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Long-wavelength optical phonon behavior in uniaxial strained graphene:
Role of electron-phonon interaction
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We derive the frequency shifts and the broadening of �-point longitudinal optical (LO) and transverse optical
(TO) phonon modes, due to electron-phonon interaction, in graphene under uniaxial strain as a function of
the electron density and the disorder amount. We show that, in the absence of a shear strain component, such
interaction gives rise to a lifting of the degeneracy of the LO and TO modes which contributes to the splitting
of the G Raman band. The anisotropy of the electronic spectrum, induced by the strain, results in a polarization
dependence of the LO and TO modes. This dependence is in agreement with the experimental results showing
a periodic modulation of the Raman intensity of the split G peak. Moreover, the anomalous behavior of the
frequency shift reported in undeformed graphene is found to be robust under strain.
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I. INTRODUCTION

Since its discovery in 2004 [1], graphene continues to be the
subject of intense interest regarding its exotic properties [2,3].
These intriguing properties, such as the anomalous quantum
Hall effect, are ascribed to Dirac-type electrons described
by the Weyl’s equation for massless particles [3]. The
electronic properties in graphene are significantly affected
by applying a strain [4]. The latter can also, accidentally,
occur during the fabrication process as in exfoliation or
chemical vapor deposition of graphene samples [5]. Theo-
retical and first-principles calculations revealed the substantial
effect of the strain on the electronic and lattice spectra of
graphene [6–9].

To bring out the signature of strain-induced modified
electronic and vibrational properties, Raman spectroscopy has
emerged as a powerful probe. This technique, which is simple
to use in graphene, is found to be a successful tool to identify
the number of layers in multilayer graphene, and to probe the
nature of disorder and the doping amount [10–12].

Several experimental studies have been carried out on
Raman spectra of graphene under uniaxial strain [13–22]. The
results revealed that, due to the strain, the Raman G band is
red-shifted and split into two peaks denoted G+ and G−. G+
(G−) is the mode-polarized perpendicular (along) the strain
direction. The G peak appearing in unstrained graphene at
1580 cm−1 corresponds to a doubly degenerate optical mode
at the � point of the Brillouin zone (BZ). The splitting of
the G peak results from the strain-induced lattice symmetry
lowering.

Experimental results showed that the frequency shift rates
of the G+ and G− as a function of the strain strength ε is of
∂ωG−

∂ε
∼ −13 cm−1/% and ∂ωG+

∂ε
∼ −6 cm−1/% [15]. Recent

measurements [17,20,22–24] reported that the rate shifts of G−
and G+ are, respectively, of −33 and −14 cm−1/% in agree-
ment with first-principles calculations [17,23]. The difference
in the shift rates was attributed to strain calibration [23]. The G-
band splitting could be understood within a phenomenological
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model based on a semiclassical approach [17,25,26]. Within
this model, the shear component of the strain is found to be
responsible of the splitting.

Raman spectroscopy of strained graphene has also revealed
that the 2D band, originating from a resonant scattering process
involving two optical phonons at the BZ edges, splits into
two peaks under uniaxial strain [23,24,27]. This splitting was
ascribed to strain-induced changes in the resonant conditions
resulting from both modified electronic band structure and
phonon dispersion [23,25].

Several studies reported that the electron-phonon coupling
plays a key role in Raman spectroscopy in graphene [2,28–30].
Ando [31] showed that, in undeformed graphene, the frequency
of the center zone optical phonon mode is shifted due to
electron-phonon interaction. The frequency behavior is found
to depend on the value of the Fermi energy EF compared
to the phonon frequency ω0 at the � point: For EF < �ω0

2

(EF > �ω0
2 ), the phonon frequency is red-shifted (blue-shifted)

leading to a lattice softening (hardening). In the clean limit,
a logarithmic singularity takes place at EF = �ω0

2 which is
found to be smeared out in the dirty limit and at finite
temperature [32]. Moreover, Ando [31] reported an anomalous
behavior of the optical phonon damping induced by the
electron-phonon interaction: for EF < �ω0

2 , the phonons are
damped due to the formation of electron-hole pairs leading
to phonon softening [2]. However, for EF > �ω0

2 , the phonon
is no more damped since the electron-hole pair production
is forbidden by the Pauli principle [2,31]. This damping
behavior predicted by Ando [31] was observed in Raman
spectroscopy [2,30,33].

The natural question, which arises at this point, is how the
frequency shifts and damping of optical phonon are modified
in uniaxial strained graphene where electron band structure is
deeply changed.

Theoretical studies [34,35] showed that the perfect hon-
eycomb lattice of graphene undergoes a quinoid-type defor-
mation by applying a uniaxial strain. The Dirac cones are no
longer at the corners of the BZ and are tilted. The correspond-
ing low-energy electronic properties could be described by the
generalized two-dimensional (2D) Weyl’s Hamiltonian [35]. It

1098-0121/2014/90(12)/125401(12) 125401-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.125401


M. ASSILI AND S. HADDAD PHYSICAL REVIEW B 90, 125401 (2014)

is worth to note that the tilted Dirac cones are also expected in
the organic conductor α-(BEDT)2 I3 where BEDT stands for
bis(ethylenedithio)-tetrathiafulvalene [35–38]. Based on the
generalized Weyl’s Hamiltonian, several intriguing properties
of this compound have been unveiled [35,36,38,39].

