order Fe-Fe-Fe-Al. No such study exists for Fe3Si with a much
weaker native disorder. We have therefore tested a few cases
with small Si[Fe] antisite concentrations x, corresponding to
the structural model (Fe1−x ,Six)3(Si1−3x ,Fe3x).

The resistivities of Fe3Al and Fe3Si were calculated using
the KG approach and assuming the same lattice constants as
in the ideal samples. We have obtained ρtot = 32.1 μ	 cm
by adopting the structural model of Ref. [45] for Fe3Al, in
good agreement with the experiment. Assuming small antisite
concentrations xSi[Fe] equal to 0.2% (0.5%), we obtained
ρtot = 5.6 (13.2) μ	 cm, respectively. We observe an almost
linear increase of ρtot in Fe3Si with the antisite concentration.
The lower value of ρtot for Fe3Si also agrees well with the
experiment.

Below we discuss in detail the transport calculations.
Specifically, the coherent parts ρcoh of total resistivities ρtot,
i.e., the values neglecting the disorder-induced vertex parts, are
40.4 and 5.9 μ	 cm for Fe3Al and Fe3Si (with xSi[Fe] = 0.2%),
respectively. In other words, the vertex part contributes by
about 26% (5%) for Fe3Al (Fe3Si), respectively. In the present
scalar-relativistic calculations, it is possible to separate out
the contributions of different spin channels. The results are
summarized in Table III, where also vertex corrections are
given. We note a different ratio of spin-resolved conductivities
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TABLE III. The calculated total and spin-resolved conductivities
[in atomic units e2/(ha0), where a0 is the Bohr radius] for Fe3Si and
Fe3Al. The vertex parts of the conductivities are also given.

Alloy σ
↑
tot σ

↓
tot σtot σ

↑
vtx σ

↓
vtx σvtx

Fe3Si 5.08 7.14 12.22 0.76 −0.16 0.60
Fe3Al 1.57 0.55 2.12 0.42 0.02 0.44

and even negative vertex corrections for the spin-down channel
in Fe3Si, which was also found for xSi[Fe] = 0.5%. Such
unusual behavior as compared to alloys on simple lattices
is due to the different effect of antisite disorder on different
sublattices and also to the different band fillings (Fe3Si has
one more valence electron than Fe3Al) and thus also different
Fermi surfaces.

IV. CONCLUSIONS

We have presented, based on the unified first-principles
model, estimates of a broad range of physical properties of
Fe3X (X = Al,Si) alloys with D03 structure. There is good
agreement between the present theory, existing theoretical
approaches, and experiment for the total and sublattice
magnetic moments. The main results are as follows: (i) Using
Fe3Al as a case study, we have shown that the D03 lattice
develops from the disordered bcc-phase on cooling in two
steps. The first ordering is into the intermediate B2 type
structure, and from it, after further cooling, the second ordering
into the final D03 structure occurs in agreement with the
experiment. We have found that the presence of magnetic
moments is important, especially for the second ordering. The
order of structure ordering temperatures, estimated using the
mean-field concentration-wave method, is correct, but their
values are overestimated. Similar results were obtained also
for Fe3Si. Theory correctly predicts a much larger ordering
temperature of Fe3Si as compared to Fe3Al. (ii) The MFA
overestimates Curie temperatures and gives their wrong order
for Fe3Al and Fe3Si. The RPA gives a correct order of Curie
temperatures, but it underestimates them. The most likely
reason are soft moments of Fe atoms on A and C sublattices that
collapse during rotations in the spin subspace. We have shown
that the renormalized RPA approach accounts for this fact
and brings theoretical results into reasonable agreement with
the experiment. (iii) The relative sublattice magnetizations
exhibit slightly different temperature dependences due to the
different exchange interactions. Based on a simple model,
we have explained that this result does not contradict the
experimentally observed temperature dependences of hyper-
fine fields, which are nearly identical for all Fe sublattices.
(iv) The calculated spin stiffnesses agree reasonably well with
experimental data; their values for Fe3Si are larger than values
for Fe3Al. (v) We have estimated the resistivity at low tem-
peratures using the KG approach. The relatively large residual
resistivity of Fe3Al found in the experiment was reproduced
using the model of structural disorder. The experimental value
of residual resistivity of Fe3Si was reproduced assuming a
substantially smaller Fe-Si swapping disorder.
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APPENDIX: RELATION BETWEEN LOCAL MOMENTS
AND HYPERFINE FIELDS

The different temperature dependences of the reduced
(relative) sublattice magnetizations as calculated using the
present approach (Fig. 5) reflect directly the differences in the
exchange interactions among the local Fe moments (Figs. 1
and 2). On the other hand, the experimentally accessible
hyperfine fields at iron nuclei often exhibit temperature
dependences that are nearly identical for all sublattices [7].
Since the hyperfine fields in iron alloys are closely related
to the magnetic moments, we sketch here an explanation of
this seeming contradiction in terms of a simple model. The
essential feature of our model is to provide different values
of sublattice magnetizations as independent variables, which,
however, lead to very similar values of the hyperfine magnetic
fields. Such a model can be formulated, e.g., in terms of
an uncompensated collinear disordered-local-moment (DLM)
model (see below).

