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Signatures of localization in the effective metallic regime of high-mobility Si MOSFETs
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Combining experimental data, numerical transport calculations, and theoretical analysis, we study the
temperature-dependent resistivity of high-mobility two-dimensional (2D) Si MOSFETs to search for signatures
of weak localization induced quantum corrections in the effective metallic regime above the critical density
of the so-called two-dimensional metal-insulator transition (2D MIT). The goal is to look for the effect of
logarithmic insulating localization correction to the metallic temperature dependence in the 2D conductivity so
as to distinguish between the 2D MIT being a true quantum phase transition versus being a finite-temperature
crossover. We use the Boltzmann theory of resistivity including the temperature-dependent screening effect on
charged impurities in the system to fit the data. We analyze weak perpendicular field magnetoresistance data
taken in the vicinity of the transition and show that they are consistent with weak localization behavior in the
strongly disordered regime kF � � 1. Therefore, we supplement the Boltzmann transport theory with a logarithmic
in temperature quantum weak localization correction and analyze the competition of the insulating temperature
dependence of this correction with the metallic temperature dependence of the Boltzmann conductivity. Using
this minimal theoretical model, we find that the logarithmic insulating correction is masked by the metallic
temperature dependence of the Boltzmann resistivity and therefore the insulating ln T behavior may be apparent
only at very low temperatures which are often beyond the range of temperatures accessible experimentally.
Analyzing the low-T experimental Si MOSFET transport data, we identify signatures of the putative insulating
behavior at low temperature and density in the effective metallic phase.
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I. INTRODUCTION

Si metal-oxide-semiconductor field effect transistors (Si
MOSFETs) support a highly conductive two-dimensional
electron gas (2DEG) system where coupling to a metallic
gate allows tuning of electron density in the 2DEG over a
wide range. Decreasing density can drive the 2DEG from
a highly conductive “metallic” state to a highly resistive
“insulating” state [1]. Intense theoretical and experimental
research over several decades suggested a number of possible
physical mechanisms underlying such behavior in 2DEGs
depending on microscopic details of the structure. The subject
of the 2D metal-to-insulator transition (2D MIT) arising from
the gate-induced tuning of the 2D carrier density is still an
active area of research [2], particularly in the context of high-
quality (i.e., high-mobility) 2D systems where the transition
occurs at relatively low critical density where electron-electron
interaction effects may play an important role. In particular, the
specific question of whether the density-tuned 2D MIT is or is
not a zero-temperature quantum phase transition, as opposed
to a crossover from a high-density apparent metallic phase
to a low-density insulating phase, has been much debated
in the recent literature [2]. If the 2D MIT turns out to be a
true quantum phase transition rather than a finite-temperature
crossover, one immediate important implication would be
that the high-density 2D metallic phase must necessarily be
a non-Fermi liquid because a noninteracting 2D disordered
Fermi liquid is an insulator at T = 0 [2,3].

Early measurements of 2D resistivity in low density Si
MOSFETs showed good agreement with the scaling theory of
Anderson localization originating from quantum interference
of electrons scattered by random disorder potential (see

Refs. [1,2], and references therein). The theoretical argument
[3] relies on the scaling theory of localization that shows
that the system-size-independent semiclassical Boltzmann (or
Drude) resistivity ρB in two dimensions is overpowered by
the logarithmic quantum correction ∼ 1

π
ln L

�
(in units of h/e2)

arising from quantum interference of diffusing electrons, here
L is the system size and � is the electron mean free path. As
a result, in the thermodynamic limit all states are localized
[3] in a 2D orthogonal class system (preserving time-reversal
and spin-rotation symmetries). This result, that all disordered
2D systems are insulating at T = 0 in the infinite-system-size
limit, was initially derived for noninteracting electrons, but
is universally thought to be valid in the presence of weak
electron-electron interaction. Boltzmann resistivity can be
varied by tuning the electron density in the 2DEG resulting
in a tunable apparent metal-insulator transition which occurs
when the system size L = ξ equals a characteristic localization
length at which the quantum correction equals the Boltzmann
part of the resistivity ρB ∼ h/e2. This is of course a finite-
system-size induced crossover (and not really a transition)
from an effective apparent 2D metallic phase for L � ξ

to an insulator for L � ξ . Experimentally, however, the
system-size induced transition is impractical to implement,
and one uses carrier density to tune the effective localization
length. This is possible because the effective localization
length ξ ∼ � exp(πkF �/2) depends on the underlying 2D
carrier density through kF and through the density-dependent
mean-free path �, and thus the 2D MIT can be tuned by
changing the carrier density leading to a critical density
defining the crossover between the effective metal and the
strongly localized insulator.

