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Quantum interference in off-resonant transport through single molecules
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We provide a simple set of rules for predicting interference effects in off-resonant transport through single
molecule junctions. These effects fall into two classes, showing, respectively, an odd or an even number of
nodes in the linear conductance within a given molecular charge state, and we demonstrate how to decide
the interference class directly from the contacting geometry. For neutral alternant hydrocarbons, we employ
the Coulson-Rushbrooke-McLachlan pairing theorem to show that the interference class is decided simply by
tunneling on and off the molecule from same or different sublattices. More generally, we investigate a range of
smaller molecules by means of exact diagonalization combined with a perturbative treatment of the molecule-lead
tunnel coupling. While these results generally agree well with GW calculations, they are shown to be at odds with
simpler mean-field treatments. For molecules with spin-degenerate ground states, we show that for most junctions
interference causes no transmission nodes, but we argue that it may lead to a nonstandard gate dependence of the
zero-bias Kondo resonance.
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I. INTRODUCTION

Interference effects in electronic transport through single
molecule junctions have recently attracted a lot of attention
as they offer a sensitive handle with which to tune transport
properties [1–7]. Single molecule junctions and quantum
dots exhibit many similar transport features, including low-
temperature observations of the Coulomb blockade and possi-
bly the Kondo effect for spin-degenerate molecules, whenever
a backgate (see Fig. 1) has been available for tuning the
molecular energy levels.

For quantum dots, interference effects have been stud-
ied intensively in the context of the phase lapses, which
were observed, by implementing the dot into one arm of
an Aharonov-Bohm interferometer [8,9]. In this context, a
number of theoretical works have investigated the possibility
for interference induced transmission zeros in quantum dots of
various shapes and sizes, possibly involving multiple connec-
tions to the leads, possibly including effects of disorder and/or
interactions [10–17]. Whereas all of these different factors
have been shown to play a determining role for interference
effects in quantum dots, the largely random element of dot
shape alone makes these effects more or less serendipitous and
difficult to employ in an intentional design. This problem is
bypassed when replacing the dot by a single molecule, where
the interference is controlled by the well-defined electronic
and magnetic structure prescribed by the chemical synthesis.

Transport through a single molecule junction can be on- or
off-resonant, depending on the relative strengths of molecule-
lead couplings to the addition energy of the molecule, as
well as on the position of the energy levels of the molecule
relative to the chemical potentials of the metallic leads [18].
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In this paper, we deal exclusively with molecules out of
resonance, where it makes sense to talk about a ground state
for the junction having a definite number of electrons on
the molecule. This is the, already well-documented [19–27],
regime in which three-terminal experiments observe Coulomb
diamonds [see Fig. 4(b)]. In the low-conductance interior
of these diamonds, transport takes place via virtual charge
fluctuations of the molecule, and safely inside a diamond this
so-called cotunneling conductance can be reliably calculated
by perturbation theory in the weak charge fluctuations, thus
relying on the effective lead-molecule coupling being much
smaller than the addition energy.

In practice, even physical phenomena like the Kondo
effect, involving “not so weak” virtual charge fluctuations,
are well described within a simple cotunneling model [28].
Calculations may require nonperturbative methods, but the
effect itself requires nothing but repeated cotunneling pro-
cesses. This line of reasoning works very well even for
quantum dots with addition energies of only a few meV
and a lack of good separation of energy scales [29,30]. Even
quantitative descriptions of line shapes in inelastic cotunneling
spectroscopy can be carried out using a simple cotunneling
model as the starting point for transport calculations [31].
In comparison, typical molecules under consideration easily
exhibit addition energies of the order of 100 meV, with huge
Coulomb diamonds ensuring a much better separation of
energy scales. This is what makes a gated single molecule
junction such an exceptional system for high-quality inelastic
cotunneling spectroscopy, resolving magnetic or vibrational
excitations on the scale of a few meV [21–23,27]. Unless the
addition energy somehow becomes smaller than the tunnel
broadening, an effective cotunneling model thus provides a
very simple point of departure for a perturbative treatment
of charge fluctuations, which remains valid throughout the
parameter space of backgate, Vg , and bias voltage, Vsd, except
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FIG. 1. (Color online) The molecular junctions setup with a
source-drain voltage Vsd applied across the molecule, which is tunnel
coupled to leads through ts and td . The electrostatic environment is
controlled through a backgate voltage Vg .

for the crossing lines of mixed valance or charge degeneracy.
Only on these tunnel-broadened lines the cotunneling model
breaks down, as the molecule is tuned into resonance.

In this off-resonant regime, electrons are not streaming
through different arms of a coherent waveguide but rather
traversing the molecule by means of coherent cotunneling
processes involving the virtual tunneling of either an electron
or a hole. The aim of this paper is to sort out the basic
mechanisms for interference in this cotunneling regime and to
provide a simple and robust means of categorizing the possible
interferences to be expected for a given molecule. What
interference effects may be expected in this regime, and to
what extent might one capture these within a simple mean-field
treatment of the interacting molecular π -electron system? We
work out a simple set of rules for predicting interference
effects in off-resonant transport through alternant (bipartite)
hydrocarbons based on the contacting geometry alone. The
rules are based on the Coulson-Rushbrooke-McLachlan pair-
ing theorem [32–34], from which we derive a relation between
tunneling amplitudes for, respectively, holes and electrons,
which constitute the two interfering amplitudes in cotunnel
junctions. For a single orbital model, we simply rederive the
well-known impurity physics fact that the Anderson model
has no potential scattering term at the particle-hole symmetric
point. For a real molecule, however, we uncover a set of
nontrivial, yet easy to use, graphical rules for deciding if the
junction will show an even or an odd number of interference
dips in the zero-bias conductance, as the gate voltage is varied
across the relevant charge state of the molecule.

