
PHYSICAL REVIEW B 90, 125406 (2014)

Statistics of sub-Poissonian nucleation in a nanophase
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We develop a fully analytical calculation of the sub-Poissonian statistics resulting from the temporal
anticorrelation of the nucleation events in a supersaturated nanophase, such as occurs in particular during
vapor-liquid-solid growth of nanowires [F. Glas, J. C. Harmand, and G. Patriarche, Phys. Rev. Lett. 104, 135501
(2010)]. The sequence of nucleation events is modeled as a stochastic Markov process. The deviation from Poisson
statistics is quantified by a single parameter γ , namely the ratio of the nucleation probabilities immediately after
and before nucleation. We first determine self-consistently, by using q-calculus, the densities of probability of
the nucleation probability, both when nucleation occurs and at an arbitrary instant. We then derive the probability
for having a given number of nucleations in any given time interval. The distribution of these probabilities shows
a marked narrowing with respect to Poisson statistics, in agreement with our previous experiments. We calculate
explicitly the standard deviation of this distribution, which quickly saturates as the length of the time interval
increases. Finally, we compute the distribution of the waiting times between nucleations. We discuss how the
computed quantities vary with parameter γ . The results are in complete agreement with our numerical simulations.
Somewhat surprisingly, a marked narrowing of the distribution of the numbers of nucleations occurring in fixed
time intervals appears as fully compatible with a very broad distribution of waiting times.
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I. INTRODUCTION

The nucleation of a new stable phase from a supersaturated
parent phase is a ubiquitous phenomenon which has been
studied for decades. With the rise of nanostructures, it has
however recently become clear that, when the parent phase
is of nanometric size, nucleation may present specific features
that are not accounted for by the standard classical or atomistic
theories of nucleation, which deal with macroscopic supersat-
urated media. Such nanosized parent phases occur in many
processes, such as the catalyzed growth of semiconductor
nanowires (NWs) from a liquid or solid droplet [1,2], the solid
state point contact reactions between a semiconductor NW and
a metal nanodot or NW [3,4], the catalyzed growth of carbon
nanotubes [5], droplet epitaxy [6], and the condensation of
adatoms on a nanofacet [7] or in nanoreactors [8].

One peculiar feature is that nucleation, followed by the
rapid formation of a small growth unit (such as an atomic
layer of limited lateral extension), may significantly deplete
the nanosized parent phase and thereby alter the subsequent
nucleation kinetics. This phenomenon has been identified for
both vapor-liquid-solid (VLS) growth [2] and point contact
growth [9] of NWs. In the present work, we develop a
model and fully analytical calculations of the altered nu-
cleation statistics. The model is generic but, to be specific,
we shall phrase our discussion in the terms of VLS NW
growth.

Recall that in this growth mode, a liquid (L) nanodroplet
sits at the apex of the solid (S) NW and the system (often
comprising a substrate on which the NWs grow epitaxially)
is exposed to vapor (V) fluxes carrying the NW constituents.
It is widely admitted that growth proceeds via the repeated
formation of a critical two-dimensional (2D) nucleus on the
top facet of the NW (in contact with the liquid), followed
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by the rapid completion of a solid monolayer (ML) by step
flow [2,10–15]. The time needed to complete the ML after
each nucleation event is indeed usually very short compared
to the average time between successive nucleations [2,16,17].
Partly because this sequence of events is very fast, it has,
to our knowledge, never been observed directly, but there is
strong experimental evidence for it. In particular, transmission
electron microscopy (TEM) experiments carried out in situ,
during growth, show that the top facet remains at a fixed
position for long times and then suddenly advances by one
ML [13–15].

The LS interface has long been thought to coincide with a
single crystalline plane. In situ TEM has however revealed that
it may be constituted of a main top facet normal to the growth
axis bordered by narrow truncation facets [13–15]. However,
when the step bordering the growing ML reaches the edge of
the top facet (either at the VLS triple phase line [12] or at its
intersection with truncation facets, if any), it cannot advance
anymore. For another ML to grow, a new nucleation must
occur. In narrow enough NWs, the probability of a second ML
nucleating before the completion of the first one is very low,
and there is exactly one nucleation event per ML (mononuclear
regime).

The droplet may be constituted of a foreign metal (fre-
quently, gold) in which the NW constituents are dissolved.
Conversely, in the so-called self-catalyzed growth of III–
V semiconductors, the droplet contains only the NW con-
stituents, namely a small amount of the group V element(s)
dissolved in the group III element(s). In any case, the droplet
is so small that the rapid formation of a ML may deplete
it significantly from the NW constituents. Of course, for
growth to proceed, the atoms consumed must be replaced.
This happens thanks to the vapor (V) fluxes provided, usually
at a constant rate, bearing in mind that, in addition to the direct
impingement of vapor on the droplet, refilling may occur via
other pathways, such as surface diffusion [18,19] or reemission
from the neighboring surfaces [20–22].
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The rapid depletion of the droplet upon nucleation and
ML completion has several consequences. The in situ TEM
experiments show that the truncation facets, when present,
have minimal extension just before a nucleation event and
are the widest just after [14,15]. This reflects the variation
of the chemical potential of the NW species in the liquid.
Before nucleation, the concentrations of these species increase
steadily, and so does their chemical potential. Atoms are thus
transferred to the solid NW. Transfer is not to the main facet,
which requires overcoming a high nucleation barrier, but to
the truncation facets, which might be rough or have a low
nucleation barrier [14,15]. Conversely, nucleation and ML
formation deplete the liquid and reduce the chemical potential;
this induces a reverse transfer to liquid from truncation facets,
which therefore extend.

Before these TEM results were published, we identified
the cyclic albeit aperiodic depletion of the droplet, correlated
with nucleation and ML growth, as responsible for some
remarkable statistics of the nucleation events in gold-catalyzed
In(As,P) NWs [2]. Namely, we could count after growth the
numbers of nucleation events occurring in successive time
intervals of fixed duration T in a given NW [23]. We showed
that the statistics of these numbers are not Poissonian, as
would happen if the nucleation events were independent of
each other (and ML completion very fast), but markedly
sub-Poissonian. Actually, the standard deviation σ (T ) of their
distribution is much smaller than the Poissonian deviation
and, instead of increasing as the square root of the mean
number of events in the interval, it rapidly saturates. This
shows that the nucleation events are temporally anticorrelated.
We interpreted this in terms of nucleation probability (NP):
after a nucleation event, the concentrations and the chemical
potential suddenly decrease, and so does the NP. Hence
nucleation is less likely after a nucleation event (and for some
time) than just before. We termed this effect “nucleation anti-
bunching” and the corresponding growth mode “self-regulated
growth.”

Thanks to our calculation of the chemical potential of
(Au,III,V) liquids [24], we could simulate numerically long
time sequences of random nucleation events and calculate their
statistics [2], in particular the standard deviation σ (T ). Each
simulation assumes values of the unknown quantities entering
the model (average concentrations in the liquid, effective edge
energy of the 2D nucleus [12]). Since σ (T ) is the only reliable
output of our experiments, we could not determine these
quantities independently, but we found perfectly reasonable
combinations thereof allowing us to reproduce the observed
standard deviations and their saturation as T increases [2]. An
example of these fitting simulations is shown in Fig. 1. We also
argued that, since the concentration of group V atoms in the
droplet is much lower than that of the group III atoms (this is
true for both self-catalyzed growth [22] and growth catalyzed
by a foreign metal), whereas the solid formed is stoichiometric,
the group V concentration is much more affected by sudden
ML growth than the group III concentration, so that, in turn,
its variations affect much more the NP. Indeed, there is very
little difference between simulations taking into account both
constituents and simulations considering only the group V
atoms [2]. Finally, we pointed out that, at given average liquid
composition, the effect is all the more marked when the NW
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FIG. 1. (Color online) Short excerpt from a simulation that re-
produces the standard deviations σ measured for In(As,P) NWs [2]:
variation with time (normalized to the average time τ̄ between
nucleation events, with arbitrary origin) of the group V concentration
(left scale) and of the number of group V atoms in the droplet. This
number decreases abruptly by δ after each nucleation (a sequence of
which is marked by arrows) and increases linearly in between.

radius R is small, since the ML volume scales as R2 whereas
that of the droplet scales as R3.

It immediately appears that, although simulations such as
those of Fig. 1 accurately reproduce the marked narrowing
of the distribution of the numbers of nucleations occurring in
fixed time intervals [2], there is still a considerable randomness
in the distribution of the waiting times between nucleation
events. In particular, very short and very long waiting times
are common. The concentrations at which nucleation occurs
are also broadly distributed (in Fig. 1, they nearly vary from
simple to double). One of the purposes of this work is to discuss
quantitatively the interplay of self-regulation and randomness
in these systems.