1098-0121/2014/90(12)/125410(9) 125410-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.125410


DAS SARMA, HWANG, KECHEDZHI, AND TRACY PHYSICAL REVIEW B 90, 125410 (2014)

In realistic experiments, there are inevitably inelastic
scattering processes that limit the coherent diffusion of
electrons and introduce a temperature-dependent dephasing
length Lϕ ∼ T −p/2. This dephasing length limits the effective
system size in the scaling theory of localization providing a
temperature-dependent length scale cutoff (i.e., the system size
gets replaced by the dephasing length in the scaling theory)
which results in a logarithmic temperature dependence of the
quantum correction to resistivity. Therefore, in a resistivity
measurement, the metal-insulator transition is evidenced by
the qualitative change in the temperature dependence of
resistivity with changing electron density from a metallic (or,
strictly speaking, weak localization) dependence ρ−1(T ) ≈
ρ−1

B − const × ln T to an exponential insulating dependence
ρ(T ) ∼ exp[( T0

T
)α], characteristic of hopping or activated

conduction, with some nonuniversal scale T0 and α = 1
3 , 1

2 ,1
depending on the details. The presence of weak Coulomb
interaction is not expected to change the character of the
quantum correction (at least from the point of view of the
perturbation theory in the high-density regime) and only
affects the coefficient in front of ln T due to the additional
scattering of electrons on Friedel fluctuations of density around
impurities [4–10] (the so-called Altshuler-Aronov effect).

By contrast, high-mobility Si MOSFETs μ �
20 000 cm2/Vs as well as a number of other high-mobility
2DEGs seem to demonstrate a qualitatively different
dependence of resistivity ρ(T ,n) on electron density n

and temperature [2]. In these samples, the low-density
conductivity has the standard insulating exponential
temperature dependence. However, with increasing density
the temperature dependence of resistivity gradually changes
from exponential insulating behavior dρ/dT < 0 to a
metallic-type dρ/dT > 0 dependence [2,11–19] without
any obvious manifestation of the ln T behavior on the
metallic side. Thus, there exists a range of densities where
at the lowest accessible temperatures only a metallic
temperature dependence is observed dρ/dT > 0. Actually,
this metallic temperature dependence (i.e., dρ/dT > 0)
typically saturates at low temperatures (T � 100 mK) with
the resistivity generically becoming temperature independent
(i.e., dρ/dT = 0) at low enough temperatures for all 2D
effectively metallic samples. Whether this low-temperature
resistivity saturation (with the actual value of the saturated
low-temperature residual resistivity being dependent on the
carrier density) is a fundamental phenomenon arising from
some incipient low-energy cutoff suppressing the effective
metallicity or is just a trivial manifestation of electron heating
effect (where the carrier temperature saturates and no longer
decreases with the decreasing lattice temperature) is not
known definitively.

In addition to this low-temperature resistivity saturation,
there is a higher-temperature anomaly in the metallic behavior
also; typically, the 2D metallic resistivity ρ(T ) starts de-
creasing (i.e., dρ/dT < 0) at some density-dependent “high”
temperature (1–10 K) after manifesting the metallic (i.e.,
dρ/dT > 0) behavior and before phonon scattering effects
take over at still higher temperatures. The combination of
metallic (i.e., dρ/dT > 0) behavior at low temperatures and
insulating (i.e., dρ/dT < 0) behavior at intermediate temper-
atures coupled with phonon-induced metallic behavior (i.e.,

dρ/dT > 0) at still higher temperatures could lead to a rather
interesting nonmonotonicity in ρ(T ) on the metallic side of the
2D MIT at low carrier densities, and has been well studied in
the literature [20]. The higher-temperature effective insulating
behavior in the metallic phase is thought to arise from a
quantum-classical crossover phenomenon in the 2D system
occurring on the scale of the Fermi temperature (∝n) which
could be low (�10 K) at the low carrier densities of interest
for the 2D MIT phenomena [21]. We will not much discuss
this temperature-induced quantum-classical high-temperature
transition from metallic to insulating behavior in this paper,
concentrating instead on the density-induced 2D MIT transi-
tion at low temperatures. The sign of the derivative switches
from insulating to metallic at a value of resistivity of the
order of the resistance quantum ρ ∼ h/e2, i.e., at the value at
which a transition to strong localization behavior is predicted
by the scaling theory. On the metallic side of this transition,
where dρ/dT > 0, the resistivity increases sharply by a factor
of �2–3 with growing temperature at lower carrier density
staying within the metallic phase. This pronounced tempera-
ture dependence diminishes with growing density deeper in
the metallic regime. Standard ln T quantum corrections are
observed at high densities where the metallic temperature
dependence is weak [10,22,23]. By contrast, in the vicinity
of the metal-insulator transition, logarithmic corrections are
typically not observed within the experimentally accessible
temperature range. This qualitative change in the temperature
dependence of 2D resistivity driven by electron density is
routinely called a metal-insulator transition in the literature and
we will use this convention in the following despite the ongoing
debate about the existence or not of an actual thermodynamic
phase transition at this point [2]. Our view in the current work
is based on the assumption that the 2D MIT is a crossover
phenomenon with the ln T behavior suppressed by the strong
metallic temperature dependence of the Drude-Boltzmann
resistivity at lower metallic densities. We will critically test this
assumption in this paper by comparing theory and experiment
in the density- and temperature-dependent transport data in
high-mobility Si MOSFETs.