To support our findings we investigate the effect nu-
merically. For sufficiently small molecules, we perform an
exact diagonalization (ED) of the interacting molecular π

system and demonstrate how this rephrased theorem works
for strictly off-resonant transport. For a number of different
molecules, we compare the result with those obtained using
other popular methods like density functional theory (DFT),
Hückel theory (HT), and GW , which all include higher-order
tunneling (hybridization) effects but treat the interactions only
approximately. For most situations even a simple HT is shown
to predict the correct interference class, but most often the
effective single-particle calculations [HT, DFT, and Hartree-
Fock (HF)] return the incorrect dip positions and even spurious

dip degeneracies, which are usually lifted by GW and ED
calculations. Our simple classification rules provide a valuable
tool for gauging the validity of approximate calculations, and
since the rephrased pairing theorem is topological in nature we
expect it to be of more general validity beyond the restricted
class of neutral homoatomic alternant hydro-carbons.

II. THE PARISER-PARR-POPLE MODEL
FOR CONJUGATED MOLECULES

In a molecular junction the molecule is tunnel coupled to
two electrodes at a bias voltage Vsd and with a backgate voltage
Vg controlling the electrostatic environment (see Fig. 1). The
molecular π system is modeled by the semiempirical Pariser-
Parr-Pople (PPP) model [35,36]:

Ĥ =
∑
〈i,j〉

∑
σ=↑/↓

(tij ĉ
†
iσ ĉjσ + H.c.) − eVg

∑
i

(n̂i − 1)

+
∑

i

U

(
n̂i↑−1

2

)(
n̂i↓ − 1

2

)
+1

2

∑
i �=j

Vij (n̂i−1)(n̂j−1).

The operator ĉ
†
iσ creates an electron with spin σ on the pz

orbital |i〉, n̂iσ = ĉ
†
iσ ĉiσ , and n̂i = n̂i↑ + n̂i↓. The Coulomb

interaction is given by the Ohno parametrization [37] Vij =
U/(

√
1 + |�rij |2U 2/207.3 eV), where |�rij | is the real-space

distance between two pz orbitals |i〉 and |j 〉 measured in
Ångström. For sp2 hybridized carbon, the nearest-neighbor
overlap, tij , is t ≈ −2.4 eV, and U ≈ 11.26 eV [38]. Ab-
sorbing a constant capacitive lever arm, the backgate voltage
shifting the molecular energy levels is denoted by Vg .

The isolated molecular π system with N electrons has
eigenenergies EN

n , with corresponding many-body eigenstates
|�N

n 〉. The N -electron excitation spectrum is given by ε0
n =

EN
n − EN

0 , the energy costs of adding an electron to the
π system are given by ε

p
n = EN+1

n − EN
0 , and the costs of

removing an electron are given by εh
n = EN

0 − EN−1
n . For

the molecules investigated below, these eigenenergies and
many-body eigenstates are determined numerically by exact
diagonalization [39].

The source and drain (α = s,d) electrodes are modeled by
noninteracting electrons with constant densities of states ρα .
Since interference effects depend crucially on the entry and exit
points for the transport electrons, we assume that only one pz

orbital |iα〉 couples to each lead α = s,d and the tunneling term
is included as ĤH = ∑

αkσ (tαĉ
†
iασ ĉαkσ + H.c.). When the cou-

pling strengths �α = 2πρα|tα|2 to source and drain electrodes
are much smaller than the excitation energies �s,d 	 |εp

0 |,|εh
0 |,

the molecular junction is blockaded, and transport is restricted
to cotunneling processes via virtual charge fluctuations of the
molecule. The molecule holds a definite number of electrons
and the off-resonant current is determined by leading-order
perturbation theory in �s�d/(εp,h

0 )2.

III. TRANSPORT THROUGH A SPIN SINGLET
GROUND STATE

For a nondegenerate molecular ground state, there are only
two contributing transport processes. One process transfers an
electron (p) from source to drain, while the second process
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transfers a hole (h) in the reverse direction. At zero-bias
voltage and safely away from the charge degeneracy points,
i.e., eVg = ε0

p,ε0
h, the zero-temperature off-resonant current

can be calculated from the generalized Fermi golden rule
as [40]

I (Vg,Vsd) = e

h
�s�d

∑
m,σ,γ

∫ eVsd/2

−eVsd/2+ε0
m

dωθ
(|eVsd| − ε0

m

)

×∣∣hγσ

m,0

(
Vg,ω − ε0

m

) + p
γσ

m,0(Vg,ω)
∣∣2

, (1)

where m runs over the N -particle eigenspectrum, while
σ and γ both run over spin up and down. We have also
introduced the cotunneling amplitudes:

h
γσ

m,l(Vg,ω) =
∑

n

〈
�N

m

∣∣ĉ†isγ
∣∣�N−1

n

〉〈
�N−1

n

∣∣ĉidσ

∣∣�N
l

〉
eVg − ω − εh

n − i0+ ,

p
γσ

m,l(Vg,ω) =
∑

n

〈
�N

m

∣∣ĉidσ

∣∣�N+1
n

〉〈
�N+1

n

∣∣ĉ†isγ
∣∣�N

l

〉
eVg − ω − ε

p
n + i0+ .

These amplitudes are given in terms of the molecular energy
spectrum and the Feynman-Dyson (FD) orbitals, i.e., the cor-
related generalization of molecular orbitals, calculated as the
matrix elements of the hole creation operator 〈�N−1

n |ĉiσ |�N
m 〉

and the electron creation operator 〈�N+1
n |ĉ†iσ |�N

m 〉 in the basis
of the relevant many-particle molecular eigenstates.

This formula for the off-resonant current omits any bias
dependence of excited-state occupations, which would play a
role for the detailed shape of inelastic cotunneling steps (see,
e.g., Ref. [41]), but is immaterial for the present discussion.
Henceforth, we shall mostly consider the zero-bias cotunneling
conductance, G = limVsd→0 dI/dVsd, which can be written in
the form

G = G0�s�d

∑
σ

∣∣hσσ
0,0(Vg,0) + pσσ

0,0(Vg,0)
∣∣2

, (2)

in terms of the quantum of conductance, G0 = e2/h. In this
case, the zero-bias conductance becomes synonymous with
the junction transmission, i.e., T = G/G0.