In this paper, we focus on the effect of the electron-phonon
interaction on the �-point optical phonon modes in graphene
under uniaxial strain described by a quinoid-type lattice. We
show that the frequency shift and the broadening of the
longitudinal optical (LO) and the transverse optical (TO)
phonon modes are substantially dependent on the characteris-
tic parameters of the Weyl Hamiltonian which are the tilt and
the anisotropy of the electronic dispersion relation. We bring
out original points which, to the best of our knowledge, have
not been addressed so far: (i) the electron-phonon interaction
in strained graphene induces a lifting of the degeneracy of the
LO and TO modes which contributes to the splitting of the G
band. This effect is found to originate from the anisotropy
of the electronic spectrum and not from the tilt of Dirac
cones. The latter may only give rise to a global shift of the
G band compared to the undeformed case. The splitting is
found to be strongly dependent on the electron density and
disorder amount. (ii) The anomalous behavior of the phonon
damping reported in Refs. [2,31] in undeformed graphene
is found to be a robust feature which is kept under uniaxial
strain. The damping of LO and TO modes strongly depends
on the strain amplitude and the phonon angle. We found
that, in the particular case, where one of the modes is along
the strain direction, the corresponding phonons are strongly
damped for a compressive deformation. However, the phonon
mode perpendicular to the strain direction is less damped and
its lifetime increases as the strain amplitude increases. For
tensile deformation, the mode behaviors are exchanged. (iii)
A crossing of TO and LO frequencies can take place at a
particular doping value as found in carbon nanotubes [40]. (iv)
We found that the electron-phonon interaction contributes to
the polarization dependence of the G peak in uniaxial strained
graphene as concluded by Mohiuddin et al. [17].

The paper is organized as follows: In Sec. II, we give
the outlines of the formulation to derive the optical phonon
self-energy. We start with the generalized Weyl’s Hamiltonian
obtained within the effective mass approach. Then, we derive
the electron-phonon interaction Hamiltonian and the phonon
self-energy. The results are discussed in Sec. III in relation with
experiments. Section IV is devoted to the concluding remarks.

II. OPTICAL PHONON SELF-ENERGY

We consider the optical phonon modes of the center BZ
responsable of the G peak in graphene. We focus on the LO and
in-plane TO modes. We first derive the electronic Hamiltonian,
within the effective mass theory [41–43], taking into account
the first- and second-neighbor hopping parameters in strained
graphene.

A. Electronic Hamiltonian

By applying a uniaxial strain along, for example, the
y direction, the honeycomb lattice turns to a quinoid-type
lattice [3]. It is worth to note that one should consider an

FIG. 1. (Color online) Deformed honeycomb lattice along the y

axis. (�a1,�a2) is the lattice basis. The hopping parameters to the first
(second) neighbors t and t ′ (tnnn and t ′

nnn) are different due the
deformation. Vectors connecting first- (second-) neighboring atoms
are denoted �τl (�al).

arbitrary strain direction as done, for example, in Refs. [6,34].
However, several experimental and numerical studies [6,17]
have shown that the G-band behavior is independent of the
strain direction. Considering a generic strain direction will
give rise to the same form of the electronic Hamiltonian but
with renormalized parameters. We then consider for simplicity
a strain along the y direction as in Ref. [3]. In such case,
the hopping parameters to the first-neighboring atoms are no
more equal as in undeformed graphene. The distance between
neighboring atoms along the y direction changes from a to

a′ = a + δa.

The vectors �τl (l = 1,2,3) connecting the sites of the A

sublattice with first-neighbor sites on the B sublattice are given
by (Fig. 1)

�τ1 = a

2
(
√

3�ex + �ey), �τ2 = a

2
(−

√
3�ex + �ey),

�τ3 = −a(1 + ε)�ey, (1)

where a is the distance between first-neighbor atoms in
undeformed graphene, ε = δa

a
is the lattice deformation which

measures the strain amplitude. ε is negative (positive) for
compressive (tensile) deformation.

The second-neighbor sites are connected by vectors �al given
by

�a1 =
√

3a�ex, �a2 =
√

3

2
a�ex + a

(
3

2
+ ε

)
�ey,

�a3 = −
√

3

2
a�ex + a

(
3

2
+ ε

)
�ey, (2)

where (�a1,�a2) is the lattice basis.
The hopping integral along �τ3 is affected by the strain and is

different from those along �τ1 and �τ2 which are equal. Moreover,
the hopping parameters to the second-neighboring atoms along
�a2 and �a3 are modified by the strain compared to that along �a1.

It is worth to stress that by applying a strain along the
y direction, one should expect a strain component along the
x axis εxx = −νεyy where ν = 0.165 is the Poisson ratio of
graphene. The off-diagonal terms of the strain tensor, which
depend on the strain direction and the Poisson ratio [34],
generate different bond lengths. However, for a strain axis
parallel to the principal symmetry direction x or y, these terms

125401-2



LONG-WAVELENGTH OPTICAL PHONON BEHAVIOR IN . . . PHYSICAL REVIEW B 90, 125401 (2014)

vanish leading to equal bond lengths as assumed in our model.
The contribution of Poisson ratio could, then, be neglected
compared to the main contribution resulting from the strain
component along the stress axis.

We denote by t (l)
nn (t (l)

nnn) the hopping integral to the first-
(second-) neighboring atoms along �τl (�al) vectors. We set t (1)

nn =
t (2)
nn = t . Under strain t (3)

nn changes from t to t ′ given by [35]

t ′ = t + ∂t

∂a
δa.

t (l)
nnn along �a2 and �a3 changes from the value of undeformed

graphene, denoted tnnn, to t ′nnn written as

t ′nnn = tnnn + ∂tnnn

∂a
δa.

The momentum vectors of Dirac points D and D′ are given,
respectively, by [35]

kD
y = 0, kD

x = ξ
2√
3a

arccos

(
− t ′

2t

)
, (3)

where ξ = ± is the valley index. We denote hereafter

θ = arccos

(
− t ′

2t

)
. (4)

In undeformed graphene, the Dirac points D and D′ are at the
corners of the BZ K and K ′. Under the strain, D and D′ move
away from K and K ′ points [34,44].