An important distinction between low- and high-mobility
samples is in the relative strength of Coulomb interactions. The
presence of weaker disorder in high-mobility structures allows
for metallic behavior to persist down to very low densities
n ∼ 1011 cm−2 which correspond to very small values of
Fermi energy and thus large values of the density-dependent
dimensionless interaction strength in the system which may
be as large as rs ≡ 1/

√
πna2

B ∼ 10. Here, aB = �κ/(me2)
is the effective Bohr radius of electrons in the 2DEG, κ

being the background dielectric constant. We note, however,
that even high-density Si MOSFETs, which were extensively
studied [1] before the current interest arose in the 2D
MIT phenomena, have a dimensionless interaction strength
rs > 1, and 3D metals all have rs ∼ 4–7. Thus, it is not
manifestly clear that interaction by itself is the sole physical
mechanism underlying the 2D MIT phenomena. Perhaps an
even more important aspect of high-mobility 2D samples
in the context of strong metallic temperature dependence of
resistivity is that, by having a relatively low critical density
distinguishing the metallic and the strongly insulating regimes
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by virtue of low-sample disorder (and hence high-sample
mobility), the Fermi temperature (TF ∝ n) is low (∼1–10 K)
in high-mobility samples in the metallic regime. Then, the
low-temperature regime (T ≈ 0.1–5 K) where the 2D metallic
behavior manifests itself (i.e., large positive dρ/dT ) has
effectively large values of the dimensionless temperature
T/TF ∼ 1. By contrast, 3D metals, which are also strongly
interacting electron systems by virtue of having rs � 1 have
very low dimensionless effective temperature T/TF ∼ 10−4,
by virtue of TF ∼ 104 K in metals. The large effective values
of T/TF also distinguish the high-mobility 2D systems from
the low-mobility 2D systems where the Fermi temperature is
TF � 100 K in the metallic phase and thus T/TF ∼ 10−2–10−3

in the low-temperature experimental regime.
Extensive theoretical work demonstrated that all of the

observed features of the temperature dependence of resistivity
on the metallic side of the metal-insulator transition can
be successfully described extrapolating from high densities
(and coincidentally low interactions strength) and using a
Boltzmann transport theory which includes the temperature-
dependent screening [21,24,25] of charged impurities. The
metallic increase of the resistivity with growing temperature
is explained by a decreasing efficiency of screening by the elec-
tron gas of charged impurities with growing temperature. The
large effective value of T/TF explains the experimentally
observed large dρ/dT in the metallic phase. This suggests
that the standard Fermi-liquid theory may explain the unusual
temperature and density dependence of resistivity in high-
mobility Si MOSFETs. However, the Fermi-liquid theory also
predicts the presence of quantum corrections giving rise to
ln T behavior which are not observed experimentally in the
vicinity of the metal-to-insulator transition. The observation
and analysis of these ln T corrections would allow us to
continuously connect the low-density strong interaction and
strong disorder regime to the weakly interacting high-density
Fermi-liquid regime where the Boltzmann theory is valid.
There may be a simple conventional explanation for the
absence of quantum corrections in the data. Analyses of
the high-density data [22,23,26,27] where ln T is observed
suggest that at low densities in high-mobility samples the
temperature at which ln T would become apparent may be
beyond the measurement temperatures because of electron
heating [27,28]. Our approach in this paper is a straightfor-
ward phenomenological approach where we assume that the
metallic transport has contributions from both the screening-
induced semiclassical metallic temperature dependence and
the weak localization induced quantum ln T temperature
dependence. The strong metallic temperature dependence of
the resistivity completely overwhelms the ln T insulating
correction at higher temperatures with the logarithmic correc-
tion eventually manifesting itself at some density-dependent
low temperatures which might very well be inaccessible to
experimental measurements due to electron heating problem.
We also present experimental transport data on 2D MIT in Si
MOSFET samples which are consistent with the presence of
both screening-induced metallic temperature dependence and
quantum weak localization correction.

In this paper, we present experimental resistivity data
taken on two high-mobility Si MOSFETs demonstrating
2D metal-insulator transition. We construct a microscopic

Boltzmann theory of resistivity in Si MOSFETs that includes
the effect of temperature-dependent screening of charged
impurities by the electron gas. We use this model to fit the
metallic temperature dependence observed in the data. We then
construct a minimal additive model describing the competition
between this metallic temperature dependence of resistivity
and the insulating temperature dependence due to the quantum
correction. Using this model, we determine the temperatures
at which the quantum correction to resistivity is expected to
dominate the experimental data which turn out to be beyond
the range of the current experiments. We also discuss the
magnetoresistance data on the two samples in the vicinity of
the transition and show that they are qualitatively consistent
with weakly interacting localization theory suggesting that the
standard Fermi-liquid theory could be sufficient to describe
the temperature dependence of the transport properties in
high-mobility Si MOSFETs.

