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Phonon softening in paramagnetic bcc Fe and its relationship to the pressure-induced
phase transition
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The structural stability of paramagnetic (PM) body-centered-cubic (bcc) Fe under pressure is investigated
based on first-principles phonon calculations. Spin configurations of the PM phase are approximated using
a binary special quasirandom structure with a supercell approach. The behavior of phonon modes can be
associated with pressure-induced phase transitions to the face-centered-cubic (fcc) and hexagonal-close-packed
(hcp) structures as follows: For the PM phase, it is found that the low-frequency transverse mode at the N point
(N−

4 mode), which corresponds to a bcc-hcp phase transition pathway, exhibits strong softening under isotropic
volume compression. The frequency of this mode becomes zero by a 2% volume decrease within the harmonic
approximation. This result is not consistent with the experimental fact that the phase transition from the PM bcc
to hcp phases does not occur under volume compression. The seeming contradiction can be explained only when
the anharmonic behavior of the N−

4 mode is taken into consideration; A potential energy curve along the N−
4

mode becomes closer to a double-well shape for the PM phase under volume compression. On the other hand,
softening of the longitudinal mode at the 2/3[111] point under volume compression is also found for the PM
phase, which indicates the pressure-induced bcc-fcc phase transition along this mode. Such behaviors are not
seen in ferromagnetic bcc Fe, implying that the magnetic structure plays an essential role on the phase transition
mechanism.
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I. INTRODUCTION

Elemental Fe is widely known to exhibit several structural
and magnetic phases, which have been investigated over
many years. Figure 1 shows an experimental phase diagram
for elemental Fe [1–4]. Three stable phases, namely, body
centered cubic (bcc), face centered cubic (fcc), and hexagonal
close packed (hcp), exist as solid phases. They can be further
classified by magnetic structures, i.e., ferromagnetic (FM)
and paramagnetic (PM) phases. At ambient pressure, the
stable phase changes as FM bcc → PM bcc → PM fcc →
PM bcc with an increase of temperature. At room temperature,
elemental Fe undergoes a pressure-induced bcc-hcp phase
transition at 9.2 GPa. Above the temperature of the triple point
where the three phases coexist at 678 K and 8.2 GPa, a bcc-fcc
phase transition occurs.

The analysis of structural stability is an important ap-
proach to investigate the phase transition behavior. From the
theoretical viewpoint, the structural stability of crystalline
materials can be analyzed using a combination of density
functional theory (DFT) and phonon calculations. Therefore,
an additional method is required to analyze the structural
stability of high temperature phases. The PM phase of Fe is a
typical example. In recent years, several calculation methods
for obtaining phonon frequencies of the PM phase have been
proposed. Leonov et al. reported a method based on the
dynamical mean-field theory (DMFT) [5]. They succeeded
in reproducing experimental phonon dispersion relations for
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both PM bcc and PM fcc Fe [6,7]. Körmann et al. developed
a method for calculating phonon frequencies for the PM
phase [8] based on the binary special quasirandom structure
(SQS) [9]. In this method, force constants for the PM phase
were obtained by a symmetrization process. Their results for
the PM bcc and PM fcc Fe were also consistent with the
experimental ones [6,7]. Ruban and Razumovskiy proposed
another way to approximate the PM phase using several spin
spiral states [10].

The present study aims at elucidating the behavior of
phonons in the PM phase under pressure by means of sys-
tematic DFT-based phonon calculations. We adopt a method
equivalent to that reported in Ref. [8] to obtain the phonon
frequencies of the PM phase. The volume dependence of
the phonon frequencies and the potential energy curves along
the phonon modes are investigated in order to examine their
anharmonic behaviors. Results are mainly discussed from the
viewpoint of the pressure-induced phase transition for the PM
bcc Fe.

