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Photoinduced quantum spin and valley Hall effects, and orbital magnetization in monolayer MoS2

M. Tahir,* A. Manchon, and U. Schwingenschlögl†
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We theoretically demonstrate that 100% valley-polarized transport in monolayers of MoS2 and other group-VI
dichalcogenides can be obtained using off-resonant circularly polarized light. By tuning the intensity of the
off-resonant light the intrinsic band gap in one valley is reduced, while it is enhanced in the other valley, enabling
single valley quantum transport. As a consequence, we predict (i) enhancement of the longitudinal electrical
conductivity, accompanied by an increase in the spin polarization of the flowing electrons, (ii) enhancement of
the intrinsic spin Hall effect, together with a reduction of the intrinsic valley Hall effect, and (iii) enhancement
of the orbital magnetic moment and orbital magnetization. These mechanisms provide appealing opportunities
to the design of nanoelectronics based on dichalcogenides.
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Monolayers of the transition metal dichalcogenides MX2

(M = Mo, W; X = S, Se) are emerging as promising mate-
rials for a wide variety of applications in nanoelectronics,
due to their exceptional band structures [1]. In particular,
the exfoliation of MoS2 monolayers has attracted significant
interest since the realization of field-effect transistors with
high on-off ratio [2]. Monolayers of MX2 can be regarded as
semiconductor analogs of graphene [3,4], resulting in similar
phenomena such as spin and valley Hall effects [5,6]. Indeed,
MoS2 has a honeycomb lattice with an intrinsic direct band
gap of 1 to 2 eV, which is in the visible range. The band
edge is located at the energy degenerate valleys (corners of the
hexagonal Brillouin zone) [7,8].

Thanks to its direct band gap, MoS2 is suitable for
optical manipulations and opens access to many optoelectronic
applications [7–9]. It has been predicted that both valley
polarization and valley coherence can be achieved by optical
pumping with circularly and linearly polarized light [5,6,10].
Experimental realizations have been reported for MoS2 and
WSe2 [11–14], suggesting that monolayers of MX2 could
be used for integrated valleytronic devices. Experiments
have shown 30% to 50% valley polarization with circularly
polarized light in the resonance regime [10–12]. Recent
works on the optoelectronic properties of MoS2 indicate that
the photoresponse of externally biased phototransistors is
driven by conductivity alteration upon illumination [15–17].
A photovoltaic effect has been reported for MoS2 devices in
contact with metallic electrodes that generate large Schottky
barriers [18,19]. In addition, ultrasensitive phototransistors
with improved mobility have been demonstrated in Ref. [20].
These devices show a photoresponsitivity in the 400 to 680 nm
range with a maximum of 880 A/W at a wavelength of 561 nm.

In contrast with the on-resonant optical induction used till
now, we propose in this paper a scheme to employ off-resonant
light to influence the band structure and corresponding trans-
port properties of MX2 monolayers, enabling 100% valley
polarization. An important motivation is the development
of experimental probes [21] that make it possible to access
nonequilibrium effects, where time-periodic perturbation due
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to circularly polarized light represents a rich and versatile
resource for creating a band gap [22]. An analog has been
realized experimentally in a photonic system [23,24]. We show
that the band structure of MoS2 is strongly modified by the
off-resonant light, resulting in a valley-dependent tuning of
the band gap, which is not achievable by on-resonant light.
We demonstrate analytically that this valley-dependent band
gap results in the emergence of a quantum spin Hall effect, the
reduction of the quantum valley Hall effect, and enhancement
of the orbital magnetic moment and orbital magnetization.

Off-resonant light cannot generate real photon absorp-
tion/emission due to energy conservation, whereas it can affect
the electron system by second order virtual photon processes
(a photon is first absorbed/emitted and then emitted/absorbed).
When averaged over time, these processes result in an effective
static alteration of the band gap of the system. Therefore, using
circularly polarized light, it is possible to distinctively tune the
band gap at the K and K ′ valleys. Gap opening by off-resonant
light has been predicted for graphene and the surface states of
topological insulators [22] as well as for silicene [25], and
has been confirmed experimentally [21]. These studies show
that off-resonant light enables quantum phase transitions in
two-dimensional systems.