To this end, we develop a full analytical calculation of
the statistics of nucleation antibunching, using only a few
simplifying assumptions. Our stochastic model is described in
Sec. II and the calculations are performed in Secs. III (densities
of probability of the NP), IV (probability for a given number
of nucleations in a time interval), and V (waiting times).
Section VI is devoted to a general discussion of sub-Poissonian
nucleation statistics based on our results.

II. MODEL

We consider a parent nanodroplet from which a NW of
fixed radius (or, more generally, a solid of limited lateral
extension) grows via 2D nucleation, at a given temperature. We
are interested in cases where the amount (in the droplet) of the
single NW constituent (case of a monoatomic NW) or of one of
the NW constituents (polyatomic NW) is significantly affected
by each nucleation event and where, in turn, its variations
affect significantly the NP. As discussed above, this holds
in particular for III–V compound semiconductors. Our main
hypotheses are the following.

(H1) The state of the system is entirely determined by the
stochastic variable N (t), the number of atoms of the relevant
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species in the droplet at time t . The evolution of the system is
also determined by this variable, since the NP depends only
on N (t). The process is thus Markovian.

(H2) Nucleation and ML formation instantaneously de-
crease number N by a fixed amount δ > 0, whereas refilling
proceeds at a constant rate b (Fig. 1). As a consequence, the
average waiting time between nucleations is τ̄ = δ/b.

(H3) For the constituent considered to have an impact on
nucleation, we assume, in line with our previous work [2],
that the number of this type of atoms in the liquid is low
enough to be significantly diminished by the formation of a
ML, but nevertheless that it never falls below the number δ of
atoms contained in a ML, at least whenever nucleation occurs
(Fig. 1). Would it not be the case, the system would enter
another regime where the completion of the ML can no longer
be taken as instantaneous, but is instead limited by the arrival
rate of the atoms from the vapor to the droplet. While well
worth investigating, this regime is beyond the scope of the
present calculations.

We now specify the dependence of the NP P on N (t). At
temperature θ , P is dominated by factor exp[−�G/(kBθ )],
with �G the nucleation barrier and kB Boltzmann’s con-
stant [25]. �G is inversely proportional to the difference of
chemical potential �μ between liquid and solid. �μ, taken
here per atom (or per pair in the case of a compound semicon-
ductor) depends on temperature and droplet composition in a
known fashion [22,24,26]. Our simulations for III–V NWs [2]
show that we can linearize these variations around a reference
(group V) composition, unless the concentration is very small
(namely, the results with and without linearization are very
similar). However, we retain the exponential function, since
the fast variation of the nucleation probability with �μ is an
essential feature of nucleation-mediated growth in general [25]
and of the effect studied here in particular [2]. This also insures
that P remains positive. In these conditions, the variations of
the NP with N follow the simple law [2]

P (N ) = P (N0) exp[A(N − N0)], (1)

where parameter A > 0, which is given explicitly in Ref. [2]
for VLS NW growth, gathers factors such as nucleus geometry
and edge energy, temperature, mean concentration in the
liquid, and mean value of �μ and of its derivative with
respect to concentration. Clearly, in Eq. (1), N0 can be chosen
arbitrarily in the range where the exponential variation of the
NP with N is a valid approximation. It will thus come as no
surprise that none of the quantities calculated in the following
depend on N0.

According to our hypotheses, the NP varies continu-
ously and deterministically between nucleations events. These
events occur randomly at instants tn, according to the value
of the NP immediately before nucleation, P (tn). Nucle-
ation causes the NP to decrease instantaneously to value
P (tn) exp(−Aδ). In the following, we use the same notation
for the NP considered as a known function of N and as a
stochastic variable P (t).

We assume that refilling of the parent nanosized reservoir
proceeds at a constant rate [hypothesis (H2)]. This means that
we treat a stationary growth regime and not the transients that
may occur at the beginning of growth (due to a gradual increase
of mother phase supersaturation [12] or possible elastic effects

induced by a substrate). We also ignore the desorption of the
NW species from the liquid droplet, which may be significant
for group V elements [22]. Sibirev et al. recently discussed the
effect of desorption on nucleation statistics [27]. In common
with refilling and contrary to ML formation, desorption is a
continuous process. Strictly speaking, it cannot be modeled
simply as a uniform decrease of refilling rate b, since it tends
to depend exponentially on �μ and therefore on N [22,27].
However, as a first approximation, it can be taken into account
by replacing b by b − N/td , where td is the characteristic
desorption time [27] and N some mean value of N .

Let us stress again that, although we phrase the problem
in terms of nucleation and growth of NWs, our model
can describe other situations. For instance, the variations of
composition and nucleation barrier induced by nucleation
itself in point contact reactions are very similar [9]. The key
point is that nucleation significantly and suddenly diminishes
the nucleation probability, whereas refilling the parent phase
is a relatively slow process.

III. DENSITIES OF PROBABILITY OF NUCLEATION

A. Definitions

The basic ingredient of our calculation is the NP P (t). This
is actually a density of probability per unit time, such that
the probability for a nucleation event occurring within time
interval [t,t + dt] is P (t)dt . However, in order to calculate the
statistics of nucleation, we shall compute other, more abstract,
densities of probability. These are defined as follows.

At any given instant of the process, the number of NW atoms
in the droplet is well defined, depending on the past history
of nucleations in the system (and of its initial state), and the
NP follows directly, via Eq. (1). Now, we may record, over the
whole process, the successive values of the NP and consider
their distribution. Because nucleations occur randomly, the NP
is also a stochastic variable. We can thus define the density of
probability of the NP, π	(P ), such that, at any arbitrary instant
in the process, the probability that the NP lies within interval
[P,P + dP ] is π	(P )dP . By so doing, we do not distinguish
those instants where nucleation actually occurs. Obviously, at
these particular instants, the NP is on average larger than over
the whole process. The statistics of the NP at these instants
will be characterized by another density of probability of the
NP, π̃ (P ), such that, at any instant where a nucleation event
takes place, the probability that the NP lies within interval
[P,P + dP ] is π̃ (P )dP . We shall actually compute π̃ first
(Sec. III B), and then deduce π	 from it (Sec. III C). Note that
both densities have the dimension of a time.

B. Density of probability π̃ of the nucleation probability when
nucleation occurs

Let us first assume that a nucleation event occurs at
time t0, when the NP is P0. After that, as long as no new
nucleation occurs, the NP varies with elapsed time τ as
P (t0 + τ ) = P0 exp[A(bτ − δ)]. We introduce the density of
probability π (τ |P0) for the next nucleation to occur after time
τ , conditional to the fact that the first one occurred when the
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NP was P0. We have

π (τ |P0) = P0e
A(bτ−δ) exp

{
−
∫ τ

0
P0 exp[A(bt − δ)]dt

}
,

(2)

where the first two factors account for the probability of
nucleation per unit time exactly after time τ and the second
exponential for the probability that no nucleation occurred
between t0 and t0 + τ .

There is a one to one correspondence between τ and the NP
P at time t = t0 + τ , namely P = P0e

A(bτ−δ). Hence density
π (τ |P0) translates into a density of probability π (P |P0) for
the next nucleation to occur when the NP has value P (within
dP ), conditional to the fact that the first one occurred when
the NP was P0, according to

π (τ |P0)dτ = π (P |P0)dP. (3)

By calculating the integral in Eq. (2) and differentiating the
relation between τ and P , we find

π (P |P0) = 1

Ab
exp

(
P0e

−Aδ − P

Ab

)
. (4)

It is easily checked that
∫∞

0 π (τ |P0)dτ = 1 and∫∞
P0e−Aδ π (P |P0)dP = 1. Here, we note that nucleation

can happen when the NP is P only if previous nucleation
occurred when NP was P0 such that P � P0e

−Aδ (the NP just
after previous nucleation) and because, in the absence of new
nucleation, the NP can only increase. Since π̃ (P ) is defined
as the density of probability for nucleation to occur, over the
whole process, when NP equals P , one has

π̃ (P ) =
∫ PeAδ

0
π (P |P0)π̃ (P0)dP0

= eAδ

Ab
e

−P
Ab

∫ P

0
e

p0
Ab π̃(p0e

Aδ)dp0, (5)

where the second equation is obtained by changing variable
P0 into p0 = P0e

−Aδ . Integral equation (5) may be rewritten
as a differential equation:

dπ̃

dP
(P ) = −βπ̃ (P ) + γ −1βπ̃ (γ −1P ), (6)

with β = 1
Ab

and γ = e−Aδ < 1. In addition, we obviously
have π̃ (0) = 0. γ , which will emerge as the fundamental
parameter of our model, is simply the ratio of the NPs
immediately after and before nucleation which, in the model,
is independent of N [Eq. (1)].