The electronic wave function can be written as [31,43]

ψ(�r) =
∑
�RA

ψA( �RA)ϕ(�r − �RA) +
∑
�RB

ψB( �RB)ϕ(�r − �RB),

(5)

where ϕ(�r − �RA) and ϕ(�r − �RB) are atomic orbitals centered
on atoms A and B, respectively.

In the �k. �p approach [42,43], the coefficients ψA( �RA) and
ψB( �RB) are given by

ψA( �RA) = ei�kD · �RAFD
A ( �RA) + ei�kD′ · �RAFD′

A ( �RA),

ψB( �RB) = ei�kD · �RB FD
B ( �RB) − ei�kD′ · �RB FD′

B ( �RB), (6)

where FD
A , FD′

A , FD
B , and FD′

B are slowly varying envelope
functions.

Considering second-neighbor hopping integrals, the elec-
tronic energy obeys to

εψA( �RA) = −
3∑

l=1

t (l)
nnψB( �RA − �τl) −

6∑
l=1

t (l)
nnnψA( �RA − �al),

εψB ( �RB) = −
3∑

l=1

t (l)
nnψA( �RB + �τl) −

6∑
l=1

t (l)
nnnψB( �RB − �al),

(7)

where �a4 = −�a1, �a5 = −�a2, and �a6 = −�a3.
Within the �k. �p method, Eq. (7) becomes

ε

(
FD

A (�r)

FD
B (�r)

)
=

(
w0xkx wxkx − iwyky

wxkx + iwyky w0xkx

) (
FD

A (�r)

FD
B (�r)

)
,

(8)

where �k = (kx,ky) is the wave vector and

wx =
√

3at sin θ, wy = 3
2 t ′a

(
1 + 2

3ε
)
,

w0x = 2
√

3a(tnnn sin 2θ + t ′nnn sin θ ). (9)

Details of the calculations are given in Appendix A.
From Eq. (7) we recover the so-called minimal form of the

generalized Weyl Hamiltonian [3,37]

Hξ (�k) = ξ ( �w0.�kσ 0 + wxkxσ
x) + wykyσ

y, (10)

where �w0 = (w0x,w0y = 0), σ 0 = 11, σx and σy are the 2×2
Pauli matrices. The corresponding dispersion relation is of the
form

ελ(�k) = �w0 · �k + λ

√
w2

xk
2
x + w2

yk
2
y. (11)

�w0 is responsible of the tilt of Dirac cones away from the z

axis. This term obeys the condition [35]

w̃0 =
√(

w0x

wx

)2

+
(

w0y

wy

)2

< 1, (12)

which ensures the presence of two energy bands: a positive
energy for λ = + and a negative energy band for λ = − [35].
In deformed graphene and for w0y = 0, w̃0 ∼ 0.6ε [35].

The eigenfunctions of the Hamiltonian given by Eq. (10)
are of the form

F (�k,�r) = 1√
2S ′

(
1

ηei��k

)
ei�k·�r , (13)

where η = λξ is the chirality index, S ′ is the lattice surface
under strain, and tan ��k = wyky

wxkx
.

B. Electron-phonon interaction

In this section, we derive the effective Hamiltonian de-
scribing the effect of the lattice vibrations on the electronic
Hamiltonian. Such effect arises from the change of the hopping
integrals due to the lattice distortion. This Hamiltonian was
obtained by Ando [31] in the case of undeformed graphene. We
shall determine the electron-phonon interaction Hamiltonian
in quinoid-type deformed graphene.

The phonon Hamiltonian can be written as [31]

Hph =
∑
�q,μ

�ω0,μ

(
b
†
�q,μ

b�q,μ + 1

2

)
, (14)

where b
†
�q,μ

(b�q,μ) is the creation (annihilation) operator of
phonon with wave vector �q = (qx,qy) and mode μ = LO,
TO. ω0,μ is the μ mode phonon frequency at the � point.

The relative displacement of the two sublattices A and B in
the continuum limit is

�u(�r) = 1√
2

[�uA(�r) − �uB(�r)], (15)

which can be written for optical phonon at � point as [31]

�u(�r) =
√

�

2NM

∑
�q,μ

1

ω0,μ

(b�q,μ + b
†
−�q,μ

)�eμ(�q)ei �q·�r , (16)
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where M is the mass of the carbon atom, N is the number of
unit cells, and �eμ(�q) is given by

�eL(�q) = i[cos ϕ(�q), sin ϕ(�q)],

�eT (�q) = i[− sin ϕ(�q), cos ϕ(�q)] (17)

with tan ϕ(�q) = qy

qx
. To derive the electron-phonon effective

Hamiltonian, we shall determine the effect of the lattice
displacement on the hopping integrals.

The hopping parameter between first-neighboring atoms
located at �RA and �RA − �τl is changed from t (l)

nn to [46]

t (l)
nn + ∂t (l)

nn

∂dl

[|�τl + �uA( �RA) − �uB( �RA − �τl)| − dl] (18)

with dl = |�τl|, d1 = d2 = a, and d3 = a(1 + ε). The hopping
integral between second-neighboring atoms changes from
t (l)
nnn to

t (l)
nnn + ∂t (l)

nnn

∂al

[|�al + �uA( �RA) − �uA( �RA − �al)| − al]. (19)

However, the correction to t (l)
nnn terms vanishes for �-point

optical phonon modes (�q = �0).
Since the amplitude of the lattice displacement is small

compared to the lattice parameter, Eq. (18) becomes

t (l)
nn + ∂t (l)

nn

∂dl

�τl

dl

· [�uA( �RA) − �uB( �RA − �τl)]. (20)