II. DESCRIPTION OF THE EXPERIMENT

We consider the transport data on two Si MOSFET
samples with relatively high mobility: sample A (μ = 1.5 ×
104 cm2/Vs) and sample B (μ = 104 cm2/Vs). The resistivity
temperature dependence at various carrier densities is shown
in Fig. 1. At the lowest densities, an insulating exponential
temperature dependence is observed. This insulating behav-
ior dρ/dT < 0 gradually loses exponential character with
increasing density. At higher densities, the temperature depen-
dence of resistivity becomes nonmonotonic: with increasing
temperature, the resistivity drops down to a minimum value
and then rises up dρ/dT > 0 to a maximum before gradually
sloping downwards. There is a range of densities at which at the

FIG. 1. (Color online) Resistivity as a function of temperature
for sample A and B plots [(a) and (c)] and [(b) and (d)], re-
spectively, showing zoom-in of the low-temperature region in (c)
and (d). Different lines correspond to different carrier density n

in units of 1011 cm−2 (from top to bottom): in (a) and (c) n =
1.07, 1.10, 1.13, 1.20, 1.26, 1.32, 1.38, 1.44, 1.50, 1.56, 1.62, and
1.68; in (b) and (d) n = 1.52, 1.70, 1.88, 2.05, 2.23, 2.41, 2.76, 3.11,

and 3.46. Plot (a) is reproduced from Ref. [29].
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FIG. 2. (Color online) Black squares and red circles correspond
to the maximum and minimum of the measured resistivity ρ(T ) in
Fig. 1, respectively.

lowest accessible temperatures there is no sign of the insulating
rise of the resistance or ln T metallic correction. This form of
temperature dependence ρ(T ) is typical in high-mobility Si
MOSFETs [11–18]. We point out, as is obvious from Figs. 1(c)
and 1(d) where the resistivity is shown on an expanded
temperature scale, the insulating temperature dependence is
suppressed gradually as density increases and there is really no
absolutely sharp density distinguishing metallic and insulating
behaviors.

In Fig. 2, we track the evolution with electron density
of the temperatures at which the maximum and minimum
of the resistivity are reached. Red circles here correspond to
the low-temperature resistivity minimum which signifies the
onset of insulating behavior. The black squares correspond to
the high-temperature maximum of the resistivity. Our interest
in this work is mostly on the red circles which provide the
temperature at which the metallic temperature dependence
is just being overcome by the quantum localization effect
on the effective metallic side of the 2D MIT. We note that
as expected this characteristic temperature for the resistivity
minimum is rather low and it increases with decreasing density
as localization effects become more important quantitatively.
The black squares in Fig. 2, indicating the resistivity maxima in
ρ(T ) as a function of carrier density, provide the characteristic
temperature for the high-temperature quantum-to-classical
crossover in the 2D transport as discussed in Sec. I. This
quantum-classical crossover typically occurs on the scale
of the Fermi temperature (typically around T ∼ TF /2) and
therefore decreases with decreasing carrier density. The region
in-between the red circles and the black squares is the putative
2D effective metallic phase where the metallic temperature
dependence with dρ/dT > 0 is manifested in 2D transport. We
note that in the high-mobility samples, the regime (below red
circles) showing ln T weak localization behavior is strongly
suppressed by the metallic temperature dependence arising
from other physical mechanisms.

III. BOLTZMANN THEORY

Strong disorder and strong interaction low-density regime
is difficult to address theoretically. Boltzmann theory allows us
to quantitatively describe mobility dependence on the electron
density in a wide density regime (of not too low densities so that
one is away from the strongly localized regime). The model
of disorder describing the density dependence of mobility

is a combination of random charged impurities and surface
roughness [1]. This Boltzmann theory quantitatively agrees
with mobility measurements in a wide density range in the
high-density metallic regime [29]. It is therefore natural to
extrapolate this theory to the low-density regime of strong
disorder and interaction. At very low densities, the effect of
surface roughness is negligible and the resistivity is completely
dominated by charged impurities [1]. In the following, we
neglect the effect of surface roughness, but our results do not
change if surface roughness is included in the theory since
it has little quantitative effect on transport at the low carrier
densities of interest in this work.

Boltzmann conductivity σB is given by

ρ−1
B ≡ σB = ne2〈τ 〉/m, (1)

where n is the electron density, m is the effective mass of
electrons, and the average transport time 〈τ 〉 reads as

〈τ 〉 ≡
∫

dE τ (E)E
(
− ∂f

∂E

)
∫

dE E
(
− ∂f

∂E

) . (2)

Here, the impurity-averaged relaxation time τ (E) is given by

1

τ (Ek)
= 2π

�

∑
α,k′

∫ ∞

−∞
dz Ni(z)|u(k − k′; z)|2

×(1 − cos θkk′)δ(Ek − Ek′), (3)

where the standard parabolic energy dispersion is assumed for
Ek , Ni(z) is the 3D charged impurity density, and u(q; z) is the
2D Fourier transform in the plane of the 2DEG of the impurity
potential screened by the electron gas,

u(q; z) = 1

ε(q)

2πe2

κq
Fimp(q; z), (4)

where κ is the background dielectric constant, and Fimp(q; z)
is a form factor depending on the microscopic details which
are known [1]. In the strictly 2D limit, an impurity charge
located a distance d away from the 2DEG is described by a
form factor Fimp = e−qd . The screening effect is characterized
by the dielectric function ε(q) calculated in the random phase
approximation (RPA) [1].