Equation (6) belongs to the family of “pantograph equa-
tions,” studied in detail by Kato and McLeod [28]. Rephrasing
the results in terms of our parameters, these authors show
that, if γ < 1, there is no single solution of the equation,
even if the value of the function at some point is fixed. Instead,
different solutions exist with different asymptotic behaviors for
P → ∞. However, theorem 9 of Ref. [28] states the following:
(i) for any arbitrary constant L, there is a solution yL of Eq. (6)
decaying like Le−βP for P → ∞; (ii) there is no solution y

of Eq. (6), apart from the constant multiples of yL, such that
y = o(P −1).

Our solution of Eq. (6) must be o(P −1), otherwise we could
not normalize π̃ , and therefore be of the form yL given by Kato
and McLeod, namely

π̃ (P )=Le−βP

{
1+

∞∑
n=1

γ −n exp[β(1 − γ −n)P ]

(1 − γ −1)(1 − γ −2) · · · (1 − γ −n)

}
,

(7)

where L is a constant to be determined.
In the following, we use the language and results of

q-calculus [29], where the quantity conventionally noted
q is taken equal to γ . In particular, we introduce the
corresponding q-Pochhammer symbol (a; γ )n = (1 − a)(1 −
aγ )(1 − aγ 2) · · · (1 − aγ n−1) for n � 1 [with (a; γ )0 = 1]
and its limit (a; γ )∞ for n → ∞. Then, Eq. (7) is rewritten
as

π̃(P ) = L

∞∑
n=0

gn exp(−βγ −nP ), (8)

where, for n � 0,

gn = (−1)nγ
n(n−1)

2

(γ ; γ )n
. (9)

We will make repeated use of a result of Euler [Eq. (6.189)
in Ref. [29] and Eq. (2.2.6) in Ref. [30]] which, in our terms,
is written as

∞∑
n=0

gnz
n = (z; γ )∞. (10)

In particular, since (1; γ )n = 0 for any n � 1, we have
(1; γ )∞ = 0 and thus [see also Eq. (2.1.1) in Ref. [31]]

∞∑
n=0

gn = 0. (11)

We find L by normalizing π̃ according to
∫∞

0 π̃ (P )dP = 1.
This relation is only approximate, since the very small values
of P could only be attained if the number N of atoms became
negative, which is clearly unphysical. However, because of the
exponential variation of the NP with N , the low values of P

are very unlikely and the contribution of these values to the
integral is small enough to be neglected. This is consistent
with the hypothesis made above that the number of atoms in
the droplet remains larger than δ. Then

L = β

( ∞∑
n=0

γ ngn

)−1

= β

(γ ; γ )∞
, (12)

where the second equality follows from Eq. (10). Finally,

π̃ (P ) = β

(γ ; γ )∞

∞∑
n=0

gn exp(−βγ −nP ). (13)

Equation (11) proves that boundary condition π̃ (0) = 0 is
satisfied.
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C. Density of probability π� of the nucleation probability at an
arbitrary instant

We shall first derive a relation between densities π̃ and π	.
Let t be an arbitrary instant, in the sense that, at variance with
Sec. III B, we do not suppose that a nucleation event occurs
at t . If the NP at time t is P , the probability that a nucleation
will occur in interval [t,t + dt] is simply P dt . In addition, the
probability that the NP lies within interval [P,P + dP ] is, by
definition, π	(P )dP , since t is totally arbitrary. Hence the total
probability that a nucleation will occur within time interval
dt is

∫∞
0 π	(P )P dP dt . Consequently, the probability that,

if nucleation occurs within dt , the NP is within [P,P + dP ]
is

dP = π	(P )dP P dt∫∞
0 π	(P ′)P ′d P ′dt

. (14)

But, by definition, this quantity, which is independent of
time (as it should be, since t is arbitrary), is precisely π̃ (P )dP .
Hence

π	(P ) = CP −1π̃ (P ), (15)

with C = ∫∞
0 π	(P ′)P ′dP ′. Integral C may be calculated by

normalizing density π	. From
∫∞

0 π	(P )dP = 1, we find

C−1 =
∫ ∞

0

π̃ (P )

P
dP

= β

(γ ; γ )∞

∫ ∞

0

dP

P

∞∑
n=0

gn exp(−βγ −nP ). (16)

Using Eq. (A19) of the Appendix (Sec. 5) with Fn = 1 for
n � 0, we obtain C−1 = −β ln γ and finally

π	(P ) = − 1

(γ ; γ )∞ ln γ
P −1

∞∑
n=0

gn exp(−βγ −nP ). (17)

D. Discussion

We have now calculated the key quantities for the rest of
this study, namely the probability densities π̃ [Eq. (13)] and
π	 [Eq. (17)]. These densities depend only on γ (0 � γ � 1)
and β, which thus appear as the primary parameters of the
model. In terms of these parameters, the average time between
nucleations is written as τ̄ = −β ln γ . On the other hand,
parameters δ (the number of atoms in a ML) and b appear
only via the primary parameters, and N0 does not appear at
all. Moreover, by changing variable P to Q = βP , we may
replace π̃ and π	 by reduced probability densities, functions
of Q that depend only on γ , not on β. γ thus appears as the
key parameter of the model. Recalling that γ is the ratio of
the NPs immediately after and before nucleation (equal to 1
in the Poisson case, since the NP is then constant), γ indeed
quantifies the deviation from the Poissonian case: the smaller
γ , the larger the deviation.

Formally, our model can be applied for any value of γ . It is
however useful to discuss which kind of values γ may assume
in real systems. We recalled in Sec. I that, in the case of Au-
catalyzed In(As,P) NWs, we could, by simulating long growth
sequences (Fig. 1), reproduce quantitatively the variations
of the standard deviation σ of the number of nucleations
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FIG. 2. (Color online) Densities of probability of the nucleation
probability P (per unit of P ) over the whole process (π	) and at those
instants when nucleation occurs (π̃), for the Poisson process (γ = 1)
and for moderately (γ = 0.8) to strongly (γ = 0.2) sub-Poissonian
processes. The value of γ is indicated near each curve. The time unit
is τ̄ , the average time between nucleations.

occurring in given time intervals [2]. The combinations of
growth parameters mentioned in Sec. I translate into a value
of γ , and all combinations that fit the experiments correspond
to a value of about 0.70. We will indeed show in Sec. IV C 2
that, in our model, σ depends only on γ . More recently, we
also studied in detail the growth kinetics of self-catalyzed
GaAs NWs [21,22]. In this case, we did not systematically
investigate the nucleation statistics, but we could determine
not only the few physical parameters that specify our model
of self-catalyzed growth [22] (in particular, the edge energy
of the 2D nucleus) but also, a posteriori, the As concentration
cAs in the droplet for each of the particular NWs investigated
in Ref. [21]. γ is easily calculated from the model parameters
and cAs. The latter was shown to vary depending on the As
vapor flux and these variations have a large impact on γ ,
which depends directly on cAs but also indirectly via the
chemical potential. We find that, over the wide range of As
fluxes investigated [21,22], γ varies between about 0.06 and
0.32.

The variations of densities π̃ and π	 with NP are illus-
trated in Fig. 2 for weakly (γ = 0.8) to strongly (γ = 0.2)
sub-Poissonian processes. The Poissonian case obviously
corresponds to a Dirac peak for each density, located at
P = 1. For this figure, we have indeed chosen a time unit
equal to τ̄ , i.e., β = −1/ ln γ . The densities for other values
of β are easily found via the change of variable mentioned
above.

With respect to π	, π̃ is shifted to higher P values,
and the more so that the process is sub-Poissonian. This
simply manifests that nucleation tends to occur at relatively
high values of the NP. More precisely, Eq. (15) states that
π	/π̃ = C/P . C = τ̄−1 is the average value 〈P 〉 of the NP at
wholly arbitrary instants. Hence π	 > π̃ for P < 〈P 〉, whereas
π̃ > π	 for P > 〈P 〉 (see Fig. 2, where 〈P 〉 = 1/τ̄ = 1). In
turn, using Eqs. (13) and (10), the average value of the NP at
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those instants when nucleation occurs is

〈P 〉nucl =
∫ ∞

0
π̃ (P )P dP

= β

(γ ; γ )∞

∞∑
n=0

gn

∫ ∞

0
P exp(−βγ −nP )dP

= β

(γ ; γ )∞

∞∑
n=0

gn(−βγ −n)−2

= 1

β(1 − γ )
= − ln γ

1 − γ

1

τ̄
. (18)

As expected, the ratio 〈P 〉nucl/〈P 〉 = − ln γ /(1 − γ ) is always
larger than 1 (since γ < 1) and tends to 1 when the process
becomes Poissonian.