In the continuum limit, �uA( �RA) − �uB( �RA − �τl) � �uA(�r) −
�uB(�rA − �τl) ∼ √

2�u(�r).
The correction to the hopping integrals due to lattice

distortion, given by Eq. (20), leads to an extra term �H in
the electronic Hamiltonian which is written near the D point
as (for details, see Appendix B)

�H

=
√

2

ta

∂t

∂a

(
0 w′

yuy(�r) + iwxux(�r)
w′

yuy(�r) − iwxux(�r) 0

)
,

(21)

where ux(�r) and uy(�r) are the component of the relative
displacement �u. w′

y is of the form

w′
y = −a[t cos θ + t ′(1 + ε)] ∼ wy − 2εt ′a(1 + ε) (22)

and θ obeys Eq. (4).
Given the expression of wy and since t ′ = t(1 − 2ε) [35],

we have wy = 3
2at ′(1 + 2

3ε) and w′
y = wy − �wy with

�wy = 4
3εwy .

The electron-phonon Hamiltonian can then be written
as [31]

Hint = −
√

�

NM

β

a2

∑
�q,μ

1√
ω0,μ

Vμ(�q)ei �q·�r (b�q,μ + b
†
−�q,μ

),

(23)

where β = − d ln t
d ln a

= − a
t

∂t
∂a

, ω0μ is the frequency of the optical
phonon at the � point in the deformed graphene for the mode
μ in the absence of electron-phonon interaction.

In undeformed graphene, ω0T = ω0L = ω0. This degen-
eracy is expected to be lifted in the strained graphene due
to the symmetry breaking. According to a phenomenological
model [17,24,25], the strain tension εij in graphene reduces
to εyy = ε where y is the direction of the applied strain, and
εxx = −νεyy along the direction transverse to the strain and ν

is the Poisson ratio. The G band splits into two bands G± with
frequencies ω± shifted from the unstrained band frequency ω0

as �ω± = ω± − ω0 = −ω0γE2g
(εxx + εyy) ± 1

2βE2g
ω0(εxx −

εyy) where γE2g
and βE2g

are, respectively, the Grüneisen
parameter and the shear deformation potential. The shear
component of the strain εs = εxx − εyy is then responsible of
the G-band splitting. The question arising at this point concerns
the contribution of the electron-phonon interaction to the
splitting of the G band. To highlight this contribution, we did
not consider the effect of the shear component which turns out
to disregard the effect of the strain on the phonon dispersion.
We then assume that, in the absence of electron-phonon
interaction, the center zone optical phonon modes LO and
TO have the same frequencies ω0T ∼ ω0L ∼ ω0. By switching
on the interaction, this degeneracy may be lifted giving rise
to two bands corresponding to the LO and TO modes which
result in the G-band splitting.

The matrices Vμ(�q) are given, near the D point, by

VL(�q) =
√

wxw′
y

(
0 i

sin ϕ(�q)
α′ − α′ cos ϕ(�q)

i
sin ϕ(�q)

α′ + α′ cos ϕ(�q) 0

)
,

VT (�q) =
√

wxw′
y

(
0 i

cos ϕ(�q)
α′ + α′ sin ϕ(�q)

i
cos ϕ(�q)

α′ − α′ sin ϕ(�q) 0

)
, (24)

where α′ = √
wx/w′

y . Vμ(�q) near the D′ point satisfies

V D′
μ (�q) = V D

μ (−�q)∗ [31]. Contrary to acoustic phonons, there
is no scalar deformation potential in the interaction Hamilto-
nian [45] regarding the expression of the relative displacement
of the long-wavelength optical phonons [Eq. (16)].

C. Optical phonon self-energy

The retarded phonon Green’s function can be written as [31]

Dμ(�q,ω) = 2�ω0

(�ω + iη)2 − (�ω0)2 − 2�ω0�μ(�q,ω)
. (25)
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�μ(�q,ω) is the self-energy and η = �

τ
, τ being the scattering

time. The shift �ω = ω − ω0 of the phonon frequency is
given by the real part of the Green’s function pole. For small
correction to ω0, �ω is given by

�ω = 1

�
Re �μ(�q,ω0). (26)

The imaginary part of the Green’s function pole gives the
broadening �μ ∝ 1

τμ
of the phonon mode, τμ being the phonon

lifetime:

�μ = −1

�
Im �μ(�q,ω0). (27)

The self-energy of the �-point optical phonon can be written
as [31,46]

�μ(�q → �0,ω) = −gvgs

�S ′

NMω0

(
β

a2

)2 ∑
λ,λ′

∫
d�k

(2π )2
|〈λ′,�k|Vμ(�q)|λ,�k〉|2 f (ελ(�k)) − f (ελ′(�k))

�ω + ελ′(�k) − ελ(�k) + iη
, (28)

where gv and gs are the valley and spin degeneracy, f (ε) is the Fermi distribution function f (ε) = 1

e
ε−μc
kT +1

, and μc is the

chemical potential at temperature T . S ′ is the graphene surface under uniaxial strain S ′ = N‖�a1×�a2‖ � S(1 + 2
3ε) where S is

the undeformed graphene surface.
For long-wavelength phonon modes near the D point, the matrix elements can be written as

|〈λ′,�k|VL(�q)|λ,�k + �q〉|2 = wxw
′
y

2

[
sin2 ϕ(�q)

α′2 (1 − cos 2��k) + α′2 cos2 ϕ(�q)(1 + cos 2��k) + sin 2ϕ(�q) cos 2��k

]
,

|〈λ′,�k|VT (�q)|λ,�k + �q〉|2 = wxw
′
y

2

[
α′2 sin2 ϕ(�q)(1 + cos 2��k) + cos2 ϕ(�q)

α′2 (1 − cos 2��k) − sin 2ϕ(�q) cos 2��k

]
. (29)

According to Eq. (28), only interband processes (λ′ = −λ) contribute the self-energy of �q = �0 phonon modes.
Regarding the electronic dispersion relation [Eq. (11)], the term �ω + ελ′(�k) − ελ(�k) in Eq. (28) becomes

�ω + 2λ

√
w2

xk
2
x + w2

yk
2
y.