A. Interference classification

Based on this zero-bias conductance formula, we divide
interference effects in off-resonant molecular junctions into
classes of even or odd, depending on the number of conduc-
tance zeros found by varying the gate voltage all the way across
a given charge state. As summarized graphically in Fig. 2,
divergences of the hσσ

0,0 amplitude at εh
0 and similarly of pσσ

0,0 at
ε

p

0 impose severe constraints on the zero-bias conductance.
(1) When both divergences share the same sign, one goes

to infinity, while the other goes to minus infinity, when
approaching the poles from a point in between εh

0 and ε
p

0 .
This forces the total conductance to have an odd number of
zeros.

(2) When the divergences have opposite signs, they both
go to either plus or minus infinity, which forces the total
conductance to have an even number of zeros in between.
The relative sign of the divergences is completely determined
by the numerators of hσσ

0,0 and pσσ
0,0, and the classification is

1 node

3 nodes

Even class Odd class 

0 nodes

2 nodes 
(degenerate)

2 nodes

Internal interference in either particle or hole process.

Interference between particle and hole transport procceses.

3 nodes
(degenerate)

0

0

0

0

0

0

FIG. 2. The even and odd quantum interference classes. The signs
of the pole of hσσ

00 at εh
0 and of pσσ

00 at ε
p

0 determine the interference
class uniquely. The unshaded region indicates the valid regime of Vg .
The interference nodes can be interpreted as happening between the
particle and hole processes (diamonds) or entirely within either the
particle or the hole processes (circles). Note the anomalous degenerate
cases with only one node, which shows up in some DFT and HT
calculations.

therefore encoded in the sign of their ratio:

Qi ≡
〈
�N

0

∣∣ĉ†isσ
∣∣�N−1

0

〉〈
�N−1

0

∣∣ĉidσ

∣∣�N
0

〉
〈
�N

0

∣∣ĉidσ

∣∣�N+1
0

〉〈
�N+1

0

∣∣ĉ†isσ
∣∣�N

0

〉 , (3)

where a sum over any ground-state degeneracies of the N ± 1
charge states is implied. When Qi > 0 the numerators share
the same sign and the interference class is odd, and whenQi <

0 the numerators have opposite signs and the interference class
is even.

For a simple noninteracting (Hückel) model of the
molecule, the numerator of h0,0 (p0,0) is the product of
the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) wave function on the
sites connected to the source and drain. For such models the
relation between interference and relative sign of HOMO and
LUMO has been investigated previously [42–46]. As we shall
demonstrate below, however, intramolecular interactions may
affect the interference nodes in the conductance.

This classification highlights the interference mechanism
responsible for the various possible nodes in the conductance.
When hole and particle transport amplitudes cancel, the result
is exactly one node. All remaining interference nodes of either
class can be interpreted as happening completely within a
hole (or a particle) transport amplitude. This is indicated in
Fig. 2 where a diamond marks nodes interpreted as arising
from particle-hole interference, while a circle marks nodes
due to interference solely within hole (or particle) processes.
Note that theQi classification parameter is readily generalized
to the case when many orbitals connect to each electrode, by
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replacing 〈�N
m |ĉiασ |�N+1

n 〉 with an average over all connected
orbitals |is〉 weighted by their coupling strengths |tαiα |2.

B. The starring rule for alternant hydrocarbons

In general, this classification of interference in off-resonant
quantum transport requires a detailed numerical calculation of
the exact many-body eigenstates involved in the FD orbitals
defining Qi. For neutral alternant (bipartite) hydrocarbon π

systems, however, the classification can readily be carried out
using a simple starring procedure. In an alternant system every
other pz orbital can be marked by a star, such that all starred
orbitals only have nonstarred neighbors and vice versa. An
equal number of starred and unstarred orbitals assures a spin
singlet ground state [47] and the conductance formula (2)
is valid. Attaching the molecule to electrodes through pz

orbitals on disjoint sublattices (starred and unstarred) makes
the interference class even, whereas contacting two pz orbitals
on the same sublattice (both starred or both unstarred) makes
it odd.

This rule is a consequence of the Coulson-Rushbrooke-
McLachlan pairing theorem [32–34] for alternant hydrocarbon
PPP models. For completeness we include a proof of the
theorem in Appendix A, establishing that for any N -electron
eigenstate of the bipartite molecular Hamiltonian, represented
by an extended Hubbard model, there is a corresponding
N -hole eigenstate with the same energy. The proof is a straight-
forward application of the antiunitary staggered particle-hole
transformation, U , defined by

U(z ĉ
†
iσ )U† = z∗ (−1)i ĉiσ for i = 1 . . . Na, (4)

where the orbital index, i, is chosen odd on starred sites and
even on unstarred sites of the alternant molecule at hand. It
is this transformation which transforms an eigenstate, |�N

n 〉,
with N electrons into an eigenstate:∣∣�2Na−N

n

〉 = U
∣∣�N

n

〉
, (5)

with 2Na − N electrons, i.e., N holes, having the same energy.
Since all eigenstates are paired in this way, it is clear that
any N -electron state |�N

n 〉 represents the same state as some
pairing partner |�N

m〉 = U |�2Na−N
m 〉. This implies that these

two states can only differ by a trivial phase factor, γ N
mn, that is,

U
∣∣�2Na−N

m

〉 = ∣∣�N
m

〉 = eiγ N
mn

∣∣�N
n

〉
. (6)

In other words, there is a one to one correspondence between
the complete set of energy N -electron eigenstates {|�N

n 〉}
and {|�N

m〉}, with the phase factors eiγ N
mn defining the unitary

transformation between the two.
Using this relation, we can now establish the following

useful connection between FD orbitals for, respectively, adding
or removing an electron from the molecule:

〈
�2Na−N+1

m

∣∣ĉ†iσ ∣∣�2Na−N
m′

〉
= 〈

�2Na−N+1
m

∣∣U†U ĉ
†
iσU†U

∣∣�2Na−N
m′

〉
= (−1)i

〈
�N−1

n

∣∣ĉiσ

∣∣�N
n′

〉
ei(γ N−1

mn −γ N
m′n′ ). (7)

In the last line we have used the antiunitary nature [48] of the
symmetry transformation U .