II. METHODOLOGY

A. Modeling of PM phase

In principle, a magnetic state at finite temperature is
described as the statistical average of all possible spin config-
urations. For the PM phase, instead of evaluating the statistical
average, a completely disordered spin configuration is often
used for simplicity. The SQS mimics such a disordered con-
figuration within a periodic structure [9]. The SQS originates
from the cluster expansion method which corresponds to the
generalized Ising model. Here the binary SQS is applied to the
completely disordered collinear spin configuration. The SQS
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FIG. 1. Experimental phase diagram of Fe [1–4]. Solid and
dashed bold lines represent structural and magnetic phase bound-
aries, respectively. For the magnetic structure of the hcp phase,
both nonmagnetic (NM) and antiferromagnetic phases have been
proposed.

is generated from a supercell obtained by a 2 × 2 × 2 isotropic
expansion of the conventional bcc unit cell. The isotropic
expansion is adopted here because force constants of the
PM phase are easily computed. The SQS generated from the
2 × 2 × 2 supercell was reported to be sufficient to reproduce
the experimental phonon dispersion relations of the PM bcc
Fe [8]. With the constraint of the supercell, pair correlation
functions up to several nearest neighbors are optimized using a
simulated annealing procedure as implemented in the CLUPAN

code [11,12].

B. Phonon calculations

Phonon frequencies are calculated by means of the finite-
difference method with a displacement of 0.01 Å. For the
FM and NM phases, atomic displacements are given to the
2 × 2 × 2 supercell of a conventional bcc unit cell, and
the forces acting on atoms are collected. Force constants
are calculated from the set of forces in the least-squares
sense [13,14].

Before the depiction of how to obtain the force constants
of the PM phase, we briefly describe the calculation procedure
of the force constants for the FM and NM phases. We use
R and τ for the index of unit cells and the index of atoms
in the corresponding unit cell, respectively. A second-order
force constant is denoted as �

αβ

Riτi ,Rj τj
, where the superscripts

α and β are used for the indices of the Cartesian coordinates,
and the subscripts Riτi and Rjτj specify a pair of atoms.
For computational convenience, the force constants for a pair
of atoms, R1τ1 and R2τ2, are represented by a 9 × 1 matrix

P(R1τ1,R2τ2) given by

P(R1τ1,R2τ2) =
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. (1)

In addition, an atomic displacement applied to the atom R1τ1

is described as a 3 × 9 matrix Ui(R1τ1) given by

Ui(R1τ1) =
⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠ ⊗ (�x�y�z), (2)

where �x, �y, and �z represent the Cartesian components of
the displacement given to the atom R1τ1, and the subscript i is
for the index of atomic displacements. For the system with the
displacement Ui(R1τ1), a force acting on the atom R2τ2 can
be written in the form of a 3 × 1 matrix Fi(R2τ2) as

Fi(R2τ2) =

⎛
⎜⎝

Fx

Fy

Fz

⎞
⎟⎠, (3)

where Fx , Fy , and Fz are the Cartesian components of the
force acting on the atom R2τ2. We can obtain Fi(R2τ2) using
P(R1τ1,R2τ2) and Ui(R1τ1) as

Fi(R2τ2) = −Ui(R1τ1)P(R1τ1,R2τ2). (4)

Simultaneous equations of different atomic displacements for
the pair of atoms are then combined as

⎛
⎜⎝

F1

F2
...

⎞
⎟⎠ = −

⎛
⎜⎝

U1

U2
...

⎞
⎟⎠P. (5)

With a sufficient number of atomic displacements, Eq. (5) can
be solved by the pseudoinverse such as

P = −

⎛
⎜⎝

U1

U2
...

⎞
⎟⎠

+⎛
⎜⎝

F1

F2
...

⎞
⎟⎠. (6)

To recover site symmetry around the displaced atom, we apply
the site-symmetry operations to the atomic system and obtain
new displacements and corresponding forces. By adding these
displacements and forces to the simultaneous equations shown
in Eq. (5), we can obtain symmetry-recovered force constants.
Note that for the atoms at the crystallographically equivalent
sites, we need to apply displacements only to one of them; by
considering the symmetry of the structure, force constants for
the other atoms can be derived without calculations via Eq. (6).