Setting qx = wxkx and qy = wyky , the integration over ��k in Eq. (28) vanishes and the expression of the self-energy can be
reduced to an integration over the energy:

�μ(�q → �0,ω) = −Cμ

∫ εc

0

εdε

2πv∗2
F

[f (−ε) − f (ε)]

[
1

�ω + 2ε + iη
− 1

�ω − 2ε + iη

]
, (30)

where we used the density of state in quinoid lattice ρ(ε) = 1
2πv∗2

F

|ε| [35]. v∗
F is a renormalized Fermi velocity given by [35,47]

v∗
F = √

wxwy

(
1 − 3

4 w̃2
0

)
. (31)

εc in Eq. (30) is a cutoff energy corresponding to the limit of validity of the linear electronic dispersion given by Eq. (11) and the
coefficient Cμ is given by

CL = A

[
sin2 ϕ(�q)

α′2 + α′2 cos2 ϕ(�q)

]
,

CT = A

[
α′2 sin2 ϕ(�q) + cos2 ϕ(�q)

α′2

]
, (32)

and A is a constant written as

A = gvgs

4

36
√

3

π

w′
y

wy

S ′

S

�

2Ma2ω0

(
β

2

)2

≡ C
w′

y

wy

S ′

S
. (33)

As mentioned in Ref. [31], one should substract the contribution of ω = 0 modes to avoid double counting of electron
contribution. The self-energy at zero temperature takes then the form

�L(�q → �0,ω) = 1(
1 − w̃2

0

) 3
2

[
sin2 �

α′2 + α′2 cos2 �

] [
AE∗

F − 1

4
A(�ω + iη) ln

(
�ω + 2E∗

F + iη

�ω − 2E∗
F + iη

)
+ iπ

]
,

�T (�q → �0,ω) = 1(
1 − w̃2

0

) 3
2

[
α′2 sin2 � + cos2 �

α′2

] [
AE∗

F − 1

4
A(�ω + iη) ln

(
�ω + 2E∗

F + iη

�ω − 2E∗
F + iη

)
+ iπ

]
, (34)

where we set � = ϕ(�q) and E∗
F = �v∗

F kF � EF (1 − ε
3 ) (see

Appendix A), with EF = vF kF being the Fermi energy in
undeformed graphene. Equation (34) reduces to that obtained
by Ando [31] in undeformed graphene for α′ = 1 and w̃0 = 0.
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III. RESULTS AND DISCUSSION

Figure 2 shows the dependence of the frequency shifts and
broadening of the LO and the TO modes as a function of the
Fermi energy EF in the dirty limit for a compressive strain
strength ε = −2%. The shifts are normalized to C = A

wy

w′
y

S
S ′

where A is given by Eq. (33). In an undoped system, the effect
of electron-phonon interaction on the frequency shifts is not
relevant. This effect is enhanced by introducing impurities in
the system or by increasing the strain amplitude as we will
show in the next section.

For clarity reasons, we will consider in the following strain
strength |ε| � 10%. It should be noted that the critical strain
for graphene is of 25%. Figure 3 shows the dependence of
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FIG. 2. (Color online) Frequency shifts (a) and broadening (b)
of LO (dashed line) and TO (dotted line) modes as a function of the
Fermi energy EF in the dirty limit 1

τω0
= 0.3 for a compressive strain

ε = δa

a
= −2%. The LO mode is along the strain axis. The solid line

is the result for the undeformed case.
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FIG. 3. (Color online) Frequency shifts of LO (dashed line) and
TO (dotted line) modes as a function of the Fermi energy EF in the
clean limit ( 1

τω0
= 0) and for a compressive strain ε = δa

a
= −20%.

The LO mode is along the strain axis. The solid line is the result
for the undeformed case. The inset shows the frequency shifts for
EF <

�ω0
2 .

the frequency shifts on the Fermi energy EF in the clean limit
( 1
τω0

= 0) for a compressive strain strength ε = −20%.
Due to the deformation, the degeneracy of LO and TO

modes, obtained in the undeformed graphene (solid line in
Fig. 3), is lifted. The logarithmic singularity at EF = �ω0

2
reported in the undeformed case is a robust feature which
persists under strain but takes place at EF = �ω0

2 (1 + ε
3 ) which

corresponds to E∗
F = �ω0

2 in Eq. (34).
According to Fig. 3, both TO and LO modes are red-shifted

leading to a lattice softening for EF < �ω0
2 (1 + ε

3 ). However,
the phonon frequencies increase with EF and the lattice
hardens for EF > �ω0

2 (1 + ε
3 ). Moreover, the frequency of

the LO mode, which is along the strain axis, is more shifted
compared the the TO mode. The LO mode is then more affected
by the electron-phonon interaction as shown by the broadening
behavior depicted in Fig. 4. The damping of the LO mode is
more pronounced than that of the TO mode which is found to
be more long lived than the modes of undeformed graphene.