For a half-filled hydrocarbon, i.e., N = Na , with a
nondegenerate spin singlet ground state |�Na

0 〉, this im-
plies the following simple relation between the Na-electron
ground-state and the Na + 1-electron ground state FD
orbitals:

〈
�

Na+1
0,m

∣∣ĉ†iσ ∣∣�Na

0

〉
= (−1)i

〈
�

Na

0

∣∣ĉ†iσ ∣∣�Na−1
0,n

〉
ei(γ Na−1

mn −γ
Na
00 ), (8)

where we explicitly take into account that the Na ± 1-electron
ground states may be degenerate. If nothing else, then at
least the spin σ of the added or removed electron introduces
such a degeneracy. From this, we can now reexpress Qi as
follows:

Qi =
∑

n

〈
�

Na

0

∣∣ĉ†isσ
∣∣�Na−1

0,n

〉〈
�

Na−1
0,n

∣∣ĉidσ

∣∣�Na

0

〉
∑

m

〈
�

Na

0

∣∣ĉidσ

∣∣�Na+1
0,m

〉〈
�

Na+1
0,m

∣∣ĉ†isσ
∣∣�Na

0

〉
= (−1)is (−1)id ei(γ Na

00 −γ
Na−1
mn′ )e−i(γ Na

00 −γ
Na−1
mn′ )

×
∑

n

〈
�

Na

0

∣∣ĉ†idσ

∣∣�Na−1
0,n

〉〈
�

Na−1
0,n

∣∣ĉisσ

∣∣�Na

0

〉
∑

n′
〈
�

Na

0

∣∣ĉ†idσ

∣∣�Na−1
0,n′

〉〈
�

Na−1
0,n′

∣∣ĉisσ

∣∣�Na

0

〉
= (−1)is+id , (9)

where the phase factors are seen to cancel.
This result is surprisingly simple, so let us reiterate its

implications. When the two connecting orbitals is and id
belong to the same sublattice (starred or unstarred), we are
in the odd class (Qi > 0), and when they belong to disjoint
sublattices (one starred, one unstarred) we are in the even
class (Qi < 0). Tracing a path through the molecule between
the connecting orbitals, the interference class is also given by
the number of atoms visited by the path. An odd number of
atoms implies that the transport is characterized by the odd
interference class, while an even number of atoms implies the
even interference class.

This straightforward starring rule is one of the main results
of the present paper. Including the full effects of intramolec-
ular interactions we numerically calculate the cotunneling
conductance for various alternant hydrocarbon molecular
junctions by exact digitalization of the corresponding PPP
model. The results are shown in Fig. 3, where the starring
rule has been summarized in a small table. The reader is
invited to experiment with the starring rule and confirm
that the rule correctly predicts the number of interference
nodes. In Fig. 3 it is also shown how the interference
nodes of noninteracting Hückel models of neutral alternant
hydrocarbons are often degenerate. In the case of double
node degeneracy the classification directly shows which nodes
will split (or lift) when including intramolecular interactions.
Also note that this classification ensures the presence of an
interference node for molecular junctions in the odd class
regardless of the strength of the interactions. Hence both the
Qi classification and the starring rule represent useful and
simple tools. This is true even when working with interference
in Hückel models where Markussen et al. [5] have derived a set
of graphical rules. Note that when neglecting electron-electron
interactions on the molecule both the Markussen rules and
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Qi +1 -1

is ∈{ } id ∈{ } id ∈{ }
# atoms

in path
Odd Even

The starring rule for

alternant hydrocarbons

Class EvenOdd

0
10

10

10

10

10

10
0

C
on

du
ct

an
ce

0

10

10

[G
0]

Even class 

0
10

10

10

10

10

10
0

C
on

du
ct

an
ce

0

10

10

[G
0]

Odd class 

0
10

10

10

10

10

10
0

C
on

du
ct

an
ce

0

10

10

[G
0]

Even class 

0
10

10

10

10

10

10

C
on

du
ct

an
ce

0

10

10

[G
0]

Odd class 

0
10

10

10

10

10

10
0

C
on

du
ct

an
ce

0

10

10

[G
0]

Odd class 

0
10

10

10

10

10

10
0

C
on

du
ct

an
ce

0

10

10

[G
0]

Even class 

0
10

10

10

10

10

10
0

C
on

du
ct

an
ce

0

10

10

[G
0]

Even class 

FIG. 3. Off-resonant cotunneling conductance through the π system of various conjugated alternant hydrocarbon molecular junctions.
The conductance is calculated from Eq. (2) by exact diagonalization of the full PPP model including intramolecular interactions and setting
�s�d = 0.01 (eV)2. The dashed arms symbolize binding sites between the electrodes and the molecule. The calculated conductance conforms
with the starring rule (summarized in the table). When entering and leaving through two sites belonging to different sublattices (star, no star),
the result is an even number of nodes. When the two connected sites belong to the same sublattice (e.g., star, star), there is an odd number of
nodes. Inset: Corresponding transmission for a simple Hückel model.

the starring rule apply and are consistent in their even-odd
classification.