The charge carriers in MoS2 obey a two-dimensional Dirac-
like Hamiltonian [5,6] with large intrinsic direct band gap
and strong spin-orbit coupling (SOC). We model MoS2 by
an effective Hamiltonian in the xy plane in the presence of
circularly polarized light,

Ĥ η,s(t) = v[ησ̂x�̂x(t) + σ̂y�̂y(t)] + �σ̂z − sηλσ̂z + sηλ.

(1)

Here η = ±1 represents the valleys K and K ′, respectively,
� is the mass term that breaks the inversion symmetry, (σ̂x ,
σ̂y , σ̂z) is the vector of Pauli matrices (applies to both the
valence and conduction bands), λ is the SOC energy, s = ±1
represents the up and down spins, respectively, and v denotes
the Fermi velocity of the Dirac fermions. In our notation,
the spin-quantization axis is chosen along the z direction. We
use the gauge in the two-dimensional canonical momentum
�̂(t) = P̂ − eA(t), with the vector potential

A(t) = (±A sin �t,A cos �t), (2)
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where � is the frequency of the light and A = E0/� with
E0 being the amplitude of the electric field E(t) = ∂A(t)/∂t .
The gauge potential satisfies time periodicity A(t + T ) = A(t)
with T = 2π/�. The plus/minus sign refers to right/left
circular polarization. As long as the photon energy is much
larger than the kinetic energy of the electrons, Ĥ η,s(t) can be
reduced to an effective static (time-independent) Hamiltonian
Ĥ

η,s

eff using Floquet theory [22,23]. This method gives results
in excellent agreement with experiments [21,23,24]. The ef-
fective Hamiltonian Ĥ

η,s

eff is defined through the time evolution
operator over one period

Û (T ) = T̂ exp

[
−i

∫ T

0
Ĥ η,s(t)dt

]
= exp

[ − iĤ
η,s

eff T
]
, (3)

where T̂ is the time ordering operator. Using perturbation
theory and expanding Û (T ) in the limit of large frequencies
�, we obtain

Ĥ
η,s

eff = Ĥ
η,s

0 + 1

��

(
[Ĥ η,s

+ ,Ĥ
η,s
− ]

+ [Ĥ η,s

0 ,Ĥ
η,s
+ ] − [

Ĥ
η,s

0 ,Ĥ
η,s
−

]) + O(�−2), (4)

where Ĥ
η,s
m = (1/T )

∫ T

0 e−im�t Ĥ η,s(t)dt is the mth Fourier
harmonic of the time-periodic Hamiltonian. Notice that Eq. (4)
is only valid under the off-resonance condition �� � tj (tj =
v�/a is the hopping parameter between two nearest neighbors
with a being the lattice constant) [22,26]. Indeed, for � ∼ tj
multiple photon absorption and emission processes must be
accounted for, which implies that higher order terms in the
expansion of Û (T ) should be retained. On the other hand,
the condition �� � tj implies that the frequency must be
large as compared to the bandwidth, which is difficult to reach
in practice. In fact, for such large frequencies high energy
bands might also contribute to the optical processes. In the
present work we focus on the impact of off-resonant light on
the low energy bands and assume that direct optical processes
involving high energy bands only weakly affect the low energy
band structure [27]. Still, by the presence of these high energy
processes, the effective power of the incident off-resonant light
is reduced.

Using Eq. (1), Eq. (4) yields

Ĥ
η,s

eff = v(ησ̂xp̂x + σ̂y p̂y) + (� ± η��)σ̂z − sηλσ̂z + sηλ,

(5)

where �� = e2v2
�

2A2/�
3�3 is the effective energy term

describing the effects of the circularly polarized light, which
essentially renormalizes the mass of the Dirac fermions. For
right circular polarization the gap is increased in the K

valley and reduced in the K ′ valley, whereas for left circular
polarization the effect is opposite. After diagonalization we
obtain the eigenvalues

E
η,s

ζ = sηλ + ζ
√

(v�k)2 + (� + η�� − sηλ)2 (6)

and the corresponding eigenfunctions

�
η,s

ζ = eikxx+ikyy√
LxLy

(
cos γ

η,s,ζ

k e−iηϕk

sin γ
η,s,ζ

k

)
. (7)

FIG. 1. (Color online) Brillouin zone of monolayer MoS2 and
schematic electronic structure in the presence of off-resonant light
and absence of intrinsic SOC.