This behavior can be understood from the structure of the
electronic dispersion. Along the strain direction, the electron
velocity is enhanced for a compressive deformation (ε < 0)
as vy = wy

�
� 3

2�
(1 − 4

3ε)at , while that in the perpendicular
direction is reduced as vx = wx

�
� 3

2�
(1 + 2

3ε)at .
The Fermi level changes as E∗

F � EF (1 − ε
3 ) which in-

creases for a compressive strain (Fig. 5). As a consequence,
the production of electron-hole pairs is furthered along the
strain direction, as shown in Fig. 5, since there are more
states which are not blocked by Pauli principle for a given
phonon frequency. However, in the direction perpendicular to
the strain, electron-hole processes, allowed in the undeformed
case, become forbidden by the Pauli exclusion principle. This
explains the long-lived TO phonon mode compared to the
modes of undeformed graphene.
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FIG. 4. (Color online) Broadenings of LO (dashed line) and TO
(dotted line) modes as a function of the Fermi energy EF in the clean
limit ( 1

τω0
= 0) and for a compressive strain ε = δa

a
= −20%. The

LO mode is along the strain axis. The solid line is the result for the
undeformed case.

The behavior of LO and TO modes is exchanged for � = 0
where the TO mode becomes along the strain direction. More-
over, the behavior is also exchanged for tensile deformation
(ε > 0). This feature can be understood from Eq. (34) showing
that the leading term for the frequency shifts is 1

α′2 > 1 in
compressive strain and α′2 > 1 for tensile deformation.

Figure 6 shows the frequency shifts and the broadening of
the phonon modes at � = π

3 . The difference in damping of
TO and LO modes, obtained for � = π

2 and � = 0, is clearly
reduced since both modes have a component along the strain
direction.

The logarithmic singularity obtained in the clean limit at
E∗

F = �ω0
2 (Fig. 3) is smeared out in the dirty limit as shown

in Fig. 7 for � = π
2 in the case of tensile and compressive

deformation. According to Fig. 7, the frequency shifts of LO
and TO modes depend on the Fermi level and the amount of
disorder. Away from E∗

F ∼ �ω0
2 , all modes show a blue-shift

contrary to the clean limit where LO and TO modes undergo a
red-shift (blue-shift) for compressive (tensile) strain at E∗

F <
�ω0

2 . The frequency blue-shift is reminiscent of that found by
Ando [31] in undeformed graphene in the dirty limit.

The dependence of the frequency shifts on the doping level
and the amount of disorder may explain the discrepancy in the
experimental values of the shift rates of G+ and G− bands as
function of the strain [15–17,20,22] and which was ascribed
to a difference in the strain calibration. We suggest that this
discrepancy may be due to the doping and the disorder amount
in the sample.

In Ref. [22], the authors studied the behavior of the G band
in deformed graphene using polarized light. They reported
that the G peak can be regarded as a mixture of three peaks
corresponding to the undeformed case (G0), and compressive
(G−) and tensile (G+) deformation. The authors attributed
the presence of both blue- and red-shifted frequencies (G+
and G− bands) to the anisotropy of the applied deformation.

FIG. 5. (Color online) Electron-hole process responsible of
phonon hardening corresponds to the states where production of
electron-hole pairs is forbidden by the Pauli principle. These states
correspond to the dashed region for undeformed case and the gray
area for compressive strain. The Fermi level (E∗

F ) increases under
compressive deformation and the Fermi velocity vy (vx) along
(perpendicular) to the strain direction (y ′y) is enhanced (reduced)
compared to the isotropic case. This leads to more (less) electron-hole
pairs contributing to phonon softening. The dashed and solid arrows
(crossed solid and dashed arrows) denote the electron-hole process
leading to phonon softening (hardening) for the undeformed and
compressed case, respectively.

According to Figs. 3 and 7, for E∗
F > �ω0

2 and � = π
2 , the LO

mode (TO mode) is blue-shifted (red-shifted) compared to the
undeformed mode (solid line in the figures) for compressive
strain. The experimental results of Ref. [22] could then be the
signature of the electron-phonon interaction. The shifted G+
and G− modes could be assigned to the LO and TO modes for
a given uniaxial strain at a doping level E∗

F > �ω0
2 .

In Fig. 8, we plot the broadening of phonon modes as a
function of the Fermi energy for � = π

2 in the dirty limit. The
figure shows that the damping of the mode along the strain
direction is enhanced as the amplitude of the deformation
increases. This reflects the increasing number of the electron-
hole pairs leading to decaying phonons (Fig. 5).

The strain dependence of the frequency shifts is depicted
in Fig. 9 where we considered the case of undoped graphene
in the dirty limit (EF = 0, 1

τω0
= 0.1) and the doped graphene

( EF

�ω0
= 0.45) in the clean limit since the shifts in the clean un-

doped case are small. The shift behaviors could be understood
from the processes depicted in Fig. 5.
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FIG. 6. (Color online) Frequency shifts and broadenings of LO
(dashed line) and TO (dotted line) modes as a function of the
Fermi energy EF in the clean limit ( 1

τω0
= 0) and for a compressive

deformation ε = δa

a
= −20%. The phonon angle is � = π

3 . The solid
line is the result for the undeformed case.

Figure 9 shows a linear behavior of the frequency shift as a
function of the strain strength for small strain. This is reminis-
cent of the experimental results reported in Refs. [17,20]. The
strain rates and slopes of the frequency shifts are dependent on
the doping level and the disorder amount. According to Fig. 9,
the linearity is lost by increasing the strain. It is worth to note
that a departure from a linear behavior was also reported in
Ref. [23] for the strain dependence of the frequency shift of
the 2D Raman band. Such behavior could also be observed
in Raman spectra of α-(BEDT)2 I2 salt showing a strong
anisotropic electronic Dirac spectrum.

In the limit of strong strain, we expect a decoupling of
electron-hole pairs from the phonon mode along (perpendicu-
lar) to the strain axis for tensile (compressive) deformation as
shown in Fig. 10. Such effect could not be observed in graphene
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FIG. 7. (Color online) Frequency shifts of LO and TO modes as
a function of the Fermi energy EF in the dirty limit ( 1

τω0
= 0.1)

and for compressive strains of −10% and −20%. The LO phonon
mode is along the strain direction. The solid line is the result for the
undeformed case.

where the critical strain is of 25% but may be brought out in
α-(BEDT)2 [48,49].