To calculate the force constants of the PM phase, a
symmetrization procedure is applied as follows: First, we
consider the binary SQS to mimic a completely disordered
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FIG. 2. (Color online) Two-dimensional schematic illustration of
the procedure to obtain the force constants of the PM phase. Red and
blue circles represent atoms with spin-up and spin-down magnetic
moments, respectively. Green small arrows on the circles represent
the forces acting on the atoms. (a) The completely disordered spin
configuration is mimicked by the binary SQS. (b) Symmetrically in-
equivalent displacements U′

i are applied to the SQS. (c) The displaced
atoms are moved to one of the crystallographically equivalent sites
of the supercell without magnetic moments. By this operation, U′

i is
changed to Ui . (d) The forces acting on the atoms Fi are calculated.
(e) From all the configurations with the displacements, the forces are
collected, and the force constants of the PM phase are obtained via
Eq. (6).

spin configuration [Fig. 2(a)]. For the SQS, symmetrically
inequivalent displacements U′

i(R1′τ1′ ) are applied [Fig. 2(b)].
Next, for the system with U′

i(R1′τ1′), we apply a symmetry op-
eration which moves the displaced atom R1′τ1′ to the position
of R1τ1, where R1τ1 is the atom on the crystallographically
equivalent site to that for the atom R1′τ1′ when we neglect the
local magnetic moments. By this operation, the displacement
U′

i(R1′τ1′ ) is changed to Ui(R1τ1) [Fig. 2(c)]. For the system
with Ui(R1τ1), a force acting on the atom R2τ2, Fi(R2τ2),
is obtained [Fig. 2(d)]. From all systems, the displacements
Ui(R1τ1) and the forces Fi(R2τ2) are collected, and the force
constants P(R1τ1,R2τ2) are calculated via Eq. (6) as well as
the FM and NM cases [Fig. 2(e)].

In this study, we assume that many completely disordered
spin configurations appear in a shorter time than those for
the thermal atomic fluctuations in the PM phase. The present
averaging process includes effects from many disordered spin
configurations, and hence we can represent the PM phase by
this process. By considering the site symmetry around the
displaced atom, the symmetry of the original structure can be
recovered by the same procedure as the FM and NM cases.

The force constants obtained by this procedure are regarded
as those of the PM phase. For example, if we use the SQS

constructed from the 2 × 2 × 2 supercell of the conventional
bcc unit cell, the obtained force constants can be regarded
as those for the 2 × 2 × 2 supercell in the PM phase. These
PM force constants have the same symmetry as those of the
supercell without magnetic moments. This approach can be
applied not only to the disordered magnetic states but also
to chemically disordered compounds. Actually, the present
procedure is equivalent to that introduced in Ref. [8]. The only
difference is that, in the present case, we first collect forces
on the atoms, while for the procedure in Ref. [8], they first
made the force constants from each spin configuration and then
took the average of the set of the force constants. We found
that both procedures provide almost the same result for the PM
bcc Fe.

The calculations of the phonon frequencies are performed
with the PHONOPY code [15].

C. Conditions for electronic structure calculations

For the first-principles electronic structure calculations,
the plane-wave basis projector augmented wave (PAW)
method [16] is employed in the framework of DFT within
the generalized gradient approximation in the Perdew-Burke-
Ernzerhof form [17] as implemented in the VASP code [18–20].
A plane-wave energy cutoff of 300 eV is used. The radial cutoff
of the PAW potential of Fe is 1.22 Å. The 3d and 4s electrons
for Fe are treated as valence and the remaining electrons are
kept frozen. The Brillouin zones are sampled by a �-centered
16 × 16 × 16 k-point mesh per conventional bcc unit cell, and
the Methfessel-Paxton scheme [21] with a smearing width
of 0.1 eV is employed. The total energy is minimized until
the energy convergence becomes less than 1 × 10−8 eV. For
the calculations of the PM phase, the difference between the
numbers of spin-up and spin-down electrons is fixed to be
zero.