The corresponding standard deviations can also be calcu-
lated easily. Indeed, using Eq. (17) and then Eq. (10),∫ ∞

0
π	(P )P 2dP = − 1

(γ ; γ )∞ ln γ

∞∑
n=0

gn

β2γ −2n

= − (γ 2; γ )∞
β2(γ ; γ )∞ ln γ

= − 1

β2(1 − γ ) ln γ
,

(19)

so that the variance of π	 is

σ 2
π	 = − 1

β2(1 − γ ) ln γ
− 1

β2(ln γ )2
= −

(
1 + ln γ

1 − γ

)
1

τ̄ 2
.

(20)

Similarly, using Eq. (13) and then Eq. (10),∫ ∞

0
π̃ (P )P 2dP = β

(γ ; γ )∞

∞∑
n=0

2gn

β3γ −3n
= 2

β2

(γ 3; γ )∞
(γ ; γ )∞

= 2

β2(1 − γ )(1 − γ 2)
, (21)

so that the variance of π̃ is

σ 2
π̃ = 2

β2(1 − γ )(1 − γ 2)
− 1

β2(1 − γ )2

= 1

β2(1 − γ 2)
= (ln γ )2

1 − γ 2

1

τ̄ 2
. (22)

As suggested by Fig. 2, the ratio σπ̃/σπ	 is larger than 1 for
any γ and tends to 1 when γ → 1.

In our original postgrowth experiments [2], the sub-
Poissonian statistics of nucleation were demonstrated and
quantified by counting the numbers of nucleations occurring
in fixed time intervals. The full calculation of the probabilities
for any number of nucleations in any fixed time interval will be
carried out in Sec. IV. There is however another quantity that
should display a divergence from Poisson statistics, namely the
distribution of waiting times between nucleations. This cannot
be extracted from our postgrowth observations. On the other
hand, the in situ TEM experiments, which usually proceed
at fairly low growth rates [13–15], can detect individual
nucleation events and locate them accurately in time. Nothing
thus opposes the systematic study of the distribution of waiting

times, although no such study seems to exist yet. In Sec. V,
we calculate this distribution analytically.

IV. PROBABILITY FOR A GIVEN NUMBER OF
NUCLEATIONS IN A TIME INTERVAL

The sub-Poissonian nucleation statistics in VLS growth
were first demonstrated by studying the distribution of the
number of nucleations occurring in fixed time intervals [2].
In this section, we calculate this quantity analytically in the
framework of our model.

A. Conditional probability

We consider arbitrary time intervals of fixed length T . We
first assume that the NP at the start of the interval is P0 and
define πn(T |P0) as the probability that exactly n nucleations
(n � 0) will occur during time T .

The probability for having no nucleation over the entire
interval is

π0(T |P0) = exp

(
−
∫ T

0
P0e

Abτ dτ

)
= exp(−βEP0), (23)

with

E(T ) = eAbT − 1 = eT/β − 1. (24)

Since τ̄ = −β ln γ , E depends on T only via T/τ̄ . In the
following, whenever no confusion is possible, the value of E

for the time currently considered is simply noted E.
The probability for having exactly one nucleation over the

same interval is

π1(T |P0) =
∫ T

0
dτ π0(τ |P0) P0e

Abτπ0(T − τ |P0e
A(bτ−δ)),

(25)

where, in the integral, the first π0 factor accounts for the
probability of having no nucleation before time τ (0 � τ �
T ) has elapsed, P0e

Abτ dτ for the probability of having a
nucleation at time τ (within dτ ), at which the NP is P0e

Abτ ,
and the second π0 factor for the probability of having again no
nucleation after this, taking into account the abrupt decrease
of the NP induced by nucleation at time τ . Using Eq. (23), we
find

π1(T |P0) = 1

1 − γ
[exp(−γβEP0) − exp(−βEP0)]. (26)

Similarly,

π2(T |P0) =
∫ T

0
dτ π0(τ |P0) P0e

Abτπ1(T − τ |P0e
A(bτ−δ)).

(27)

In this integral, the first two factors have the same meaning
as in the calculation of π1. The π1 factor accounts for the
probability of a second nucleation (and only one) occurring
in the remaining time T − τ , taking into account that the NP
is P0e

Abτ immediately before the first nucleation and hence
P0e

A(bτ−δ) immediately after. Using Eqs. (23) and (26), we
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get

π2(T |P0) = 1

(1 − γ )2

[
γ

1 + γ
exp(−βEP0) − exp(−γβEP0)

+ 1

1 + γ
exp(−γ 2βEP0)

]
. (28)

Examination of the expressions of π0, π1, and π2 leads us to
propose the general formula

πn(T |P0) = 1

(1 − γ )n

n∑
p=0

a(n)
p exp(−γ pβEP0). (29)

In the Appendix (Sec. 7), we demonstrate this formula and
derive the values of the coefficients a(n)

p [Eq. (A32)], which
readily yield

πn(T |P0) =
n∑

p=0

gn−p

(γ ; γ )p
exp(−γ pβEP0). (30)

B. Total probability

We now use the results of Secs. III and IV A to calculate
the probability πn(T ) that exactly n nucleations occur over
an arbitrary time interval of duration T . Arbitrary means in
particular that we ignore if there is a nucleation at the beginning
of the interval or not. Since we defined π	 as the density of
probability of the NP over the whole process (Sec. III A),
arbitrarily choosing the beginning of the interval is equivalent
to having a probability π	(P )dP for the NP to be equal to P ,
within dP , at this instant. Hence

πn(T ) =
∫ ∞

0
πn(T |P )π	(P )dP. (31)

Using Eqs. (30) and (17), this gives

πn(T ) = − 1

(γ ; γ )∞ ln γ

n∑
r=0

gn−r

(γ ; γ )r

∫ ∞

0

dP

P

×
∞∑

m=0

gm exp[−(γ rβE + γ −mβ)P ]. (32)

Using Eq. (A19) with Fm = 1 + γ r+mE to calculate the
integral (at given r), we obtain

πn(T ) = 1

(γ ; γ )∞ ln γ

n∑
r=0

gn−r

(γ ; γ )r

×
[ ∞∑

m=0

gm ln(1 + γ r+mE) + (γ ; γ )∞ ln γ

]

= δn0 + 1

(γ ; γ )∞ ln γ

n∑
r=0

gn−r

(γ ; γ )r

×
∞∑

m=0

gm ln(1 + γ r+mE), (33)

where the second equality makes use of Eq. (A10) of the
Appendix, Sec. 3. Since E(T = 0) = 0, we immediately check
that this formula gives the expected results for T = 0, namely
unit probability for no nucleation and zero probability for any
nonzero number of nucleations. Since E depends on T only

0 1 2 3 4 5 6 7 8 9 1011121314 1516171819 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6 γ = 1
γ = 0.8

n=1

n=2

n=4
n=7 n=10 n=18n=15

n=0

π n

Time interval T / τ 

0 1 2 3 4 5 6 7 8 9 1011121314 1516171819 20
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0.6 γ = 0.5
γ = 0.2n=1

n=2 n=4 n=7 n=10 n=18n=15

n=0

π n

Time interval T / τ 

FIG. 3. (Color online) Variation with length of time interval T

(in units of average waiting time τ̄ ) of the probabilities πn for having
given numbers n of nucleation during this interval, for the Poisson
process (γ = 1; top panel) and moderately (γ = 0.8; top panel)
to strongly (γ = 0.5 and γ = 0.2; bottom panel) sub-Poissonian
processes.

via T/τ̄ [Eq. (24)], the same holds for πn(T ), as expected.
Equation (33) is not summable in closed form. However, if γ

is not too close to 1, the infinite sum converges rapidly and
excellent approximations are obtained by considering only a
small number of its terms.

These calculations are illustrated in Figs. 3 and 4 for a broad
range of values of γ . Namely, Fig. 3 shows the variations of
πn with time interval T for a set of values of n and Fig. 4
the distribution of the various πn for selected values of T . As
expected, as soon as γ < 1, this distribution becomes narrower
than the Poisson distribution and all the more so that γ is
small, in perfect agreement with our previous findings [2]. This
narrowing will be fully quantified in Sec. IV C 2 and further
discussed in Sec. VI. In addition, a shift and change of symme-
try of the distribution of πn at fixed T also appears from Fig. 4.
It is most easily seen for time intervals Tm equal to an integer
number m of average waiting times τ̄ : whereas in the Poisson
case, the πn are equal and maximum for n = m − 1 and n = m,
for even moderately sub-Poissonian processes, πn is largest for
n = m, with πm−1 � πm+1, unless m is very small.
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π n
(T
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n

FIG. 4. (Color online) Distribution of the probabilities πn(T ) for
time intervals T equal to 1 (squares), 4 (circles), 8 (up triangles),
and 16 (down triangles) average waiting times τ̄ , for the Poisson
process (γ = 1; large full symbols, full lines) and various sub-
Poissonian processes: γ = 0.8 (large empty symbols, dashed lines),
γ = 0.5 (small full symbols, short dashes), and γ = 0.2 (small empty
symbols, dash-dotted lines). Since the probabilities are defined solely
for integer values, the lines are only guides to the eye.