A hallmark feature of the doping dependence of the
frequency shifts is the presence of crossings of LO and
TO modes (Figs. 3 and 7). At the corresponding Fermi
energy, no G-band splitting is expected due to electron-phonon
interaction. Experimentally, the G+ and the G− bands should
then merge in uniaxial strained graphene by doping the sample
at the critical value corresponding to the crossing of LO and
TO modes. This feature could only be observed in the absence
of the shear strain which induces a splitting of the G band. A
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FIG. 8. (Color online) Broadenings of LO and TO modes as a
function of the Fermi energy EF in the dirty limit ( 1

τω0
= 0.1) and for

compressive strains of −10% and −20%. The LO phonon mode
is along the strain direction. The solid line is the result for the
undeformed case.
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FIG. 9. (Color online) Strain dependence of the of LO (dashed
line) and TO (dotted line) frequency shifts in (a) undoped case and
in the dirty limit ( 1

τω0
= 0.1), (b) in doped case ( EF

�ω0
= 0.45) and in

the clean limit ( 1
τω0

= 0), and (c) in doped case ( EF

�ω0
= 0.6) and in

the dirty limit ( 1
τω0

= 0.1). The LO phonon mode is along the strain
direction.
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FIG. 10. (Color online) (a) Frequency shifts and (b) broadenings
of the of LO (dashed line) and TO (solid line) as a function of the
Fermi energy EF in the dirty limit ( 1

τω0
= 0.1) and for a strong

tensile deformation. The LO phonon mode, which is along the strain
direction, decouples from the electron-hole pairs.

possible crossing of LO and TO modes was also reported in
carbon nanotubes [40].

In Fig. 11, we plot the dependence of the phonon frequency
shifts on the phonon angle � with respect to the axis
perpendicular to the strain direction. The shifts of the LO and
TO modes display a periodic modulation with a relative shift
of 90◦. According to Eq. (34), this dependence is due to the
anisotropy of the electronic dispersion relation. Considering
the isotropic case (α′ = 1), the shifts become independent on
� as in isotropic honeycomb lattice [31].

Our results are in agreement with the experimental
data [17,22] and numerical calculations [25] showing a
periodic modulation of the intensity of G+ and the G− peaks as
a function of the angle between the incident light polarization
and the strain axis. The relative shifts of the two bands are
also found to be of 90◦. Our results support the idea presented
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FIG. 11. (Color online) Angle dependence of the frequency
shifts of the LO (dashed line) and TO (dashed-dotted line) in the
doped case (EF = 0.5�ω0), in the dirty limit ( 1

τω0
= 0.1), and for

a compressive deformation. � (in degrees) is the angle of optical
phonon with respect to the x axis perpendicular to the strain direction.
The solid line is the result for the undeformed case.

in the experimental study of Mohiuddin et al. [17] suggesting
that the polarization dependence of the G peaks is due to the
anisotropy of the electronic spectrum and such dependence is
the signature of the electron-phonon interaction. It is worth
to stress that Sasaki et al. [50] proposed that the nature of the
graphene edges contributes also to the polarization dependence
of Raman bands in strained graphene.

IV. CONCLUDING REMARKS

We have derived the frequency shifts and the broadenings
of the longitudinal (LO) and transverse (TO) optical phonon
modes at the � point in graphene under uniaxial strain
disregarding the contribution of shear strain component. We
show that the Raman G band, corresponding to a double-
degenerate mode in undeformed graphene, may split into two
peaks due to electron-phonon interaction. These peaks are
assigned to the LO and the TO modes which are found to
be strongly dependent on the Fermi level and the amount of
disorder. This dependence may explain the difference in the
experimental results giving the strain rates of the frequency
shifts of the G+ and G− modes.

Moreover, we found that the splitting of the G band is due
to the anisotropy of the electronic spectrum. The tilt of Dirac
cones, arising also from the strain, is found to be irrelevant for
the relative frequency shift of the LO and TO modes since it
leads to a global shift of the G peak.

We also show that the electron-phonon intercation con-
tributes to the Raman polarization dependence of the G peaks
in strained graphene. This contribution reflects the anisotropy
of the electronic spectrum. The optical phonon mode along
the strain is found to be damped (long lived) for compressive
(tensile) strain. The frequency shifts and the lifetime of the op-
tical phonons are substantially dependent on the strain strength
and the phonon angle. At relatively strong strain, it is possible

to induce a decoupling of the phonon mode perpendicular to
the compressive strain axis from electron-hole pair produc-
tion process. The signature of the strain-induced anisotropic
electronic dispersion could also be brought out in the �-point
magnetophonon resonance at high magnetic field [51].
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APPENDIX A: WEYL HAMILTONIAN BY �k · �p METHOD

The �k · �p method was used by Ando [31,42] to derive
the Dirac Hamiltonian in undeformed graphene taking only
into account the hopping integral to the first-neighboring
carbon atoms. Following Ref. [31], we derive the Weyl
Hamiltonian for uniaxial strained graphene considering first-
and second-neighboring hopping integrals. We start with the
eigenproblem given by Eq. (7) where the functions ψA( �RA)
and ψB( �RB) are written as

ψA( �RA) = a†( �RA)�A( �RA),

ψB( �RB) = b†( �RB)�B( �RB), (A1)

where the vectors a( �RA), b( �RB), �A( �RA), and �B( �RB) are
given by

a( �RA) =
(

e−i�kD · �RA

e−i�kD′ · �RA

)
, b( �RB) =

(
e−i�kD · �RB

−e−i�kD′ · �RB

)
,

�A( �RA) =
(

FD
A ( �RA)