III. RESULTS AND DISCUSSION

A. Dependence on the selection of SQS

First, we investigate the dependence of the results for the
PM phase on the pair correlation functions of the SQS. For
this purpose, two kinds of binary SQSs which have different
correlation functions are considered. These two SQSs, i.e.,
SQS1 and SQS2, are described in Fig. 3. Table I shows the
values of their pair correlation functions. The pair correlation
functions up to the fifth and the fourth nearest neighbor are
optimized for SQS1 and SQS2 by the least absolute deviation
method, respectively. Table II shows the calculated equilibrium
volume at a pressure of 0 GPa and a temperature of 0 K, V0, for
the FM, PM, and NM bcc Fe. For the PM phase, we find that
the two SQSs provide almost the same volumes and energies.
This indicates that the results of the PM phase do not depend
on the details of the correlation functions of the SQSs. In
other words, if the values of several principal pair correlation
functions are chosen to be equal to those of the completely
disordered spin configuration, the difference in the results is
negligible. Therefore, we will hereafter show only the results
from the SQS1 for the PM phase.
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FIG. 3. (Color online) Two kinds of binary SQSs for the bcc
structure investigated in this study. These SQSs are constructed
from a supercell obtained by a 2 × 2 × 2 isotropic expansion of
the conventional bcc unit cell and hence include 16 atoms. The
completely disordered collinear spin configuration is mimicked by
these SQSs. Up (red) and down (blue) arrows represent atoms with
spin-up and spin-down magnetic moments, respectively. Visualiza-
tion is performed using the VESTA code [22].

B. Phonon dispersion relations

Figure 4 shows calculated phonon dispersion relations at
four values of volumes around the equilibrium one, V0 (shown
in Table II), for each magnetic phase. It is found that the phonon
frequencies of the PM phase tend to be smaller than those of
the FM phase almost in the whole region. It is also confirmed
that the lowest-frequency modes at the N and 2/3[111] points
of the PM phase decrease their frequencies with a decrease
of volume. For the FM phase, such softenings under volume
compression cannot be observed. This indicates that the two
phonon modes characterize the structural stability of the PM
bcc Fe. Hence we will hereafter discuss the behavior of the
two phonons under volume compression in more detail.

At the N point, one of the transverse modes becomes softer
under volume compression. (This mode has the irreducible
representation of N−

4 , and hence we will hereafter refer to this
mode as the N−

4 mode.) This mode finally becomes imaginary
under a large volume compression. This means that the PM
bcc Fe is dynamically unstable under certain pressures within
the harmonic approximation. From the calculations with 1%
intervals of volume compression, we find that this imaginary
mode appears from 2% volume compression.

Atomic displacements along the N−
4 mode can be associ-

ated with the well-known Burgers pathway [23]. This pathway
is composed of two types of transformations: the displacement
of adjacent (110) planes in opposite [11̄0] directions and the
shear deformation along the [001] direction. The former part

TABLE I. Pair correlation functions for the SQSs shown in Fig. 3.
For SQS1 and SQS2, the pair correlation functions up to the fifth and
the fourth nearest neighbor (NN) are optimized by the least absolute
deviation method, respectively.

Pair correlation function SQS1 SQS2

First NN 0 0
Second NN 0 0
Third NN −1/3 0
Fourth NN 0 0
Fifth NN 0 −1

TABLE II. Calculated equilibrium volume at a pressure of 0 GPa
and a temperature of 0 K for the FM, PM, and NM bcc Fe. Energy
differences between the magnetic phases are also described. The
energy of the FM phase is set to the origin for the energy differences.
For the PM phase, values derived from the two kinds of SQSs, which
are specified in the parentheses in the first column, are shown. Note
that zero point vibrational contributions are not included.

Magnetic phase Volume (Å3/atom) �E (eV/atom)

FM 11.3 0.00
PM (SQS1) 11.3 0.20
PM (SQS2) 11.4 0.19
NM 10.5 0.47

corresponds to the N−
4 mode. The softening of the N−

4 mode is
experimentally observed for several NM metals such as Ti, Zr,
and Hf [24–26], and these metals actually show bcc-hcp phase
transitions. Therefore, the softening of the N−

4 mode has been
considered as a precursor to the phase transitions.