The resulting theory fits well (see Fig. 3) the strong non-
monotonic temperature dependence of the metallic resistivity

FIG. 3. (Color online) Boltzmann resistivity theory for parame-
ters of sample A (from fitting) combined with the weak localization
correction (7). Numbers on the plot correspond to the electron
density in units of 1011 cm−2. The right panel shows a zoom-in on a
low-temperature region in the left panel.
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at low densities [21,24]. To reproduce the experimental data,
we adjust the density of impurities and their locations in
the oxide layer in a narrow range of values as free-fitting
parameters and the resulting model reproduces the functional
dependence of the resistivity on temperature and electron
density in the 2DEG. We mention that the oxide impurity
charge density and their spatial distribution necessary to get
agreement between the theory and the experimental resistivity
data are very reasonable (and independently confirmed by
capacitance measurements). The details of this comparison
between theory and experiment for our samples are given in
Ref. [29] and not repeated here. The nonmonotonicity of the
temperature dependence of resistivity as a function of density
can therefore be explained within this model: with increasing
temperature screening becomes less effective and as a result
the resistivity increases. The increase in resistivity can be by
a factor 2–3 in this regime due to the temperature-induced
weakening of the screening effect which explains the observed
metallic temperature dependence. At higher temperatures,
the quantum-to-classical crossover results in the decreasing
resistivity with temperature at T/TF ∼ 1. The theoretical
details of the screening model for the 2D resistivity and the
corresponding comparisons with experimental “metallic” tem-
perature dependence of transport properties have already been
discussed extensively in earlier references [20,21,24,25,29]
and will not be repeated here. We mention, however, that
none of these earlier references included the weak localization
effect into consideration (as we do in this work) assuming the
effective metallic behavior to dominate the transport properties
completely.

Extrapolation to the strong interaction regime makes sense
since the random phase approximation (RPA) is given by a
subset of the most divergent diagrams which therefore may
dominate even at strong interactions [21,24]. Extrapolation
of Boltzmann theory to low density and strong interaction
may be successful as it describes short-range phenomena ��

(where � is the mean-free path) as opposed to localization
physics and localizing interaction correction originating from
the diffusive length scales ��. Boltzmann theory therefore
may describe the case of strong dephasing and/or high
temperature. In particular, the fact that the effective tem-
perature is high (i.e., T/TF ∼ 1) in the low-density high-
mobility samples makes 2D MIT a high-temperature crossover
phenomenon where interaction effects are likely to be strongly
suppressed by temperature. We note here (as can be seen
in Fig. 1) that at very low temperatures, the temperature
dependence of the metallic resistivity invariably saturates,
thus making the 2D MIT an effectively high-temperature
phenomenon.

IV. MAGNETORESISTANCE

A strong indication of a Fermi-liquid behavior in the strong
disorder and strong interaction regime near the metal-insulator
transition is the observation of weak perpendicular field
magnetoresistance which is a smoking gun signature of the
weak localization physics. Magnetoresistance data taken on
sample A (see Fig. 5 in Ref. [29]) were fitted using the stan-
dard digamma function expression for the weak localization

theory

δρ

ρ2
= −αgvG0

[
�

(
1

2
+ τB

τ

)
− �

(
1

2
+ τB

τϕ

)]
, (5)

where τB ≡ �/(4eBD), G0 = e2

2π2�
, B stands for the perpen-

dicular magnetic field, D the diffusion coefficient, gv the valley
degeneracy factor. The coefficient α along with the dephasing
time τϕ are used as fitting parameters with the best fit achieved
with α ≈ 0.25 and τϕ = 33,32, and 28 ps for electron densities
n = 1.45,1.51, and 1.63 × 1011 cm−2 at T = 0.1 K (gv = 1
is assumed in the fits).

In this low-density regime of these measurements the resis-
tivity is high ρ � h/e2, which suggests kF � � 1, whereas the
standard weak localization theory is really valid for kF � � 10.
Therefore, extra care has to be taken when interpreting these
results and quantum corrections of higher order in 1/(kF �)
may have to be considered going beyond the usual weak
localization theory. The key effect of the higher-order terms is
in lowering the prefactor in front of the magnetoresistance
expression (5) from α = 1 to α ≈ 1 − β(G0ρ), with β a
degeneracy factor depending on the intervalley scattering in
the system. This reduction in α is a result of the two-loop
correction to noninteracting weak localization theory [30].
Also, an additional magnetoresistance due to electron-electron
interactions may enhance the reduction of the prefactor with
the combined effect leading to α ≈ 1 − 2β(G0ρ), as discussed
in Ref. [30].

Intervalley scattering due to the short-range scattering may
suppress the valley degeneracy factor gv in front of the
magnetoresistance in Eq. (5). The effect of intervalley scat-
tering on magnetoresistance was analyzed in great detail using
high-density measurements in high-mobility Si MOSFETs in
Ref. [31]. The typical intervalley scattering times extracted
from these measurements are in the range 1 ps � τv � 20 ps.
Comparing the typical values of τv with the dephasing time
τϕ ∼ 30 ps in our samples extracted from our measurements
we conclude that τv/τϕ � 1 and valley mixing is relatively
strong and the effective degeneracy factor is expected to
be in the range 1 � gv in Eq. (5). This means that the
fitting parameter αgv = 0.5 in Eq. (5) signifies a reduction
of the magnetoresistance amplitude by at least a factor of
2, and probably more. This suggests that the data in our Si
MOSFETs are qualitatively consistent with the detailed theory
[30] of quantum corrections in a weakly interacting strongly
disordered Fermi liquid in the presence of strong intervalley
scattering (which may arise from the surface roughness at
the Si-SiO2 interface providing short-range scattering). This
agreement has to be taken with a grain of salt as the interaction
strength in the low-density regime may not be small. Never-
theless, similar magnetoresistance behavior was observed in
other high-mobility Si MOSFET measurements [32] and other
2DEGs [33–35] giving us confidence in this conclusion.