C. Statistical properties

In this section, we calculate the average 〈n(T )〉 and the
standard deviation σ (T ) of the number n(T ) of nucleations
occurring over a fixed time T . Of course, the average can
be straightforwardly obtained by noting that, since refilling
provides bT atoms, in the stationary regime, one must have
〈n(T )〉 = bT /δ. However, in Sec. IV C 1, we will derive this
result by using only the set of probabilities πn, as a check of
our calculation [Eq. (33)], but also to introduce and compute
several quantities of use to evaluate σ (T ) in Sec. IV C 2.

1. Average

The average value 〈n(T )〉 of the number of nucleations n(T )
during time T is

〈n(T )〉 =
∞∑

p=0

pπp(T ). (34)

Hence 〈n(T )〉 = ∂F
∂z

|z=1, where F is the appropriate generating
function:

F (T ,z) =
∞∑

n=0

πn(T )zn. (35)

To calculate ∂F/∂z, we will first compute ∂F/∂E. Equa-
tion (33) yields

∂πn

∂E
= 1

(γ ; γ )∞ ln γ

n∑
p=0

gn−pγ p

(γ ; γ )p
S(γ pE)

= 1

(−E; γ )∞ ln γ

n∑
p=0

gn−pγ p(−E; γ )p
(γ ; γ )p

. (36)

Here, S(x) is defined by

S(x) =
∞∑

n=0

gn

x + γ −n
(37)

and, to establish the second equality, we used the calculation
of S carried out in Sec. 4 of the Appendix [Eq. (A15)] and
noted that (−γ pE; γ )∞ = (−E; γ )∞/(−E; γ )p. Hence

∂F

∂E
= 1

(−E; γ )∞ ln γ

∞∑
n=0

zn

n∑
p=0

gn−pγ p(−E; γ )p
(γ ; γ )p

= 1

(−E; γ )∞ ln γ

∞∑
p=0

γ p(−E; γ )p
(γ ; γ )p

∞∑
n=p

gn−pzn

= (z; γ )∞
(−E; γ )∞ ln γ

∞∑
p=0

(γ z)p(−E; γ )p
(γ ; γ )p

, (38)

where the second equality was obtained by reordering the
terms of the double sum and the third one by using Eq. (10).
Provided |γ z| < 1, the last sum exists and is given by the
(infinite) q-binomial theorem [29], so that

∂F

∂E
= (z; γ )∞

(−E; γ )∞ ln γ

(−Eγ z; γ )∞
(γ z; γ )∞

= (1 − z)(−Eγ z; γ )∞
(−E; γ )∞ ln γ

.

(39)

Hence

∂2F

∂z∂E
= 1

(−E; γ )∞ ln γ

[
− (−Eγ z; γ )∞ + (1 − z)

×
∞∑

p=1

Eγ p(−Eγ z; γ )∞
1 + Eγ pz

]
. (40)

In Eq. (40), the series is the z derivative of the infinite
product (−Eγ z; γ )∞. This series converges at least for any
real positive value of z, since the series of generic term
γ p/(1 + Eγ pz) itself converges. Hence

∂

∂E

(
∂F

∂z

∣∣∣∣
z=1

)
= −(−Eγ ; γ )∞

(−E; γ )∞ ln γ
= − 1

(1 + E) ln γ
. (41)

After integration, noting that 〈n(T = 0)〉 = 0 (since πn = δn0

when T = 0),

∂F

∂z

∣∣∣∣
z=1

(E) = − ln(1 + E)

ln γ
. (42)

Recalling that this quantity equals 〈n(T )〉 and returning to
the definitions of γ and E [Eq. (24)], we finally obtain the
expected result, namely

〈n(T )〉 = bT

δ
= T

τ̄
. (43)

2. Standard deviation

The standard deviation σ of the number of nucleations
occurring during time T is

σ 2(T ) = 〈n2(T )〉 − 〈n(T )〉2

= ∂2F

∂z2

∣∣∣∣
z=1

+ ∂F

∂z

∣∣∣∣
z=1

−
(

∂F

∂z

∣∣∣∣
z=1

)2

. (44)
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From Eq. (40),

∂3F

∂z2∂E
= 1

(−E; γ )∞ ln γ

⎧⎨⎩− 2
∞∑

p=1

Eγ p(−Eγ z; γ )∞
1 + Eγ pz

+ (1 − z)(−Eγ z; γ )∞

⎡⎣⎛⎝ ∞∑
p=1

Eγ p

1 + Eγ pz

⎞⎠2

−
∞∑

p=1

(Eγ p)2

(1 + Eγ pz)2

⎤⎦⎫⎬⎭. (45)

As in the case of the average, the three series appearing in
Eq. (45) converge. Then

∂

∂E

(
∂2F

∂z2

∣∣∣∣
z=1

)
= −2(−Eγ ; γ )∞

(−E; γ )∞ ln γ

∞∑
p=1

Eγ p

1 + Eγ p

= − 2

ln γ

U (E)

1 + E
, (46)

with

U (E) =
∞∑

p=1

Eγ p

1 + Eγ p
. (47)

From Eq. (44), and then Eqs. (41), (42), and (46), we find

∂σ 2

∂E
= ∂

∂E

(
∂2F

∂z2

∣∣∣∣
z=1

)
+ ∂

∂E

(
∂F

∂z

∣∣∣∣
z=1

)
− 2

∂F

∂z

∣∣∣∣
z=1

∂

∂E

(
∂F

∂z

∣∣∣∣
z=1

)
= − 1

ln γ

[
1

1 + E
+ 2

ln γ

ln(1 + E)

1 + E
+ 2

U (E)

1 + E

]
.

(48)

For T = 0, E = 0, and, as already noted, πn = δn0, so that
σ 2 = 0. Integrating Eq. (48), using Eq. (47), thus gives, with
E = E(T ),

σ 2(E) = − 1

ln γ

{
ln(1 + E) + 1

ln γ
[ln(1 + E)]2

+ 2
∞∑

p=1

1

1 − γ p
ln

1 + Eγ p

(1 + E)γ p

}
. (49)

Equation (49) is convenient for estimating σ (E) since, for
most values of γ , it suffices to take into account a small number
of terms in the series. However, it is not adapted to discussing
the behavior of σ (E) for E → ∞. To this end, we return to
Eq. (47) and compute the series using the Euler-Maclaurin
formula [32,33]. We may indeed rewrite

U (E)

E
=

∞∑
p=0

fE(p) − 1

1 + E
, (50)

where, for a given γ ,

fE(x) = γ x

1 + Eγ x
. (51)

The derivatives of function fE are calculated in the
Appendix, Sec. 6 [Eq. (A21)]. Since fE and all its derivatives

tend to zero when x → ∞, Euler-Maclaurin’s formula at order
k � 1 is written as

U (E)

E
= −1

1 + E
+
∫ ∞

0
fE(t)dt −

k∑
i=1

bi

i!
f

(i−1)
E (0)

+ (−1)k+1
∫ ∞

0

Bk({t})
k!

f
(k)
E (t)dt, (52)

where bn and Bn are, respectively, the Bernoulli number and
Bernoulli polynomial of rank n and where {x} designates the
fractional part of x [32,33]. Recall that all Bernoulli numbers
of odd rank are zero, except b1 = −1/2. Equation (52), where
the discrete sum only appears if k � 2, is valid provided
the last integral converges. In this case, substituting Eq. (52)
into Eq. (48) after calculating the first integral, we get, by
integration over E and using the expressions of the derivatives
of fE [Eq. (A21)],

σ 2(E) = − 1

ln γ

E

1 + E
+ 2

k∑
i=2

bi

i!
(ln γ )i−2

×
∫ E

0

εAi−1(−ε)

(1 + ε)i+1
dε + Rk(E). (53)

In Eq. (53), An is the nth Eulerian polynomial [34] and the
remainder Rk is as

Rk(E) = (−1)k
2

ln γ

∫ ∞

0
dt

Bk({t})
k!

∫ E

0

ε

1 + ε
f (k)

ε (t)dε.