FD′
A ( �RA)

)
, �B( �RB) =

(
FD

B ( �RB)

FD′
B ( �RB)

)
. (A2)

The left-hand side of Eq. (7) can be written, at �RA, as

εa†( �RA)FA( �RA) = ε
∑
�RA

g(�r − �RA)a( �RA)a†( �RA)FA( �RA),

(A3)
where g(�r) is a smoothing function satisfying∑

�RA

g(�r − �RA) =
∑
�RB

g(�r − �RB) = 1,

f (�r)g(�r − �RA) � f ( �R)g(�r − �R). (A4)

f (�r) is an envelope function [31]. These properties yield to∑
�RA

g(�r − �RA)ei(�kD′−�kD)· �RA

=
∑
�RB

g(�r − �RB)ei(�kD′−�kD)· �RB � 0,

∑
�RA

g(�r − �RA)a( �RA)a†( �RA) �
(

1 0
0 1

)
, (A5)
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which is reminiscent of the δ function [31]. Equation (7) can
then be written, around the A site, as

ε
∑
�RA

g(�r − �RA)a( �RA)a†( �RA)FA(�r)

= −
3∑

l=1

t (l)
nn

∑
�RA

g(�r − �RA)a( �RA)b†( �RB)FB(�r − �τl)

−
6∑

l=1

t (l)
nnn

∑
�RA

g(�r − �RA)a( �RA)a†( �RA − �al)FA(�r − �al).

(A6)

The left-hand side of Eq. (A6) reduces to εFA( �RA), and in the
right-hand side we set

FB(�r − �τl) � FB(�r) −
(

�τl · ∂

∂�r
)

FB(�r),

FA(�r − �al) � FA(�r) −
(

�al · ∂

∂�r
)

FA(�r). (A7)

We then obtain

∑
�RA

g(�r − �RA)a( �RA)b†( �RA − �τl) �
(

ei�kD ·�τl 0

0 −e−i�kD′ ·�τl

)
.

(A8)

Applying this term to FB(�r) in Eq. (A6) and summing over
l gives rise to a diagonal term of the form (2 cos θ )1 = − t ′

t
1

which leads to a shift of the total energy.
The term (�τl · ∂

∂�r )FB(�r) in Eq. (A7), summed over l and
applied to FB(�r), gives

∑
l

(
�τl · ∂

∂�r
) (

FD
B (�r)

FD′
B (�r)

)

=
(

t[−a
√

3 sin θ kx + ia cos θ ky − iat ′(1 + ε)ky]FD
B (�r)

t[a
√

3 sin θ kx + ia cos θ ky − iat ′(1 + ε)ky]FD′
B (�r)

)
.

(A9)

In Eq. (A6), the contribution of the first-neighbor hopping
integrals gives then rise to the following eigenproblem near

the D point:

εFA(�r) =
(

wxkx − iwyky 0
0 wxkx + iwyky

)
FB(�r), (A10)

where wx = √
3at sin θ , wy = −ta cos θ + t ′a(1 + ε) =

3
2 t ′(1 + 2

3ε)a, kx = −i ∂
∂x

, and ky = −i ∂
∂y

.
For the second-neighbor hopping integrals, one has

∑
�RA

g(�r − �RA)a( �RA)a†( �RA − �al) �
(

ei�kD ·�al 0

0 e−i�kD′ ·�al

)

(A11)

and ∑
l

t (l)
nnne

−i�kD ·�al

(
�al · ∂

∂�r
)

= w0xkx, (A12)

where w0x = 2
√

3a(tnnn sin 2θ + t ′nnn sin θ ).
The electronic Hamiltonian, near the D and D′ points, takes

the form

HD
ξ = ξ

(
w0xkx wxkx − iξwyky

wxkx + iξwyky w0xkx

)
(A13)

with ξ = + (−) at the D (D′) point.
wx and wy can be expressed as a function of the strain

strength as

wx =
√

3at sin θ � 3
2at

(
1 + 2

3ε
)
, (A14)

wy = 3
2 t ′

(
1 + 2

3ε
)
a � 3

2at
(
1 − 4

3ε
)
. (A15)

In graphene, w̃0 =
√

(w0x

wx
)2 + (w0y

wy
)2 � 0.6ε [35]. In the

present case, we have w0y = 0.

APPENDIX B: ELECTRON-PHONON
EFFECTIVE HAMILTONIAN

Regarding the effect of the lattice distortion on the hopping
integral [Eq. (18)], an extra term appears in the electronic
Hamiltonian [Eq. (A13)]. This term arises from the contri-

bution of the hopping-term correction ∂t
(l)
nn

∂dl
in Eq. (7). This

contribution is of the form

∑
l

∑
�RA

g(�r − �RA)a( �RA)b( �RA − �τl)

(
−∂t (l)

nn

∂dl

)√
2

( �τl

dl

)
· �u(�r)FB(�r)

=
∑

l

(
e−i�kD ·�τl 0

0 −e−i�kD′ ·�τl

) (
−∂t (l)

nn

∂dl

)√
2

( �τl

dl

)
· �u(�r)FB(�r), (B1)

where the summation over l around the D point gives∑
l

−e−i�kD ·�τl

(
−∂t (l)

nn

∂dl

) √
2

( �τl

dl

)
· �u(�r) =

√
2

ta

(
∂t

∂a

)
[iwxux + w′

yuy], (B2)

where dl = a and we used the Harrison’s law [35]: 1
tnndl

( ∂t
(l)
nn

∂dl
) = − 2

d2
l

. Here, w′
y = wy − 2εt ′a(1 + ε) � wy(1 − 4

3ε). This

contribution gives rise to the effective phonon-electron Hamiltonian given by Eq. (21).
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