Experimental values of the magnetoresistance cutoff ex-
tracted from the fitting procedure give a dephasing time
τϕ(0.1 K) ∼ 30 ps in our sample, which is an order of
magnitude shorter than the value expected due to inelastic
electron-electron scattering in the diffusive regime [4,5,36]

τ

τϕ

= γ
kBT

EF

ln g, (6)
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where γ is a factor of the order unity. Despite the low-mobility
2D devices showing quantitative agreement with the dephasing
rate due to inelastic electron-electron interaction [37,38] in
Eq. (6), and also high-density high-mobility devices showing
quantitative agreement with the dephasing rate formula [31],
low-density measurements routinely manifest an order of mag-
nitude shorter dephasing times than predicted by Eq. (6) [32],
which cannot be explained by simple deviations [30] from Eq.
(6) at strong disorder kF � ∼ 1. The same enhanced dephasing
rate is also routinely observed in other 2DEGs [33–35]. It
seems likely that either there is an additional dephasing mech-
anism responsible for such short dephasing rates or the magne-
toresistance is cut off by the localization length. At low values
of kF � � 1, the localization length ξ ≈ � exp (πkF �/2) be-
comes comparable to the dephasing length. It has been shown
theoretically that Eq. (5) is applicable even for ξ < Lϕ as
long as kF � > 1. However, the meaning of the dephasing rate
extracted from the data is different in this regime since the
localization length cuts off the magnetoresistivity instead of
dephasing [30]. This may cause a saturation in the temperature
dependence of the dephasing rate. It is, in principle, also
possible that the dephasing rate at very low carrier density is
dominated by the physics of density inhomogeneity [39] (i.e.,
disorder-induced puddles) not included in the theory leading
to Eq. (6).

V. TEMPERATURE DEPENDENCE OF RESISTIVITY
WITHIN THE FERMI-LIQUID MODEL

High-density measurements identified standard ln T quan-
tum correction to 2D resistivity [22,23,32]. It is therefore
natural to expect that, since the Boltzmann theory can be
continuously extended to low densities, the ln T correction
is present in the system at all densities in addition to the
Boltzmann contribution. The presence of weak field magne-
toresistance discussed above is an additional argument in favor
of the Fermi-liquid behavior at low densities near the metal-
insulator transition. Therefore, we assume the presence of
ln T quantum correction to the Boltzmann resistivity up to the
onset of the strongly insulating behavior [22,26,27]. However,
with decreasing electron density, the metallic temperature
dependence of the Boltzmann resistivity becomes pronounced.
As a result, there is a competition between the insulating
and metallic temperature dependence at low densities which
are simultaneously present since they arise from distinct
microscopic mechanisms. We consider the minimal model
of transport that describes this behavior, including both
semiclassical Boltzmann contribution and the quantum weak
localization contribution

ρ(T ) = 1

ρ−1
B (T ) + σWL(T )

, (7)

where ρB(T ) is the temperature-dependent Boltzmann resis-
tivity given by Eq. (1). The quantum correction to conductivity
in Eq. (7) is given by the standard theory

σWL = −gvG0
1

2π
ln

τϕ

τ
. (8)

Figure 3 shows the calculated temperature and density
dependence of the resistivity for the parameters extracted

FIG. 4. (Color online) Black squares and red circles correspond
to maximum and minimum of ρ(T ) in Eq. (7). Inset shows
temperature at the minimal value of resistance as a function of electron
density.

from the fits of the data for sample A. In Fig. 4, we
present the theoretical results corresponding to those shown
in Fig. 2. It is clear that the theoretical results in Fig. 4
closely resemble the experimental results shown in Fig. 2
for sample A, thus demonstrating that 2D MIT may indeed
be a crossover phenomenon. Here, the logarithmic correction
becomes apparent only below the experimentally accessible
temperatures T ∼ 0.1 K, which is qualitatively similar to the
experimental situation.

In Fig. 5, we present the theoretical calculation for the
parameters corresponding to the experimental sample B, which
qualitatively simulates the experimental results for sample B
shown in Figs. 1(b), 1(d), and 2(b). Comparison of Figs. 1 and 2

FIG. 5. (Color online) Theoretical results for resistivity as a
function of temperature for parameters of sample B showing a
zoom-in of the low-temperature region in (b) of the results in panel (a).
(c) Red circles and black squares correspond to numerical calculation
of the minimum and maximum in the temperature dependence of
resistivity for sample B, respectively.
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with Figs. 3–5 establishes that the crossover picture of 2D MIT
is valid qualitatively (and probably even quantitatively), i.e.,
both the screening-induced metallic temperature dependence
and the quantum weak localization temperature dependence
are present in the resistivity.