C. Interference in transport through stilbene

As an example, we now provide a detailed analysis of
the stilbene molecule shown in Fig. 4(a). Being an alternant
hydrocarbon, we can employ the starring rule described above,
and we immediately conclude that this molecule will have an
even number of conductance nodes when contacted in AA’ or
BB’ configuration and an odd number of nodes in the AB’

configuration. Within a PPP-model description of the π sys-
tem, this molecule is still amenable to exact diagonalization.
We show the stability diagrams for the different contacting
geometries in Fig. 4(b), showing the differential conductance
dI/dVsd on a logarithmic scale as a function of a backgate
voltage, Vg , and source drain voltage, Vsd, calculated at zero
temperature. The bright colors indicate a high differential
conductance with the inner diamond demarcating the (red-
black) regions, inside which our off-resonant current formula
for elastic cotunneling becomes valid. The dark spots in the
middle and right most panels in Fig. 4(b) show unusual, strong
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FIG. 4. (Color online) The stilbene molecular junction. (a) The molecular junction setup. (b) The stilbene molecule. The dashed arms
symbolize possible binding sites between the electrodes and the molecule. The stars refer to the quantum interference classification explained
in Fig. 2. (c) Stilbene stability diagrams for the neutral π system for �s�d = 0.01(eV)2 in different coupling configurations obtained from
the current expression in Eq. (1). In the AB’ and BB’ configurations all the interference nodes in the conductance are marked with arrows.
Note that in the BB’ configuration the two nodes at nonzero bias are hidden due to inelastic cotunneling processes. (d) Transmission through
the π system of substituted stilbene calculated by DFT, HT, HF, GW , and ED, respectively. The edge of the shaded region marks the charge
degeneracy points, while the unshaded regions denote the gate values of the relevant charge state. The mean-field methods (DFT and HF) and
the noninteracting HT all predict interference but fail to capture the double node of the even interference class predicted by the starring rule for
the BB’ configuration.

suppressions of the differential conductance, related to the
destructive interference in the cotunneling conductance. Note
also how inelastic cotunneling processes become relevant at
certain values of Vsd and instantly cut off any interference
features present in the elastic cotunneling current. We have
confirmed that the salient features of Fig. 4(b) are indeed
reproduced for a simple quinoid type molecule by a full
generalized master equation calculation [49,50] (not shown).

Figure 4(c) shows the zero-bias conductance in three differ-
ent contacting geometries and calculated using, respectively,
DFT, HT, or HF, GW , or ED. More details on the calculations
are given in Appendix B. Whereas all methods agree on
the interference class of AA’ and AB’ configuration, a clear
disagreement arises in BB’ configuration, where HT shows
only one node and DFT and HF both predict no nodes or at best
a single local minimum. Only GW and exact diagonalization
agree on two nodes, consistent with our simple starring
procedure. Interpreting the DFT and HF results as predicting
no nodes, and HT as predicting two degenerate nodes, they
may all be said to give the correct class, but comparing with
GW and ED it is clear that the correct result depends crucially
on a careful consideration of Coulomb interactions, as noted
also in Refs. [51,52]. Calculating Qi within HT correctly
predicts an even interference class, and the degenerate node is
an accidental degeneracy, that will be lifted by interactions as
found by GW and ED, whereas DFT and HF both remove the
node altogether. We note that the DFT results can depend on
the functional being used, and it is conceivable that all three
possibilities (no node, degenerate nodes, or split nodes) can
be observed with different functionals. As illustrated by this
example, our classification scheme serves as a valuable tool
for settling such ambiguities.

IV. TRANSPORT THROUGH A SPIN DOUBLET
GROUND STATE

The previous analysis may be extended to molecules
with degenerate ground states, e.g., π systems with an odd
number of electrons. For such systems the ground state is
usually a spin doublet |�N

0,m〉, here denoted by the spin index
m = ↑,↓. Combining particle and hole amplitudes into the
transport amplitude

A
γσ

m,l(Vg) = h
γσ

m,l(Vg,0) + p
γσ

m,l(Vg,0), (10)

the zero-bias conductance can be written as the sum of three
different terms:

G = 1

2

e2

h
�s�d

∑
σ

(∣∣Aσσ
σ,σ

∣∣2 + ∣∣Aσ̄σ̄
σ,σ

∣∣2 + ∣∣Aσ̄σ
σ̄ ,σ

∣∣2)
, (11)

where σ̄ denotes the opposite of σ , i.e., ↑̄ =↓, and vice versa.
Using the spin-rotation symmetry of the Hamiltonian, a bit of
algebra shows that for doublet ground states

A↑↑
m,m − A↓↓

m,m = ±A
↓↑
↓,↑ for m = ↑ / ↓ . (12)

We can then define the potential scattering amplitude,

W =
∑

σ

Aσσ
↑,↑ =

∑
σ

Aσσ
↓,↓, (13)

and the exchange amplitude,

J = A
↑↓
↑,↓ = A

↓↑
↓,↑, (14)
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in terms of which the zero-bias conductance becomes

G = GW + GJ

= e2

2h
�s�d (|W |2 + 3|J |2). (15)

Clearly an interference dip in the conductance demands
coincident dips in both W and J . In the following we show
that this is generally not possible, since the requirements
for interference in the two are mutually exclusive. Notice
that Eq. (15) corresponds exactly to the conductance for an
effective Kondo model, including both potential scattering and
exchange tunneling terms [53].

A. Interference classification of transport
through alternant hydrocarbons

Here we again restrict the analysis to neutral alternant
hydrocarbons but now with an odd number of orbitals in the
π system, in order to allow for a spin doublet ground state.
The Rushbrooke-Coulson-McLachlan pairing theorem again
allows us to derive a simple starring rule, from which we may
classify interference dips in the two cotunneling amplitudes,
W and J .

Since the classification of the potential scattering QiW =
(−1)is+id is similar to the previously discussed spin singlet
case, we here focus on deriving the classification of the
exchange term, which is generally given as

QiJ =
〈
�

Na

0,σ̄

∣∣ĉ†is σ̄
∣∣�Na−1

0

〉〈
�

Na−1
0

∣∣ĉidσ

∣∣�Na

0,σ

〉
〈
�

Na

0,σ̄

∣∣ĉidσ

∣∣�Na+1
0

〉〈
�

Na+1
0

∣∣ĉ†is σ̄
∣∣�Na

0,σ

〉 , (16)

where we again imply a sum over the possible degeneracy
of the Na ± 1 states. As demonstrated by formula (A16) in
Appendix A, the staggered particle-hole transformation U
used in the pairing theorem ensures that each eigenstate has a
symmetry partner with the opposite spin. For the neutral spin
doublet ground state, that is

U
∣∣�Na

0,σ

〉 = eiγ
Na
σ σ̄

∣∣�Na

0,σ̄

〉
for σ =↑ / ↓ . (17)