(54)

Setting u = γ t , the remainder is rewritten as

Rk(E) = 2
(−1)k+1

k!
(ln γ )k−2

∫ ∞

0
duBk

({
ln u

ln γ

})
×
∫ E

0

εAk(−εu)

(1 + ε)(1 + εu)k+1
dε. (55)

In particular, for k = 2, recalling that b2 = 1/6 and A2(x) =
1 + x, we find

σ 2(E) = − 1

ln γ

E

1 + E
+ 1

12

(
E

1 + E

)2

+ R2(E), (56)

with

R2(E) = −
∫ 1

0
B2

({
ln u

ln γ

})
VE,2(u)du (57)

and

VE,2(u) = E(u + 1) + 2E2u2

(u − 1)2(1 + Eu)2
+ u + 1

(u − 1)3
ln

1 + E

1 + Eu
. (58)

In Eq. (57), the fractional part varies between zero and 1.
Since the Bernoulli polynomials are bounded over this interval
and since, for u → 1−, VE,2(u) = (3−E)E2

6(1+E)3 + O(1 − u), the
integral in Eq. (57) converges for any finite E.

We demonstrate in the Appendix (Sec. 8) that, when γ < 1,
σ 2 remains finite when E → ∞. This is of course in sharp
contrast with the infinite increase of σ 2 in the Poissonian
case (γ = 1, σ 2 = T/τ̄ ), but in agreement with one of the
major results of our previous combined experimental and
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FIG. 5. (Color online) Full curves: variation with width of time
interval T of the standard deviation σ of the number of nucleation
events occurring during T , for the Poisson process (γ = 1) and
for moderately (γ = 0.8) to extremely (γ = 0.0001) sub-Poissonian
processes. The time unit is set to τ̄ , the average time between
nucleations. Dashed curves: standard deviations approximated by
omitting remainder R2 in Eq. (56), for γ = 0.8, 0.2, and 0.0001.
Dotted curve: limit of the standard deviation for a periodic process
(γ = 0).

numerical study [2]. This is illustrated in Fig. 5, which shows
the variations of σ with time interval T for selected values of
γ . As a complement, Fig. 6 gives the variations of σ with γ

for a range of time intervals.
Equation (56), together with Eqs. (57) and (58), gives the

exact value of σ for any time interval T . The numerical
evaluation of the remainder [Eq. (57)] is easily carried out.
However, unless γ is very small, Eq. (56) with remainder R2

omitted gives an excellent approximation of σ 2: as illustrated
in Fig. 5 (dashes), this holds not only for moderately (γ = 0.8)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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FIG. 6. (Color online) Variation with parameter γ of the standard
deviation σ of the number of nucleation events occurring during T ,
for T equal to 2τ̄ (short dashes), 5τ̄ (dash-dotted curve), or 10τ̄

(dashes) and for T infinite (full curve).

but also for strongly (γ = 0.2) sub-Poissonian processes. It is
only for γ � 1 that R2 adopts an oscillatory behavior with a
period equal to τ̄ . In this case, Eq. (56) with R2 omitted still
gives an excellent approximation of the average value of σ

over any interval of width τ̄ (case γ = 0.0001 in Fig. 5). In the
limit γ → 0, nucleation becomes periodic and σ 2(T ) tends to
the corresponding value, namely { T

τ̄
}(1 − { T

τ̄
}) (dots in Fig. 5).

The behavior of σ will be further discussed in Sec. VI.

V. WAITING TIMES

The density of probability of the waiting time τ between
two consecutive nucleations, per unit waiting time, is simply

π̂ (τ ) =
∫ ∞

0
π (τ |P0)π̃(P0)dP0, (59)

with π (τ |P0) the conditional probability and π̃ the density of
probability of nucleation given respectively by Eqs. (3) and (4)
and Eq. (13). Hence

π̂ (τ ) = γ eτ/β

∫ ∞

0
P0 e−γβE(τ )P0 π̃ (P0)dP0, (60)

with E(τ ) defined by Eq. (24). The integration is readily
performed and yields

π̂ (τ ) = E(τ ) + 1

β(γ ; γ )∞

(E(τ )), (61)

with


(E) = γ

∞∑
n=0

gn

(γ −n + γE)2
. (62)

Density π̂ can easily be calculated using this formula since,
in most cases, only the first few terms contribute effectively to
the sum. Alternatively, we may rewrite


(E) = − ∂

∂E
[S(γE)]. (63)

Here, S(x) is defined by Eq. (37) so that, from Eq. (A15),
ln S(x) = ln(γ ; γ )∞ −∑∞

p=0 ln(1 + xγ p) and

dS

dx
= −S(x)

[
U (x)

x
+ 1

1 + x

]
. (64)

Euler-Maclaurin’s development of function U [Eq. (52)] at
order 2 yields

π̂ (τ ) = 1

β(γ ; γ )∞

E + 1

E
S(γE)

[
− ln(1 + γE)

ln γ

+ γE

2(1 + γE)
− γ (ln γ )E

12(1 + γE)2

+ γ (ln γ )E

2
I2(E)

]
, (65)

where E stands for E(τ ) and

I2(E) =
∫ 1

0
B2

({
ln u

ln γ

})
1 − γEu

(1 + γEu)3
du. (66)

The numerical evaluation of integral I2 provides another
efficient means of calculating π̂ (τ ). Figure 7 illustrates the
variations of π̂ with T for a broad range of values of γ .
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FIG. 7. (Color online) Main panel: probability distribution of the
waiting times calculated for the Poisson process (γ = 1; dashes) and
for moderately (γ = 0.8) to very strongly (γ = 0.05) sub-Poissonian
processes (full curves). The time unit is set to τ̄ , the average time
between nucleations. Inset: comparison of the distribution of waiting
times calculated according to the present model (lines) with the
simulated distribution (symbols), for γ = 1 and γ = 0.7.

VI. DISCUSSION AND CONCLUSIONS

In the preceding sections, we gave a comprehensive
treatment of the statistics of nucleation in the sub-Poissonian
regime, based on a simple model that describes the cyclic
albeit aperiodic depletion of a supersaturated parent phase of
nanoscopic dimensions upon nucleation followed by the rapid
growth of a small crystal building block (such as a nanowire
monolayer). The sequence of nucleation events is modeled
as a stochastic Markov process. We assume that nucleation
is governed by the variations of the concentration of a single
minority constituent. We previously proposed this model to
account for our experimental observation of a self-regulation
of the nucleation events in VLS-grown III–V NWs and showed
by numerical simulations that it could reproduce quantitatively
the measured statistics, given a proper choice of the model
parameters [2]. Since the present calculations assume that �μ

and hence P depend only on N [Eq. (1)], they cannot be
used if a mixture of crystalline structures appears: because of
differences of cohesive energy, the probability of nucleation
then also depends on the structure of the phase formed.
Such a sphalerite/wurtzite polytypism may appear in NWs of
compound semiconductors and the probability of nucleation
of a new ML is indeed known to depend on the nature (cubic
or hexagonal) of this ML [12]. On the other hand, various
single phase crystals may be considered by simply taking into
account the slight change of constant A induced by the shift
of chemical potential [2]. Note that our experimental study [2]
was performed on such single phase NWs.

In the present work, the main assumptions are first that
the consumption of material to build the finite growth unit
happens instantaneously after nucleation and, second, that the
chemical potential of the parent phase varies linearly with the
concentration of the species considered and hence that the
nucleation probability depends exponentially on it. The latter

was shown to be a good hypothesis for our NWs [2] (namely,
simulations carried out with or without this hypothesis match
closely). In these conditions, the deviation from Poisson
statistics is quantified by a single parameter γ , the ratio
of the nucleation probabilities immediately after and before
nucleation (hence 0 � γ � 1 and the more sub-Poissonian
the process, the smaller γ ). This allows us to carry out fully
analytical calculations using q-calculus. These calculations
follow from a self-consistent determination of two densities of
probability of the nucleation probability P . The first density,
π̃ , is restricted to those instants when nucleation occurs, the
second one, π	, covers the whole process. We showed in
particular that the former is a known solution of the so-called
pantograph differential equation. From these densities, we
calculated other statistical quantities amenable to comparison
with experiments and simulations, in particular the distribution
of the probabilities πn(T ) of having n nucleations occurring
in an arbitrary time interval of given length T [Sec. IV B;
Eq. (33)], its standard deviation [Sec. IV C 2; Eq. (49) or (56)]
and the distribution of the waiting times between nucleations
[Sec. V; Eq. (65)]. For all these quantities, the agreement
between the present analytical calculations and our simulations
is excellent, as illustrated for the waiting times in the inset of
Fig. 7.