Here ζ = ±1 represents the conduction and valence bands,
respectively, ϕk = tan−1(ky/kx) with k =

√
k2
x + k2

y , and
tan γ

η,s,ζ

k = (Eη,s

ζ − � − η��)/v�k. The impact of off-
resonant light on the band structure is illustrated in Figs. 1 and 2
for MoS2 (2� = 1.66 eV, λ = 0.0375 eV, v = 0.5 × 105 m/s,
a = 3.193 Å, and tj = 1.10 eV [5]). We set �� = 10tj , which
corresponds to a gap variation of �� = 0.73 eV for evA =
2.83 eV. This large value of �� ensures that the low energy
bands are only affected by virtual emission and absorption
processes, while higher energy processes are assumed to
only affect the effective power of the incident light (see also
Refs. [22,25,26]). The energy correction �� can be tuned by
varying the amplitude of the electric field or frequency of the
light.

Two aspects are worth noticing. First, as mentioned above,
the effect of the off-resonant light is to enhance the gap for
the K valley and reduce it for the K ′ valley (�K = 3.2 eV
and �K ′ = 0.06 eV in our example). In this case only
one valley (here η = −1) becomes relevant for electronics

FIG. 2. (Color online) Band structure of monolayer MoS2 in the
presence of both off-resonant light and intrinsic SOC for the (top) K

and (bottom) K ′ valley.
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purposes, enabling almost 100% valley polarization of the
transport. Second, the SOC-induced splitting is enhanced in
the conduction band, while it remains essentially unchanged
in the valence band. Indeed, in the absence of off-resonant
light the SOC is only active in the valence bands and leaves the
conduction bands almost unaffected. The reduction of the band
gap in the K ′ valley correspondingly empowers SOC-induced
splitting in the conduction bands which become spin polarized.
Nevertheless, we stress that due to the fact that the two valence
bands (s = ±1) are nondegenerate at k = 0 it is still possible to
obtain fully spin-polarized hole transport by tuning the Fermi
level, while the conduction band can be at most partially spin
polarized. Since the system is fully valley polarized, only the
conduction band of the K ′ valley (η = −1) contributes to the
transport properties discussed in this work.

We calculate the longitudinal conductivity using the Kubo
formula and perform a perturbative expansion in terms
of the short-range impurity potential within the first Born
approximation. We use the Streda [28] version of the Kubo
formula [29]

σ
−,s
i,j = −e2

�

4π

∫
dE

∂f

∂E
Tr[v̂i(Ĝ

R − ĜA)v̂j Ĝ
A

− v̂iĜ
Rv̂j (ĜR − ĜA)], (8)

where the velocity components v̂i (i = x,y) are given by v̂x =
ησ̂x and v̂y = σ̂y . The superscript minus represents the K ′

valley, f is the Fermi distribution function, and ĜA/R are
the advanced and retarded perturbed Green’s functions. The
unperturbed retarded Green’s function is given by ĜR

0 = [E −
Ĥ + i0]−1. Using Eq. (5) with η = −1, we obtain

ĜR
0 = 1

2

{
1 + 1

E
−,s
+ + sλ

[(� − �� + sλ)σ̂z

− v�(σ̂xkx − σ̂yky)]

}
1

E − E
−,s
+ + i0

. (9)

The perturbed Green’s function is given by ĜR = 1/

[(ĜR
0 )−1 − �̂R], where �̂R is the retarded self-energy. Con-

sidering short range randomly distributed impurities in the
first Born approximation, we have

�̂R = NV 2
0

∫
kdkdφ

(2π )2
ĜR

0 ≈ −iNV 2
0 EF /2�

2v2, (10)

where N is the impurity concentration and V0 is the impurity
potential. We obtain

ĜR/A = 1

2

{
1 + 1

E
−,s
+ + sλ

[(� − �� + sλ)σ̂z

− v�(σ̂xkx − σ̂yky)]

}
1

E ± i� − E
−,s
+

, (11)

where � = −Im�̂R is the energy broadening due to the
finite quasiparticle lifetime τ . Using Eq. (11) in Eq. (8)
and addressing the limit of zero temperature with chemical
potential EF , we arrive at

σ−,s
xx = e2

2h

τ (EF + sλ)

�

{
1 − (� − �� + sλ)2

(EF + sλ)2

}
. (12)