VI. DISCUSSION AND CONCLUSION

In this paper, we present experimental and theoretical
results for the density-dependent low-temperature transport
properties of high-mobility 2D Si MOSFETs manifesting the
2D MIT phenomena with the critical goal of searching for the
possible presence of the quantum weak localization (i.e., ln T )
corrections to the resistivity on the apparent metallic side of the
so-called 2D metal-insulator transition. Our detailed analyses
of the experimental transport data indicate the existence of
a resistivity minimum at a density-dependent characteristic
low temperature in the effective metallic regime. The exis-
tence of this characteristic temperature, with resistivity ρ(T )
increasing with both increasing and decreasing temperature
away from this minimum, points to the presence of two
competing transport mechanisms in the system with one
being “metallic” (i.e., dρ/dT > 0) and the other “insulating”
(i.e., dρ/dT < 0) which balance each other at this low-T
resistivity minimum with the localization effect dominating
at still lower temperatures. We identify the two competing
mechanisms to be the temperature-induced reduction of
screening (leading to the metallic dρ/dT > 0 behavior) and
the quantum interference induced weak localization contribu-
tion (leading to the ln T weak localization correction with
dρ/dT < 0) which dominate, respectively, the higher and
the lower temperature sides of the resistivity minima. We
find that the minimum occurs mostly at temperatures which
are experimentally inaccessible in high-mobility samples
(due to perhaps the well-known electron heating problem in
2DEG semiconductors), thus providing a possible explanation
for why most experimental measurements in high-mobility
samples do not manifestly show the ln T insulating behavior
at low temperatures in the metallic regime. We believe that
the ln T weak localization behavior would routinely show up
in the metallic transport properties of high-mobility samples
if much lower experimental electron temperatures can be
achieved in future measurements. In fact, our work indicates
that the most straightforward experimental technique to search
for signatures of localization in the metallic regime of high-
mobility 2D semiconductor systems is to look for extrema
in the resistivity ρ(T ) at a fixed density n by numerically
obtaining the solutions of dρ/dT = 0 in the experimental
ρ(T ,n) data at fixed density. The low-temperature minima in
the resistivity would correspond to the temperature at each
density below which localization correction dominates the
semiclassical metallic temperature dependence. Depending on
the carrier density, this minimum could lie at inaccessibly low
temperature, but there still should be some signatures for the
minima in the data. As observation of this low-temperature
density-dependent minima (Fig. 2 in our samples) in the
transport data indicates that the 2D MIT is a crossover and
not a true quantum phase transition, and the absence of
a manifest ln T weak localization effect in the resistivity
is simply a feature of the insulating localization correction

being overwhelmed by a strong metallic temperature depen-
dence in the semiclassical Drude-Boltzmann resistivity as
our theoretical results in Figs. 3–5 clearly demonstrate. The
excellent qualitative agreement between our theory and our
experiment is a strong evidence in favor of 2D MIT being
a crossover phenomenon. The possibility of 2D MIT being
a Fermi-liquid crossover phenomenon driven by disorder in
high-mobility low-density MOSFETs with weak localization
effects masked by finite-temperature Drude-Boltzmann effects
was also pointed out in the early experimental works of
Pudalov [26,28,40] and of Pepper [41,42].

One feature, prominent both in our experimental data Figs. 1
and 2 and in our theory (Figs. 3–5) needs to be specifically
mentioned in addition to the resistivity minima discussed
before. It is the existence of the high-temperature resistivity
maxima in the data (black squares in the figures) with
dρ/dT < 0 above this temperature (until phonons become
important at still higher temperatures). This quantum-classical
high-temperature crossover behavior is ubiquitous in all high-
mobility 2D systems in the metallic phase, where after the
sharp initial rise of ρ(T ) with increasing T , ρ(T ) goes through
a maximum at a density-dependent “high” temperature slowly
decreasing beyond this characteristic temperature until phonon
scattering takes over at still higher temperatures. We note
that the characteristic temperature for this resistivity maxima
(black squares) rapidly decreases with decreasing density,
whereas the characteristic temperature for the resistivity
minima (red circles) increases with decreasing density. Once
these two lines come close together (n ∼ 1.2 × 1011 cm−2 for
sample A and n ∼ 1.8 × 1011 cm−2 for sample B, see Fig. 2),
the system simply behaves as an insulating system at all lower
densities since dρ/dT < 0 for all density and temperature
below this intersection regime of the black squares and red
circles. This finite-temperature behavior is also apparent in
our theoretical curves [see Fig. 4 for sample A and Fig. 5(c)
for sample B].