The statistical distributions of yet more quantities may be
derived from our explicit determination of densities π	(P )
and π̃ (P ). Indeed, our model postulates a one to one corre-
spondence between nucleation probability P and number N of
atoms in the parent phase [Eq. (1)]. Hence, the distribution of
probability of N over the whole process is straightforwardly
obtained from π	 and the distribution of this number, restricted
to those instants where nucleation occurs, from π̃ . Since there
is also a one to one relation between N and �μ, the same holds
for the statistical distribution of �μ, but this requires selecting
a particular system for which the constants specifying this
relation, which are not primary parameters of our model, may
be obtained. Similarly, in the case of two-dimensional nuclei
(as usually pertains for NWs), the radius of the critical nucleus
scales inversely with �μ; hence the distribution of the radii of
these nuclei also follows straightforwardly from π̃ , but again
the inverse proportionality constant is not a primary model
parameter.

To our knowledge, in addition to our initial work [2], three
studies so far have tackled the calculation of limited aspects of
the nucleation statistics. Kovalchuk et al. consider point con-
tact growth of NWs and concentrate on the distribution of the
waiting times [9], whereas Sibirev evaluates the distribution
of the number of nucleations in a given time interval [35] and
Dubrovskii the evolution of the NP [17] in VLS NW growth.
One of the major differences with the present work is that
these authors all restrict themselves to the relatively simple
problem of the evolution of the system after some initial
time at which its state is assumed to be known (Kovalchuk
et al. state that they “neglect the time correlation between
subsequent steps” [9], Sibirev fixes “the amount of material in
the drop. . .at the initial instant” [35], and Dubrovskii “assumes
that P equals zero at t = 0” [17]). In other words, they only
calculate the NP conditional to a given state of the system at a
given time (the start of the waiting period [9] or the start of the
interval over which nucleations are counted [35]). Although
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we also provide analytical expressions for these conditional
probabilities π (P |P0) and π (τ |P0) [Eqs. (3) and (4)], they
are primarily steps toward the calculation of distributions
that take into account self-consistently the probabilities of
all possible initial states. It is only in the limits of long
waiting times [9] or long counting intervals [35] that the two
approaches converge, the memory of the initial state of the
system being nearly forgotten. This is manifested for instance
by the fact that imposing initial conditions misses the increase
of the maximum of πn(T ) as n decreases [compare our Fig. 3
with Fig. 1(b) of Ref. [35]].

Perhaps the most striking manifestation of the effect studied
here is the narrowing of the distribution of the numbers πn(T )
of nucleations occurring over time intervals of given length
T . This was demonstrated experimentally and theoretically
in our initial work [2] and is fully confirmed by the present
calculations. Figure 4 shows that, even for moderately sub-
Poissonian processes, the distribution is much narrower than
the Poisson distribution and all the more so when the time
interval is long. This figure also makes it clear that, at variance
with the Poisson case, the width of the πn distribution hardly
increases with T (unless this interval is very short), which
is confirmed quantitatively by Sec. IV C 2 and illustrated in
Fig. 5.

It is then tempting to imagine that the sub-Poissonian
process is quasiperiodic, with nucleation events occurring at
regular intervals dictated by the time needed to replace in the
nanosized mother phase the atoms consumed in forming the
relevant growth unit after nucleation. The idea behind this
is that nucleation is very unlikely if supersaturation is too
low but becomes very likely when it reaches some critical
value [25], so that all nucleations will occur at more or less
the same value of supersaturation and hence at fairly regular
intervals [17]. However, our calculations show that this is not
the case, at least for values of the parameters that pertain to
the systems currently studied in this respect (recall that, for
our Au-catalyzed or self-catalyzed NWs, we estimated that
γ varies between 0.06 and 0.7). This is most apparent from
the distribution of the waiting times (Fig. 7). A well-known
feature of the Poisson process (γ = 1) is that the waiting times
are exponentially distributed; in particular, the most probable
waiting time is zero. Figure 7 shows that the monotonously
decreasing character of the distribution is preserved over a
wide range of γ values. It is only for γ < γc = √

2 − 1 �
0.414 that the distribution presents a maximum at a certain
nonzero waiting time. And even for much lower values of γ , the
distribution remains very broad with a significant probability
of having waiting times very short compared to the average
time between nucleations, or on the other hand much longer
(this is also apparent from the simulation of Fig. 1). This
contrasts sharply with quasiperiodic nucleation, which would
produce a narrow peak. Strikingly, for our In(As,P) NWs [2]
that display a strong reduction of σ , the calculated distribution
of waiting times is only subtly modified with respect to Poisson
statistics (Fig. 7, inset), with slightly less short and long waiting
times and slightly more in the middle range. This proves that
the narrowing of the πn distribution does not imply at all that
nucleation can only happen in a narrow time window; actually,
nucleation can happen at any time, even though its probability
is seriously reduced after a first nucleation.

In summary, our comprehensive calculations provide ana-
lytical expressions that describe quantitatively a wide range
of statistical properties of the processes of self-regulated sub-
Poissonian nucleation in a nanophase. This already allowed us
to discuss various manifestations of this effect and to clarify
some apparent contradictions between these manifestations.
The way is now open for further predictions and comparisons
with experiments or simulations. Our calculations also provide
useful guides to set conditions where these effects can be put
to profit to limit the randomness inherent in nucleation and
therefore to increase the uniformity of nanostructures.

APPENDIX

1. Calculation of series S(0)

We first calculate the following series:

S(0) =
∞∑

n=0

ngn. (A1)

We note that S(0) = dG
dz

(z = 1), where

G(z) =
∞∑

n=0

gnz
n. (A2)

From Eq. (10), G(z) = (z; γ )∞, and thus, noting that
(z; γ )∞ = (1 − z)(γ z; γ )∞,

dG

dz
= d

dz

∞∏
p=0

(1 − γ pz) =
∞∑

p=0

−γ p (z; γ )∞
1 − γ pz

= −(γ z; γ )∞

⎧⎨⎩1 + (1 − z)
∞∑

p=1

γ p

1 − γ pz

⎫⎬⎭ . (A3)

Therefore,

S(0) = −(γ ; γ )∞. (A4)

2. Calculation of sums S(1)
n

Here, we show that sum S(1)
n defined by

S(1)
n =

n∑
p=0

(−1)pγ
(p+1)(p−2n)

2
(γ ; γ )n+1

(γ ; γ )p+1(γ ; γ )n−p

(A5)

is uniformly equal to 1. To simplify the notation, we introduce
the q-binomial coefficients [29]:(

n

p

)
γ

= (γ ; γ )n
(γ ; γ )p(γ ; γ )n−p

for 0 � p � n. (A6)

Then

S(1)
n =

n∑
p=0

(−1)pγ
(p+1)(p−2n)

2

(
n + 1
p + 1

)
γ

= −
n+1∑
m=1

(−γ −n)mγ
m(m−1)

2

(
n + 1

m

)
γ

= 1 −
n+1∑
m=0

(−γ −n)mγ
m(m−1)

2

(
n + 1

m

)
γ

= 1 − (γ −n; γ )n+1. (A7)
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To derive the last equality, we used the so-called funda-
mental theorem of q-calculus [29], also known as Cauchy
binomial theorem, or finite q-binomial theorem [36]. Since
the q-Pochhammer symbol is a product that includes factor
(1 − γ −nγ n), we have S(1)

n = 1 for all n.

3. Calculation of sums S(2)
n

Let us consider the following sums:

S(2)
n =

n∑
p=0

gn−p

(γ ; γ )p
=

n∑
p=0

(−1)n−pγ
(n−p)(n−p−1)

2

(γ ; γ )p(γ ; γ )(n−p)

= 1

(γ ; γ )n

n∑
m=0

(−γ −1)mγ
m(m+1)

2

(
n

m

)
γ

. (A8)

Hence S
(2)
0 = 1, whereas, for n � 1, using the fundamental

theorem of q-calculus,

S(2)
n = 1

(γ ; γ )n

n∏
m=1

(1 − γ −1γ m) = 0. (A9)

Introducing the Kronecker’s symbol δnm, we thus have simply

S(2)
n = δn0. (A10)

4. Calculation of series S(x)

Here, we calculate function S(x) defined by Eq. (37). Using
the definition of gn [Eq. (9)] and noting that

1

x + γ n
= 1

1 + x

(−x; γ )n
(−xγ ; γ )n

, (A11)

this is rewritten as

S(x) = 1

1 + x

∞∑
n=0

(−γ )nγ
n(n−1)

2

(γ ; γ )n

(−x; γ )n
(−xγ ; γ )n

= 1

1 + x

∞∑
n=0

(−γ )nγ
n(n−1)

2
(−x; γ )n(−xγ ; γ )n

(γ ; γ )n(−xγ ; γ )n(−xγ ; γ )n
.