Experimentally, the PM bcc Fe undergoes a pressure-
induced phase transition to the fcc phase rather than the hcp
one. However, the computational results for the N−

4 mode
in the PM phase clearly become imaginary under volume
compression, which seemingly indicates a spontaneous bcc-
hcp phase transition along the Burgers pathway. This seeming
contradiction can be ascribed to the neglect of the anharmonic
effects of the phonons at high temperature. To analyze the
anharmonic effects of the N−

4 phonon mode in more detail,
potential energy curves along this mode are calculated around
the equilibrium volume, V0 = 11.3 Å3/atom. The result is
shown in Fig. 5. The energy of the PM phase with the
displacements of the atoms is determined as follows: First we
consider the configurations which are derived from the SQS by
applying symmetry operations of the supercell corresponding
to the SQS. Then we give the atomic displacements along the
N−

4 mode to these configurations. Finally, we take an average
of the energies obtained from them, which is regarded as the
energy of the PM phase. Note that for the PM phase, several
calculations with large atomic displacements encountered
convergence problems. Therefore, the results for several points
in this region are not shown for the PM phase. It is clearly
confirmed that the dependence of the energies on the phonon
amplitude is much weaker for the PM phase than that for
the FM phase. This causes large thermal atomic fluctuations
for the PM phase. We can also find that for the PM phase,
the curve gets close to a double-well shape with a decrease of
volume. This means that the anharmonicity along the N−

4 mode
becomes stronger as the volume decreases. This anharmonicity
indicates that time-averaged atomic positions become the ideal
ones for the bcc structure due to the large thermal fluctuations
at sufficiently high temperatures. Therefore, the bcc structure
is stabilized along the N−

4 mode at the temperature and does
not cause the spontaneous transition to the hcp phase. This
idea is well consistent with experimental results.

To evaluate the anharmonicity of these curves more quan-
titatively, the curves are fitted by the fourth-order polynomial
functions E(x) = E0 + a2x

2/2 + a4x
4/4!, where x, E(x), E0,

a2, and a4 are the displacements of atoms, the energy at
the corresponding displacements, the energy at the ideal bcc
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FIG. 4. (Color online) Calculated phonon dispersion relations at the volume of (a) V0, (b) 0.96V0, (c) 0.92V0, and (d) 0.80V0 for bcc Fe,
where V0 is the equilibrium volume of each magnetic phase shown in Table II. Blue solid and red dashed curves are for the PM and FM phases,
respectively. Note that a negative value of a phonon frequency corresponds to an imaginary mode.

positions, the coefficient for the second order, and the coeffi-
cient for the fourth order, respectively. The fitting parameters
a2 and a4 are determined by means of the least-squares method.
The result is shown in Table III. The ratios between the second-
and the fourth-order coefficients, a4/a2, are also shown in this
table. This ratio clarifies the fourth-order effect with respect to
the second-order harmonic effect and can be considered as one
of the indices to evaluate the strength of the anharmonicity. It is
shown that the absolute values of the ratios for the PM phase
are much larger than those for the FM phase. This reveals
strong anharmonicity of the N−

4 mode for the PM phase. We
can also find that a4 of the PM phase is positive at all three
volumes, which makes the potential energy curve close to the
double-well shape.