As expected, the conductivity is enhanced under off-resonant
light, since the effective band gap is reduced. More interest-
ingly, the gap reduction is accompanied by a spin polarization
of the longitudinal electron flow. Indeed, since the mass of the
carriers is reduced, the impact of SOC is stronger, leading to a
polarization

P = (σ ↑
xx − σ ↓

xx)/(σ ↑
xx + σ ↓

xx)

= λ
EF − (� − ��)

[EF − (� − ��)]EF − 2λ2
−→

��→�

λEF

E2
F − 2λ2

. (13)

The intrinsic Hall conductivity due to anomalous trajec-
tories of free electrons under the action of the electric field
is expressed in terms of the Berry curvature in k space as
[5,29,30]

ση,s
xy = e2

�

∫
d2k

(2π )2
[f+(E) − f−(E)]�η,s

z (k), (14)

where f± denotes the Fermi distributions of the electrons and
holes, respectively. From Eqs. (6) and (7) we obtain the Berry
curvature as

�η,s
z (k) = iz · 〈∇k�

η,s

ζ

∣∣ × ∣∣∇k�
η,s

ζ

〉
= −η�

2v2(� + η�� − ηsλ)

2{(v�k)2 + (� + η�� − ηsλ)2}3/2
. (15)

Using Eq. (15) in Eq. (14) and performing the integral over k,
we obtain the intrinsic Hall conductivity when the Fermi level
is in the band gap (indicated by a subscript 0)

σ
η,s

xy,0 = η
e2

2h
sgn(|� + η��| − ηsλ), (16)

which yields the quantum spin and valley Hall effects. For
|� − ��| > λ we have σ

η,s

xy,0 = ηe2/2h, which results in a
vanishing quantum spin Hall effect and finite quantum valley
Hall effect σv

xy,0 = σ
+,s
xy,0 − σ

−,s
xy,0 ∼ −e2/h. For |� − ��| <

λ we have σ
η,s

xy,0 = −se2/2h, which results in a vanishing
quantum valley Hall effect and finite quantum spin Hall
effect σ s

xy,0 = σ
η,+
xy,0 − σ

η,−
xy,0 ∼ −e2/h. Using λ = 37.5 meV

we obtain for |� − ��| = 10 meV a value of �� = 0.82 eV
for evA = 3 eV, which may be varied by alteration of �� via
the intensity of the off-resonant light and is consistent with
Fig. 2. These results can be compared with Ref. [6] where the
quantum spin Hall effect is zero in the limit of zero off-resonant
light, while the quantum valley Hall effect is similar to what
we obtain above in Eq. (16), see Eq. (12d) of Ref. [6]. Note
that the SOC is stronger in WS2 (107.5 meV) than in MoS2

(37.5 meV) so that the quantum spin Hall effect is easier to
detect [5].

When the Fermi level is in the conduction band (indicated
by a subscript 1), the Hall conductivity is

σ
η,s

xy,1 = η
e2

2h

� + η�� − ηsλ

EF − ηsλ
. (17)

This anomalous conductivity is similar to that reported in
Refs. [5,6] in the limit �� → 0. However, the valley selectivity
introduced by the circularly polarized off-resonant light
dramatically changes the situation. Indeed, as mentioned in
Refs. [5,6], for monolayer MoS2 in the absence of off-resonant
light both valleys contribute equally to the spin and valley Hall
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conductivities. However, in the presence of off-resonant light,
since the effective band gap becomes valley dependent, the
spin Hall effect is dominated by one valley only (K ′ in the
present case) so that it is enhanced, while the valley Hall effect
is correspondingly reduced. Since the system is fully valley
polarized, only the K ′ conduction band contributes, so that the
spin (σ s

xy = σ
−,+
xy,1 − σ

−,−
xy,1 ) and valley (σv

xy = σ
−,+
xy,1 + σ

−,−
xy,1 )

Hall conductivities are

σ s
xy = −e2

h

(
λ(−� + �� + EF )

E2
F − λ2

)
,

(18)

σv
xy = −e2

h

(
(� − ��)EF − λ2

E2
F − λ2

)
.