These states are of course also related by a spin reversal:

R̂π

∣∣�Na

0,σ

〉 = i
∣∣�Na

0,σ̄

〉
, (18)

where R̂π = exp(iπŜx), which transforms under the antiuni-
tary symmetry transformation U as

UR̂πU† = UeiπSxU† = e−iπSx = R̂π . (19)

From this, a transformation of Eq. (18) readily shows that

ieiγ
Na
σ̄σ

∣∣�Na

0,σ

〉 = −ieiγ
Na
σ σ̄

∣∣�Na

0,σ

〉
, (20)

which in turn implies the following relation between the
doublet phases:

γ
Na

σ σ̄ = γ
Na

σ̄σ + π. (21)

As for the nondegenerate case, we can again use the pairing
theorem to rewrite the FD orbital. With the spin doublet index
on the ground state, one now finds〈

�
Na+1
0,m

∣∣ĉ†is σ̄
∣∣�Na

0,σ

〉
= (−1)i

〈
�

Na

0,σ̄

∣∣ĉ†isσ
∣∣�Na−1

0,n

〉
ei(γ Na

σ σ̄ −γ Na−1
mn ) (22)

and similar for 〈�Na

0,σ̄ |ĉidσ |�Na+1
0,m 〉, which allows the following

simple rewriting of Eq. (16):

QiJ = −(−1)is+id . (23)

As for the nondegenerate case, the phase factors of the virtual
intermediate states cancel, whereas the phases coming from
the transformation of the initial and final Na-electron states,
which now have opposite spin, combine to an extra factor
of −1 due to Eq. (21). This has the important consequence
that QiJ = −QiW for alternant lattices, implying that the two
distinct contributions to the conductance always belong to
different interference classes.

This mutual exclusion of interference, QiJ = −QiW , is
actually more general than this statement for a half-filled
molecule and can be shown to hold for all spin doublet ground
states |�N

0,m〉 as long as the neighboring charge states, N ± 1,
both have spin singlet ground states [54].

B. Interference in transport through a biphenyl molecule

As an example, we show the calculated linear conductance
for a biphenyl molecule with an odd number of electrons
in the neutral π system in Fig. 5. This is an odd-alternant
hydrocarbon, and our starring rules readily show that QiJ =
−QiW = −(−1)is+id , which takes the values 1 and −1, for
entry and exit sites belonging to different or same sublattices,
respectively. That is, entering and leaving the molecule on
alike or disjoint (starred or unstarred) sublattice sites decides
whether W or J has a zero near the middle of the charge state
(see Fig. 5). We note that this is at odds with the interference dip
suggested in Ref. [55] to appear already within a single-orbital
Anderson model, and it seems that the exchange term, J , has
been missed there.

In a single-orbital Anderson model it is always the poten-
tial scattering term, W , which vanishes at the particle-hole
symmetric point [40]. This is consistent with our starring rule,
since that single molecular orbital will necessarily act as both
entry and exit point for the electrons tunneling to and from
the leads, whereby QiJ = −QiW = −1 corresponding to the
odd interference class for W alone. With a molecule allowing
for two distinct entry and exit points, however, we see that the
situation can also be reversed, so as to observe a node in J ,
while W remains finite. This is shown for the BB’-contacted
biphenyl in the right panel of Fig. 5.

A molecule off-resonance with the leads and with a spin
degenerate ground state is known to exhibit the Kondo effect,
manifested as a sudden increase of the zero-bias conductance,
when temperature is lowered past the a characteristic Kondo
temperature, TK [40]. In general, the zero-bias conductance
peak depends not only on interlead cotunneling, encoded in
J , but also on repeated intralead cotunneling, and we shall
defer a more thorough analysis of the intricate interplay of
these processes with interference to a separate publication.
At any rate it is clear that a sharp dip in J when varying
the gate voltage across the relevant charge state should lead
to marked variations in the Kondo conductance peak itself,
whenever the molecule is contacted via different sublattices,
i.e., at one starred and one unstarred site. Unusual gate
dependences of the Kondo conductance peak have indeed been
reported to appear in a number of different single molecule
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FIG. 5. The zero-bias conductance of a biphenyl molecular junction with a spin doublet ground state in two different configurations using
�s�d = 0.01 (eV)2. The dashed arms symbolize possible binding sites between the electrodes and the molecule. Note how the interference
dips appear at different positions for the W and J channels and therefore do not show up in the total current. The configuration in the
right panel shows how the exchange term fills in the dip in the potential scattering amplitude, leaving only a shallow local minimum
near Vg = 0.

devices [27,28,56,57], and with the simple rules offered in this
paper one might revisit these cases to assess any possible
links to a likely contacting geometry. Depending on the
exact contacting geometry, these molecular junctions could
have multiple entry and/or exit points, which will of course
complicate the analysis considerably. Already from the study
of simple two- or three-orbital Anderson models with multiple
orbitals connected to each lead, the appearance of transmission
nodes is known to have a rather nontrivial dependence on the
various parameters [16,17]. Therefore it is only in cases with
a clearly dominating pair of contacting sites that our rules
apply in this straightforward manner. Our approach can of
course be readily generalized to deal with multiple contacting
sites, but clearly the interference problem quickly becomes
rather complicated and requires additional information about
the relevant parameters.

V. CONCLUSION

In conclusion, we have put forth a simple set of rules for
classifying interacting off-resonant single molecule junctions
into two distinct interference classes with either an even
or an odd number of transmission minima. For alternant
hydrocarbons, this classification reduces to a simple starring
rule, with an extension to the spin-degenerate case, which
revealed mutually exclusive interference dips in the competing
potential scattering and exchange amplitudes. This provides
a powerful tool to discriminate between different numerical
results, for which more reliable calculations are not readily
available.