Recently, Mankovsky et al. have reported [27] the potential
energy curves along the N−

4 mode of the PM bcc Fe based on
the coherent potential approximation (CPA) in combination
with the disordered local moment (DLM) scheme. Their result
at the volume of 10.4 Å/atom (≈0.92V0) showed that the
energy of the PM bcc Fe along the N−

4 mode decreased
monotonically [see Fig. 4(c) in Ref. [27]]. This result is
different from that from the present SQS-based approach

which shows the double-well potential. One of the possible
reasons for the discrepancy between the two approaches is
the treatment of local environment effects. In the CPA-DLM
scheme, all the atoms are embedded in an effective medium of
the average of the spin-up and spin-down atoms and hence
are equivalent. Actually, each atom has, strictly speaking,
a different environment around itself in the completely
disordered magnetic configuration. The CPA-DLM scheme
does not include the effects of such a local environment. In
the SQS scheme, on the other hand, the environment around
each atom is different from that around another atom, and
hence the effects of the local environment can be captured to
some degree. Actually, the importance of such effects on Fe-Ni
alloys was pointed out in several reports [28,29].

In Fig. 4, we can also find the softening of the longitudinal
phonon mode at the 2/3[111] point under volume compres-
sion. This mode consists of the displacement of the (111)
planes along the [111] direction, which corresponds to a bcc-ω
phase transition pathway. Similar to the case of the phonon
mode at the N point, the softening has been experimentally
observed for the NM metals such as Ti, Zr, and Hf, which
actually show the bcc-ω phase transitions [24–26]. Recently,
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FIG. 5. Potential energy curves along the N−
4 mode with respect

to volumes for the (a) PM and (b) FM phases. Square, circle, and
triangle symbols are for the results at V0, 0.96V0, and 0.92V0, respec-
tively, where V0 denotes the equilibrium volume. Lines connecting
the symbols are guides for the eyes.

our group proposed [30] a bcc-fcc phase transition pathway
where the ω structure appears as an energy barrier during the
bcc-fcc transformation. The present finding implies that the
softening of the longitudinal mode at the 2/3[111] point can
be considered as a precursor to the bcc-fcc transition as well
as to the bcc-ω transition. Actually, this is consistent with
the experimental fact that the PM bcc Fe undergoes a phase
transition to the PM fcc Fe under pressure.

IV. SUMMARY

The structural stability of the PM bcc Fe under pressure is
analyzed in detail based on the phonon dispersion relations.
The PM phase is described using the binary SQS. In order to

TABLE III. Fitting parameters to the calculated potential en-
ergy curves. The fourth-order polynomial function E(x) = E0 +
a2x

2/2 + a4x
4/4! is considered, where x, E(x), E0, a2, and a4 are the

atomic displacement, the energy at the corresponding displacements,
the energy at the ideal bcc positions, the coefficient for the second
order, and the coefficient for the fourth order, respectively. The
coefficients a2 and a4 are the fitting parameters and determined by
means of the least-squares method.

Magnetic a2 [eV/ a4 [eV/

Volume phase (atom Å2)] (atom Å4)] a4/a2 (Å−2)

V0 PM 0.2 66.9 324.1
FM 6.4 − 217.3 − 33.7

0.96V0 PM − 0.2 89.2 − 558.9
FM 7.2 − 257.7 − 35.7

0.92V0 PM − 0.9 131.9 − 139.1
FM 7.3 − 287.0 − 39.1

obtain the phonon frequencies for the PM phase, a symmetriza-
tion procedure is applied. For the PM phase, the low-frequency
transverse mode at the N point, which corresponds to the
bcc-hcp phase transition pathway, shows strong softening
under volume compression. This mode becomes imaginary
by a 2% volume decrease within the harmonic approximation.
This result seems contradictory to the experimental fact that
the phase transition from the PM bcc to hcp phases does
not occur under compression. However, this puzzle can be
solved by taking the anharmonic behavior of the N−

4 mode
into consideration; the potential energy curve along the N−

4
mode for the PM phase is found to become a double-well
shape under compression. We also find the softening of the
longitudinal phonon mode at the 2/3[111] point under volume
compression. This mode can be associated with the bcc-fcc
phase transition pathway where the ω structure appears during
the transformation. Hence the softening of this mode can be
considered as a precursor to the phase transition from the PM
bcc to PM fcc phases, which is indeed observed experimen-
tally. Such softening behaviors are not observed for the FM
phase, which implies that the phase transition mechanism is
essentially different between the FM and PM phases.
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