(A12)

In the second equality, we have introduced (−xγ ; γ )n at
numerator and denominator in order to use Jackson’s transfor-
mation formula [37] (see also Identity 9 in Ref. [31]), which
allows us to rewrite

S(x) = 1

1 + x

(γ ; γ )n
(−xγ ; γ )n

2φ1(−x,1; −xγ ; γ,γ ), (A13)

where 2φ1(a,b; c; γ,z) is Heine’s q-hypergeometric func-
tion [29,37], defined for |z| < 1 by

2φ1(a,b; c; γ,z) =
∞∑

n=0

(a; γ )n(b; γ )n
(γ ; γ )n(c; γ )n

zn. (A14)

From this definition, it appears that, because of factor (1; γ )n,
the terms of the sum 2φ1(−x,1; −xγ ; γ,γ ) are all zero except
for n = 0; this term being equal to 1, we get

S(x) = 1

1 + x

(γ ; γ )∞
(−xγ ; γ )∞

= (γ ; γ )∞
(−x; γ )∞

. (A15)

5. Calculation of an integral

We now calculate the integral

I =
∫ ∞

0

dP

P

∞∑
n=0

gne
−βγ −nFnP , (A16)

where the gn are given by Eq. (9) and the Fn (n � 0) are
positive numbers such that the sum converges.

Splitting the integral at an arbitrary X > 0 and using
Eq. (11) in the first part gives

I =
∫ X

0

dP

P

∞∑
n=0

gn

(
e−βγ −nFnP − 1

)
+
∫ ∞

X

dP

P

∞∑
n=0

gne
−βγ −nFnP . (A17)

Then, for any n � 0,∫ X

0

dP

P

(
e−βγ −nFnP − 1

)+
∫ ∞

X

dP

P
e−βγ −nFnP

=
∫ βγ −nFnX

0

dQ

Q
(e−Q − 1) +

∫ ∞

βγ −nFnX

dQ

Q
e−Q

= −[E1(βγ −nFnX) + ln(βγ −nFnX) + γE]

+E1(βγ −nFnX)

= −[ln(βX) + γE + ln Fn − n ln γ ], (A18)

where we have introduced the E1 function and the Euler-
Mascheroni constant γE [38] and obtained the integrals from
Ref. [38]. Using Eqs. (11) and (A4) (Appendix, Sec. 1), we
finally obtain

I = −
∞∑

n=0

gn[ln X + γE + ln Fn]

= −
∞∑

n=0

gn ln Fn − (γ ; γ )∞ ln γ. (A19)

6. Derivatives of function fE

The first derivatives f
(n)
E = dnfE/dxn of function fE ,

defined by Eq. (51), are easily calculated. Setting y = γ x ,
we find that

f
(1)
E (x) = (ln γ )y/(1 + Ey)2,

f
(2)
E (x) = (ln γ )2y(1 − Ey)/(1 + Ey)3, (A20)

f
(3)
E (x) = (ln γ )3y(1 − 4Ey + E2y2)/(1 + Ey)4.

This leads us to propose the general formula

f
(n)
E (x) = (ln γ )ny

An(−Ey)

(1 + Ey)n+1
, (A21)

where An is the nth Eulerian polynomial [34]. This formula
can be demonstrated by recurrence. Assuming that it holds for
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f
(n)
E , we find that

f
(n+1)
E (x) = (ln γ )n+1y

(1 − nEy)An(−Ey) − Ey(1 + Ey) dAn

du

∣∣
u=−Ey

(1 + Ey)n+2
. (A22)

The standard relation between An, its first derivative, and An+1

[Eq. (3.3) in Ref. [34]] readily shows that Eq. (A21) also holds
at order n + 1. Since An is a polynomial of degree n − 1, fE

and all its derivatives tend to zero when x → ∞ and hence
y → 0.

7. Conditional probability for n nucleations in a time interval

Here, we demonstrate that Eq. (29) indeed gives the proba-
bility πn(T |P0) for having a given number n of nucleations in a
time interval of length T , conditional to the NP being P0 at the
start of the interval, and we determine the a(n)

p coefficients. To
this end, we first derive a relation between πn and πn+1. Using
the same reasoning as for π1 and π2 in Sec. IV A, we find

πn+1(T |P0) =
∫ T

0
π0(τ |P0)P0e

Abτ dτ πn(T − τ |P0e
A(bt−δ)).

(A23)

Using Eq. (23) for π0 and assuming formula (29) for πn, we
obtain, after integration,

πn+1(T |P0) = 1

(1 − γ )n

n∑
p=0

a(n)
p

1 − γ p+1
[exp(−γ p+1βEP0)

− exp(−βEP0)]. (A24)

Identifying the factors of exp(−γ pβEP0) for 0 � p � n + 1
in Eq. (A24) shows that πn+1 indeed assumes the general
form (29) provided that

a(n+1)
p = 1 − γ

1 − γ p
a

(n)
p−1 for 1 � p � n + 1, (A25)

a
(n+1)
0 = −

n∑
q=0

1 − γ

1 − γ q+1
a(n)

q . (A26)

We have thereby shown by recurrence that expression (29)
is valid for all n. It follows from the repeated application of
Eq. (A25) for decreasing indices that

a(n)
p = (1 − γ )p

(γ ; γ )p
a

(n−p)
0 . (A27)

What remains to be done to determine all πn(T |P0) is to
find the a

(n)
0 coefficients. The first values are obtained from

Eqs. (23), (26), and (28) (n = 0,1,2), or (28) and (A26)
(n = 4):

a
(0)
0 = 1, a

(1)
0 = −1, a

(2)
0 = γ

1 + γ
,

(A28)

a
(3)
0 = −γ 3(1 − γ )2

(1 − γ 2)(1 − γ 3)
.

This suggests the following general expression:

a
(n)
0 = (−1)nγ

n(n−1)
2

(1 − γ )n

(γ ; γ )n
= (1 − γ )ngn. (A29)

Assuming Eq. (A29) to hold for 0 � p � n and using
successively Eqs. (A26) and (A27), we find

a
(n+1)
0 = −

n∑
p=0

1 − γ

1 − γ p+1
a(n)

p = −
n∑

p=0

(1 − γ )p+1

(γ ; γ )p+1
a

(n−p)
0 .

(A30)

Using Eq. (A29) to express a
(n−p)
0 for 0 � p � n, we find

a
(n+1)
0 = (1 − γ )n+1gn+1S

(1)
n , (A31)

where S(1)
n is defined by Eq. (A5) (Sec. 2). To prove

that Eq. (A29) holds for any integer n, it thus suffices to
verify that S(1)

n = 1, which is done in Sec. 2. Then, using
Eqs. (A27) and (A29), we obtain the general expressions of
coefficients a(n)

p :

a(n)
p = (1 − γ )n

(γ ; γ )p
gn−p. (A32)

The final expression for πn, Eq. (30), follows directly from
replacement of a(n)

p in Eq. (29).

8. σ 2 is bounded

Here, we show that σ 2 is bounded. Recalling that |B2(x)| �
b2 for any x and that, for 0 � x < 1, {x} = x, Eq. (57) yields

|R2(E)| � b2J2(E) + |K2(E)|, (A33)

with

J2(E) =
∫ γ

0

[
E(u + 1) + 2E2u2

(u − 1)2(1 + Eu)2
− u + 1

(u − 1)3
ln

1 + E

1 + Eu

]
du,

(A34)

K2(E) =
∫ 1

γ

B2

(
ln u

ln γ

)
VE,2(u)du. (A35)

To obtain Eq. (A34), we noted that the first and second terms of
the sum defining VE,2(u) in Eq. (58) are respectively positive
and negative for any u, so that their difference is larger than
|VE,2(u)|. We find that

J2(E) = γ

1 − γ

(
E

1 + Eγ
+ 2E

1 + E

)
+ 2E

(1 + E)2
ln

1 − γ

1 + Eγ

+ γ

(1 − γ )2
ln

1 + E

1 + Eγ
. (A36)

This quantity clearly remains finite for E � 0 (its limit is easily
calculated). In turn, we find a long analytical expression for
K2(E), which also admits a finite limit:

lim
E→∞

K2(E) = − π2

3(ln γ )2
+ 2 ln(1 − γ ) − 1

ln γ
+ 11γ − 1

12(1 − γ )

+ 12 Li2(γ ) − γ ln γ

6(1 − γ )2
, (A37)
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with Li2 the dilogarithm function [38]. This demonstrates
that, provided γ < 1, σ 2 remains finite when E → ∞, in

sharp contrast with the infinite increase of σ 2 in the Poisson
case.
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