Note that molecular vibrations have been neglected in this
work, and indeed a sufficiently weak electron-phonon coupling
should have little or no influence on the interference aspects
described here, except for new inelastic cotunneling channels
showing up at finite bias [see Fig. 2(c)]. For stronger electron-
phonon coupling, however, one might expect an interesting

interplay between interference nodes and the Franck-Condon
blockade [58], which deserves closer investigation. Both for
this purpose and to investigate more closely the details of
Kondo screening with interference nodes in J , it should
be instructive to study the strong-coupling regime (beyond
leading order in �s,d/ε

p,h

0 ), possibly by means of numerical
or functional renormalization-group (RG) techniques. Already
at the level of perturbative RG, a number of interesting
conclusions can be drawn on Kondo effects in single molecule
junctions. These issues are beyond the scope of the present
paper and will be deferred to a separate publication.
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APPENDIX A: THE PAIRING THEOREM
FOR ALTERNANT HYDROCARBONS

In general we describe the π electrons on the molecule by
the extended Hubbard (or Pariser-Parr-Pople) model, which
we split up into components:

H = ĤT + Ĥε + ĤU + ĤV . (A1)

Here,

ĤT =
∑
ij,σ

tij ĉ
†
iσ ĉjσ + H.c., (A2)

Ĥε =
∑

i

εi n̂i , (A3)
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ĤU =
∑

i

Ui

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
, (A4)

ĤV =
∑
i �=j

Vij (n̂i − 1)(n̂j − 1), (A5)

with n̂iσ = ĉ
†
iσ ĉiσ and n̂i = n̂i↑ + n̂i↓. The molecule consists

of Na atoms, each with a pz orbital, and hence ĉ
†
iσ creates an

electron with spin σ in the pz orbital of atom number i.
The extended Hubbard Hamiltonian has a particular sym-

metry when the molecule can be divided into two subsets,
A and B, of atoms, such that the hopping amplitudes only
connect atoms which belong to different subsets, i.e., tij = 0,
if i and j both are in A or both in B. Such a molecule is called
alternant or bipartite. To understand this symmetry, consider
the antiunitary transformation, which transforms complex
numbers, z, and creation operators as follows:

U(z ĉ
†
iσ )U† = z∗ (−1)i ĉiσ for i = 1 . . . Na. (A6)

Here we use the notation

(−1)i =
{

1 i in A

−1 i in B
. (A7)

The transformation U is then composed of a particle-hole
transformation and an overall sign (−1)i followed by complex
conjugation.

The number operators thus transform asU n̂iσU† = 1 − n̂iσ ,
while the various terms in the Hamiltonian transform as

UĤTU† =
∑
ij,σ

(−1)i(−1)j ĉiσ ĉ
†
jσ = ĤT , (A8)

UĤεU† =
∑

i

εi(2 − n̂i), (A9)

UĤUU† = U
∑

i

(
1

2
− n̂i↑

)(
1

2
− n̂i↓

)
= ĤU , (A10)

UĤVU† =
∑
i �=j

Vij (1 − n̂i)(1 − n̂j ) = ĤV . (A11)

Note that the antiunitary pairing symmetry holds even when
including complex hopping amplitudes through, e.g., the spin-
orbit interaction.

The invariance of ĤT relies heavily on the fact that the
molecule is alternant. The term Ĥε is not invariant. If, however,
the energies εi are independent of i, i.e., all being equal to a
fixed energy ε0, then the transformation is

UĤεU† = Ĥε + 2ε0(Na − N̂e), with N̂e =
∑

i

n̂i . (A12)

The full Hamiltonian now transforms as

UĤU† = Ĥ + 2ε0(Na − N̂e). (A13)

If we finally choose the zero of the one-electron energies
such that ε0 = 0, then the Hamiltonian is invariant under the
transformation (A6).

We have specified how operators transform. We also need
to specify how states in the Hilbert space transform. We only
need to do that for the vacuum state |0〉 and for the completely

filled state |2Na〉 = iσ ĉ
†
iσ |0〉, since all other states can be

obtained from these by application of creation operators and
by use of the superposition principle. The states transform as
follows:

U |0〉 = |2Na〉, U |2Na〉 = |0〉. (A14)

It is easy to show that the last equation is consistent with
the first and with the transformation rules for the creation
operators.

For later use we also introduce the total spin operator. The
spin operator is written in second quantized form:

�S = �

2

∑
iσσ ′

ĉ
†
iσ �τσσ ′ ĉiσ ′ . (A15)

This operator transforms as follows (here the antiunitarity of
U is important):

U �SU† = �

2

∑
iσσ ′

ĉiσ �τ ∗
σσ ′ ĉ

†
iσ ′ = −�S. (A16)

Let us now consider a state with N electrons, |�N 〉. The
transformed state U |�N 〉 will then be a state with 2Na − N

electrons. Let us in particular consider an eigenstate of the
Hamiltonian:

Ĥ
∣∣�N

n

〉 = EN
n

∣∣�N
n

〉
. (A17)

We denote the transformed state∣∣�2Na−N
n

〉 = U
∣∣�N

n

〉
. (A18)

Since the Hamiltonian is invariant under U , this state is also
an eigenstate of Ĥ with the same eigenvalues:

Ĥ
∣∣�2Na−N

n

〉 = EN
n

∣∣�2Na−N
n

〉
. (A19)

In this manner, the staggered particle-hole symmetry encoded
in U implies a pairing between degenerate N -electron and
N -hole states, thus establishing the pairing theorem used in
the main text.

Since the total spin operator �S2 commutes with Ĥ , we
can classify the eigenstates by spin-quantum numbers, S

and M . An energy level with spin S will be 2S + 1 times
degenerate, and so will the transformed level. Furthermore,
if the state |�(N)

n 〉 is an eigenstate of Ŝz with eigenvalue M ,
then the transformed state will be an eigenstate of Ŝz with
eigenvalue −M .