Our starting point is a semiempirical linear relation [7]
between the sublattice-resolved hyperfine fields Hα(T ) and
the local moments Mα(T ), namely,

Hα(T ) =
∑

β

WαβMβ(T ), (A1)

where the subscripts α,β ∈ {A,B} denote the two inequiv-
alent iron sublattices (A ≡ C) and the coefficients Wαβ are
temperature-independent constants. A similar linear relation
between the reduced quantities, hα(T ) = Hα(T )/Hα(0) and
mα(T ) = Mα(T )/Mα(0), can be written as

hα(T ) =
∑

β

wαβmβ(T ), (A2)

where the new coefficients are defined as wαβ =
H−1

α (0)WαβMβ(0). They satisfy the obvious conditions
∑

β

wαβ = 1, (A3)

valid for each α.
If all coefficients Wαβ in (A1) and all sublattice magneti-

zations Mα(0) are positive, then the resulting coefficients wαβ

are positive as well and they can be interpreted as weights
normalized to unity due to the condition (A3). The reduced
hyperfine fields hα(T ) are then weighted averages of the
reduced magnetizations mβ(T ), see Eq. (A2), which means
that both values hA(T ) and hB(T ) fall inside the interval
bounded by the values mA(T ) and mB(T ). Consequently,
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FIG. 8. (Color online) The concentration dependence of the re-
duced sublattice-resolved hyperfine fields, hα(z), and magnetizations,
mα(z), in the DLM model on the Fe[B] sublattice: (a) for the Fe3Si
compound and (b) for the Fe3Al compound.

|hA(T ) − hB(T )| � |mA(T ) − mB(T )|, and the two reduced
hyperfine fields are in general closer to each other than the two
reduced magnetic moments. This analysis, based on the linear
relation (A1), indicates that the above-mentioned different
temperature dependences of the reduced magnetizations can be
compatible with very similar temperature trends of the reduced
hyperfine fields.

The physical justification for the semiempirical relation (A1)
rests on the well-known mechanisms of the hyperfine fields, in-
cluding both local (core polarization) and nonlocal (transferred
fields) contributions. Nevertheless, its accuracy as well as the
positivity of all coefficients Wαβ have to be checked for each
particular system. In the present case of Fe3X (X = Si,Al)
compounds, we have introduced a concentration variable
z (0 � z < 0.5) that defines the orientation of the Fe[B]
moments as a random binary alloy Fe+

1−zFe−
z , where Fe+ and

Fe− denote iron atoms with positive and negative moments,
respectively (the uncompensated DLM model on the Fe[B]
sublattice). We have employed the nonrelativistic version of
the TB-LMTO-CPA method with an spd basis set and with
the limitation of the hyperfine fields to the Fermi contact term
(proportional to the spin density at the pointlike Fe nucleus).
In such a theory, the hyperfine fields and magnetic moments
on the Fe[B] sublattice are obtained as concentration-weighted
averages of the quantities for Fe+ and Fe− atomic species. Con-
sequently, the scan over the concentration from z = 0 up to the
vicinity of z = 0.5 mimics the reduction of the average alloy
magnetization between zero temperature and the Curie point.

The least-squares fitting of the calculated fields Hα(z),
based on the linear relation in analogy to (A1), i.e., Hα(z) =∑

β WαβMβ(z), results in a good accuracy of the fits and in
positive signs of all coefficients Wαβ . This confirms the validity
of the above analysis for the studied systems. Moreover, the
concentration dependences of the calculated reduced (rel-
ative) sublattice-resolved fields, hα(z) = Hα(z)/Hα(0), and
moments, mα(z) = Mα(z)/Mα(0), plotted in Fig. 8 for both
studied compounds, prove explicitly that the differences in
the reduced fields are substantially smaller as compared to
the differences in the reduced magnetizations. Note that the
magnetization on the B sublattice is smaller as compared to
the A (C) sublattice, which contradicts the real temperature
dependences discussed in Sec. III E. This fact points to the true
merit of the introduced DLM model, which has been designed
merely as a tool for a quantitative analysis of the relation
between the local magnetizations and the hyperfine fields,
whereas further aspects of the finite-temperature behavior
cannot be treated within this simple framework.
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