Before concluding, we point out that, within our model
of Boltzmann resistivity due to screened charged impurity
scattering and weak localization due to quantum interference
[i.e., Eq. (7) in Sec. V], we can actually derive a leading-order
analytical formula for the characteristic temperature (i.e., the
red circle plots in the figures) for the resistivity minima below
which weak localization effect should dominate the metallic
transport properties. Using the leading-order (linear) analytical
low-temperature expansion in temperature for ρB(T ) in Eq. (7)
we get for the characteristic temperature Tm where dρ/dT = 0
to be

Tm ∝ TF /σB(T = 0), (9)

where TF ∝ n is the Fermi temperature and σB(T = 0) =
ρ−1(T = 0) is the zero-temperature Boltzmann conductivity
due to charged impurity scattering. It is well known [43] that
σB(T = 0) obeys an approximate scaling law with the carrier
density going as

σB ∼ nα+1, (10)

where α(n) ≈ 0.3 in Si MOSFETs in the low-density metallic
regime. This leads to a rather weak density dependence of the
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characteristic temperature Tm going as

Tm ∼ n−0.3, (11)

which is approximately consistent with the experimental and
theoretical numerical results for the red circle lines in Figs. 2,
4, and 5(c). The important point to note is that the weak local-
ization correction becomes important at lower density since
the weak localization effect becomes progressively stronger
with the decreasing Drude conductivity with decreasing carrier
density. On the other hand, if σB (T ) is temperature independent
as it is for low-mobility samples, the weak localization ln T

correction would be visible at all carrier densities.
We conclude by emphasizing that our theory has many

approximations which need to be improved in future work.
We neglect effects of interaction in the theory beyond the
finite-temperature screening effect by the electrons themselves
which we include within RPA (i.e., infinite sum of bubble
diagrams). At the low carrier densities of interest in the 2D
MIT problem, interaction effects are likely to be important,
but we neglect them in the spirit of obtaining the leading-order
result within the minimal model. In addition, we believe that
the interaction effects may be substantially suppressed by finite
temperature since T/TF is not particularly small at the exper-
imental densities and temperatures. We also assume rather
unrealistically that the weak localization quantum correction
may simply be added to the Drude-Boltzmann conductivity
as a ln T correction, which is obviously a simplification done
in the spirit of developing the minimal physical model for
including both metallic and insulating temperature dependence
within a single unifying scheme. In particular, neither the
Boltzmann theory nor the simple weak localization correction
is strictly applicable in the strongly disordered situation
close to the metal-insulator transition where kF � ∼ 1, but we
have assumed in this work that such a minimal theory (i.e.,
Boltzmann conductivity along with the ln T weak localization
quantum correction) can be continuously extended from the
high-density (kF � � 1) regime to the low-density regime
(kF � � 1) as long as the system is still nominally in the metallic
phase. Our minimal theory obviously becomes progressively
quantitatively worse as the carrier density decreases, but
we think that it remains qualitatively valid all the way
down to kF � � 1 in the metallic phase. We have neglected
all phonon scattering effects in the theory which probably
become important for T � 10 K outside the regime of our
interest. It is straightforward to include phonon scattering in
the theory and it adds a resistivity increasing linearly with
T for T > TBG (∼10 K in Si MOSFET) where TBG is the
Bloch-Gruneisen temperature. Since our interest in this paper
is the low-temperature 2D MIT physics, phonon scattering
effects are irrelevant for our problem. A 2DEG in the presence

of disorder and electron-electron interaction is expected to
manifest a diffusive (Altshuler-Aronov) interaction correction
to conductivity [4–10] which gives another (i.e., in addition to
the weak localization correction) ln T contribution in the tem-
perature dependence of conductivity. However, the prefactor
in front of ln T given by a combination of singlet and triplet
components is not known at low electron densities of interest in
this work since interaction effects are nonperturbatively strong
at low carrier densities. This Altshuler-Aronov effect does not
change the functional form of the temperature dependence of
resistivity, and therefore our theory as described by Eqs. (7)
and (8) not including the Altshuler-Aronov part of the
electron-electron interaction correction (note that the ballistic
part of the electron-electron interaction effect is included in
our Boltzmann theory of Sec. III) nevertheless qualitatively
describes the data. It is, however, important to point out that
naively adding an Altshuler-Aronov ln T term in our theory
will be an incorrect double counting of many-body effects
since the screening effect we included nonperturbatively in
the theory already contains the Hartree part of the interaction
effect in the ballistic regime (which crosses over to the ln T

effect in the diffusive regime [6,7], and thus there is no need
to add a separate ln T term arising from the Altshuler-Aronov
effect also.

Finally, we mention that we have not discussed at all
the nature of the actual crossover to the strongly localized
exponential temperature dependence (in the resistivity) at very
low carrier density as our focus in this work has entirely
been on the signature of weak localization in the putative
metallic regime. The issue of the strong localization crossover
has recently been discussed in great detail by the two of us
[44]. One key issue that remains open in this context is the
role of impurity-induced density inhomogeneity or puddle
formation in the 2DEG as the system crosses over to the
strongly insulating phase and screening fails completely. Such
inhomogeneous puddles could lead to percolation physics
competing with the physics of Anderson localization. In fact,
sometimes the crossover to the strong localization behavior
may itself be considered a percolation transition as was done
in Ref. [29]. The interplay of puddle physics and localization
physics in the strongly interacting 2D system is an interesting
open question in the 2D MIT problem. For our specific
considerations, the puddle size could act as a cutoff for
the dephasing length explaining why the low-temperature
dephasing length appears to be short compared with the
standard Fermi-liquid theory.
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