APPENDIX B: DFT AND GW CALCULATIONS

We use DFT as implemented in the GPAW code to provide
a quantum chemical description of charge transport through
molecular junction systems [59]. Molecules were optimized
in the gas phase using the Perdew-Burke-Ernzerhof exchange
correlation (XC) functional [60]. For all calculations the
molecules were attached to the fcc hollow site of Au(111) with
an Au-S bond length of 2.5 Å (1.83 Å above the surface). The
scattering region supercell was modeled using three to four
atomic Au layers on both sides of the molecule with 4 × 4
surface layer atoms. Periodic boundary conditions were used
in the transverse directions and the two-dimensional Brillouin
zone was sampled using 4 × 4 k points. We use semi-infinite
atomistic leads and a double zeta polarized basis set for all
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FIG. 6. (Color online) Relaxed geometry of substituted stilbene
in the AA’ configuration used for DFT calculations.

atoms in both the lead and the scattering region. Au atoms
were frozen in the bulk lattice structure using the DFT derived
lattice constant of a = 4.18 Å.

The transmission is calculated as a function of the energy
E − EF at zero-bias voltage and zero gate [61]. Here EF is the
Fermi energy of the electrons in the leads. We assume that this
energy-resolved transmission is similar to the transmission as
a function of gate voltage as was observed in Ref. [61].

For calculations based on GW and HF we use the same
semiempirical Pariser-Parr-Pople (PPP) model Hamiltonian
as for the exact-diagonalization (ED) results in the main text.
The GW transport method is described in more detail in
Refs. [62–64]. Briefly, the Green’s function of the contacted
molecule is calculated from

Gij (ω) = [ω − H0 − �L(ω) − �R(ω) − �XC(ω)]−1
ij , (B1)

where H0 is the noninteracting part of the Hamiltonian includ-
ing the Hartree potential. �α is the embedding self-energy from
lead α accounting for the coupling to the semi-infinite leads.
The semi-infinite leads are described using a nearest-neighbor
tight-binding chain with a large hopping element tL =
−20 eV, i.e., a featureless wideband lead. The last site of
the semi-infinite tight-binding chains is coupled to the source
s and drain d sites on the molecule, using a hopping element of
ts/d = −√

�|tl|/2. This results in a broadening of the s and d

sites of ∼ �. We use � = 1.0 eV, unless otherwise stated. We
show in Fig. 6 the geometry of the metal-molecule junction
for a thiol linked BB’ derivative of stilbene as used in the DFT
calculation.

The self-energy is evaluated either using the Hartree-Fock
or the GW approximation. We evaluate the GW self-energy
fully self-consistently ensuring that conservation laws, such as
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FIG. 7. (Color online) Low-bias differential conductance as a
function of gate potential for the benzoquinoid structure. The dashed
and solid lines denote the LB and Meir-Wingreen results, respectively.

charge conservation, are fulfilled. The energy dependence of
G and �XC is sampled on a uniform grid ωn = εn + iη, where
η = 0.001 eV is an infinitesimal and εn ranges from −100 to
100 eV, with a spacing of η/2 = 0.0005 eV.

Transport properties are for the DFT and GW methods
calculated using the Landauer-Büttiker (LB) transmission
formula expressed in terms of Green’s functions:

τ (ε) = Tr[Gr (ε)�L(ε)Ga(ε)�R(ε)], (B2)

where �α = i(�r
α − �a

α) is given in terms of the lead α

self-energy �α . We calculate the conductance in the zero-bias
voltage limit as G = G0

∫
[−n′

F (ε,T )]τ (ε)dε, where n′
F (ε,T )

is the derivative of the Fermi function with respect to energy. T
is the temperature and G0 = 2e2/h is the quantum of conduc-
tance, where h and e are Planck’s constant and the electronic
charge, respectively. For the benzene-quinoid structure, we
have verified that a calculation of the low-bias dI/dV as a
function of a gate voltage Vg in the GW approximation, where
the current is obtained using the Meir-Wingreen formula [65],
gives the same destructive interference features as using the LB
transmission function expression. The comparison between
the LB transmission and the dI/dV obtained with the full
Meir-Wingreen expression is shown in Fig. 7 for two different
values of the broadening parameter � as indicated in the
legends.
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J. Nygård, Nat. Phys. 2, 460 (2006).
[32] C. A. Coulson and G. S. Rushbrooke, Math. Proc. Cambridge

Philos. Soc. 36, 193 (2008).
[33] A. D. McLachlan, Mol. Phys. 2, 271 (1959).
[34] A. D. McLachlan, Mol. Phys. 4, 49 (1961).
[35] J. A. Pople, J. Chem. Soc. Faraday Trans. 49, 1375 (1953).
[36] R. Pariser and R. G. Parr, J. Chem. Phys. 21, 767 (1953).
[37] K. Ohno, Theor. Chem. Acc. 227, 219 (1964).
[38] Z. G. Soos and S. Ramasesha, Phys. Rev. B 29, 5410 (1984).
[39] T. Siro and A. Harju, Comput. Phys. Commun. 183, 1884 (2012).
[40] H. Bruus and K. Flensberg, Many-Body Quantum Theory in

Condensed Matter Physics, 1st ed. (Oxford University Press,
New York, 2004).

[41] G. Begemann, S. Koller, M. Grifoni, and J. Paaske, Phys. Rev.
B 82, 045316 (2010).

[42] T. Tada and K. Yoshizawa, ChemPhysChem 3, 1035 (2002).
[43] T. Tada and K. Yoshizawa, J. Phys. Chem. B 107, 8789 (2003).
[44] T. Tada, D. Nozaki, M. Kondo, S. Hamayama, and K. Yoshizawa,

J. Am. Chem. Soc. 126, 14182 (2004).

[45] K. Yoshizawa, T. Tada, and A. Staykov, J. Am. Chem. Soc. 130,
9406 (2008).

[46] D. A. Lovey and R. H. Romero, Chem. Phys. Lett. 530, 86
(2012).

[47] E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).
[48] An antiunitary operator is not linear, and to alleviate this problem

one can write the transformed state U |a〉 = |Ua〉. Then the an-
tiunitarity implies that 〈Ua|Ub〉 = 〈b|a〉, which can be applied
multiple times to show that 〈a|Ô|b〉 = 〈Ub|(UÔU†)†|Ua〉. This
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