When the gap is quenched (� → ��) the spin Hall effect
is simply proportional to the longitudinal polarization, see
Eq. (13). The spin and valley Hall conductivities obtained
from Eq. (18) can be compared to their counterparts σ s,0

xy and
σv,0

xy in the absence of light (see, e.g., Eq. (12e) in Ref. [6]) and
we obtain

σ s
xy =

(
1 − ��

� − EF

)
σ s,0

xy

2
,

(19)

σv
xy = −

(
1 − ��EF

�EF − λ2

)
σv,0

xy

2
,

which explicitly reveals the role of the light-induced gap.
The extrinsic corrections to the anomalous velocity from side
jump and skew scattering have been explicitly calculated in
the case of a gapped two-dimensional Dirac Hamiltonian
in Ref. [29]. Interestingly, they vanish when the chemical
potential approaches the gap. By its large gap (1.66 eV), this is
the case for MoS2. Additionally, skew scattering contributions
are inversely proportional to the impurity concentration and
thus vanish in the limit of strong impurity scattering (see, e.g.,
Ref. [31]).

The last aspect to be discussed is the enhancement of
the orbital magnetic moment. Indeed, in classical electro-
magnetism, charges moving with a velocity v along a loop
of diameter D generate an orbital magnetic moment μorb =
Dev/4. Recently, values up to μorb ≈ 26μB have been reported
in 5 nm wide carbon nanotubes [32]. In general, while the
orbital contribution to the magnetization is vanishingly small
in 3d transition metal ferromagnets, it turns out to become
significant in systems involving orbital degrees of freedom
such as nanotubes and graphenelike structures [30,33]. The
orbital magnetic moment can be related to the Berry curvature
through the relation [30,33]

μ
−,s
orb (k) = e

�
E

−,s
+ (k)�−,s

z (k)

= e

�
E

−,s
+ (k)

�
2v2(� − �� + sλ)

2{(v�k)2 + (� − �� + sλ)2}3/2
. (20)

For finite � or �� the orbital magnetic moment has a peak
at k = 0. For zero SOC we obtain for |� − ��| = 30 meV a

single valley orbital magnetic moment of 35 bohrs magnetons.
This may be varied by alteration of �� by modifying
the intensity of the off-resonant light. The orbital magnetic
moment turns out to be inversely proportional to the band gap.

The corresponding orbital magnetization is [30,33]

M
−,s
orb = e

�

∫
d2k

(2π )2

{
μ

−,s
orb (k) + e

�
[EF − E

−,s
+ (k)]�−,s

z (k)

}
(21)

and we calculate analytically

M
−,s
orb = eEF

2h

(
1 − � − �� + sλ

EF + sλ

)
. (22)

Interestingly, this expression has a similar structure as the
Hall conductivity, Eq. (17), and can be enhanced by reducing
the band gap using off-resonant light. As a reference, for a
Fermi energy of 100 meV and a layer thickness of typically
0.6 nm, we would have an orbital magnetization of 0.05 T,
which is easily detectable and tunable by varying ��. The
orbital magnetization can be probed by various experimental
techniques, including susceptibility measurements, electron
paramagnetic resonance, x-ray magnetic circular dichroism,
and neutron diffraction [34–36]. The orbital contribution to the
magnetization affects a variety of properties and phenomena
such as the nuclear magnetic resonance [37] and electron
paramagnetic resonance [38] g tensors, which both are related
to the derivative of the orbital magnetization as well as
to the magnetic susceptibility, the orbital magnetoelectric
response [39–41], and the quantum spin Hall conductivity [42].

We propose to use off-resonant circularly polarized light to
enable valley-polarized nanoelectronics in group-VI dichalco-
genide monolayers such as MoS2. We theoretically demon-
strate that under such illumination the band gaps of the K

and K ′ valleys are oppositely tuned, leading to 100% valley
polarization. This phenomenon leads to a number of remark-
able effects: (i) Enhancement of the longitudinal conductivity,
accompanied by an increase in the spin polarization of the
flowing electrons, (ii) enhancement of the intrinsic spin Hall
effect, together with a reduction of the intrinsic valley Hall
effect, and (iii) enhancement of the orbital magnetic moment
and orbital magnetization. Our predictions can be realized
experimentally by the setup used in Ref. [43] for studying WS2.
The discussed findings expand the horizon of fundamental
investigations of the electronic properties of two-dimensional
dichalcogenide systems and present promising opportunities
to the design of tunable phototransistors [15–20], photother-
moelectric devices [44], and related transport devices.
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Research reported in this publication was supported by
the King Abdullah University of Science and Technology
(KAUST).
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