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Orbital magnetic ratchet effect
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Magnetic ratchets—two-dimensional systems with superimposed noncentrosymmetric ferromagnetic
gratings—are considered theoretically. It is demonstrated that excitation by radiation results in a directed motion
of two-dimensional carriers due to the pure orbital effect of the periodic magnetic field. Magnetic ratchets based
on various two-dimensional systems such as topological insulators, graphene, and semiconductor heterostructures
are investigated. The mechanisms of the electric current generation caused by both radiation-induced heating
of carriers and by acceleration in the radiation electric field in the presence of a space-oscillating Lorentz force
are studied in detail. The electric currents sensitive to the linear polarization plane orientation as well as to
the radiation helicity are calculated. It is demonstrated that the frequency dependence of the magnetic ratchet
currents is determined by the dominant elastic-scattering mechanism of two-dimensional carriers and differs for
the systems with linear and parabolic energy dispersions.
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I. INTRODUCTION

Ratchets are periodic structures with broken spatial sym-
metry. A directed motion of particles is possible in these
systems if they are driven out of thermal equilibrium even in
the absence of an averaged force. Ratchets can be realized in
various condensed-matter, biological, and chemical systems,
which are intensively studied nowadays [1,2]. Advances
in semiconductor nanotechnology allow fabricating various
heterostructures with superimposed lateral superlattices which
demonstrate ratchet effects due to lack of space inversion
[3–6]. The ratchets can be based on both traditional het-
erostructures and on graphene [7,8].

The superlattice is often made by depositing metal grating
above the two-dimensional structure, and recently semi-
conductor heterostructures with a grating of ferromagnetic
stripes on top of the sample have been studied [9]. These
structures can be called magnetic ratchets. The ratchet effect
has been demonstrated in the presence of space-oscillating
magnetic fields [10,11]. A ratchet effect purely magnetic
in origin has been observed in a superconducting-magnetic
nanostructure hybrid [12]. Pure spin current is generated in
systems with nonuniform magnetic fields [13]. The possibility
for large ratchet currents has been demonstrated in magnetic
superlattices on the surface of topological insulators [14].
However, all studies on magnetic ratchets are focused on
the Zeeman interaction of ferromagnetic metallic stripes with
spins of two-dimensional carriers.

In this work, we consider an orbital effect of space-periodic
magnetic field. We investigate a two-dimensional structure
with a superimposed noncentrosymmetric magnetic lateral
superlattice. The magnetic field B is oriented normally to
the two-dimensional plane and periodically changes with an
in-plane coordinate x, as shown in Fig. 1. Under excitation
of this system by electromagnetic radiation, the amplitude of
the electric field acting on two-dimensional carriers, E0(x),
is also periodically modulated in space. This is caused by,
e.g., modulated reflection of the radiation from the metallic
stripes. It is crucial for the ratchet effect that, due to lack of
the space inversion, the periodic functions B(x) and E2

0(x)
can have some phase difference. The parameter controlling

the existence of the magnetic ratchet current is given by

� = B(x)
d|E0(x)|2

dx
, (1)

where the bar denotes averaging over the x coordinate. If � is
nonzero, then the electric current is present.

The studied system has a symmetry Cs with only one
reflection plane (zx), and the normal component of the mag-
netic field changes its sign under reflection in this plane. The
symmetry analysis yields the following expressions for the
two-dimensional current density j generated in the magnetic
ratchet under excitation by polarized radiation:

jx = �[χL(exe
∗
y + eye

∗
x) + χCi(exe

∗
y − eye

∗
x)],

jy = �[χ0 + χ̃L(|ey |2 − |ex |2)]. (2)

Here normally incident radiation with the electric field E =
[E0(x)e exp (−iωt) + c.c.] is considered, with e being a com-
plex polarization vector. We see that unpolarized radiation can
generate the current perpendicular to the modulation direction
(jy ∝ χ0), while under circular polarization the current along
the x axis (jx ∝ χC) is excited. Linearly polarized radiation
excites both jx ∝ χL and jy ∝ χ̃L depending on the orientation
of the polarization plane relative to the modulation direction.
We consider the space-modulated structure where, in contrast
to Ref. [15], the current is generated at normal orientation
of the magnetic field, and its direction is determined for a
certain polarization by the modulation direction x. Note that an
average normal magnetic field and a homogeneous excitation
do not result in the current generation.

In the next section, we investigate the current caused by
heating of the carriers. In Sec. III, we study the polarization-
dependent currents which are caused by acceleration of carriers
by the radiation electric field. Discussion of the results for
magnetic ratchets based on semiconductor heterostructures,
graphene, and topological insulators is given in Sec. IV, and
Sec. V concludes the paper.
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FIG. 1. (Color online) Studied structure with normal space-
oscillating magnetic field B(x) caused by noncentrosymmetric
ferromagnetic grating with a period d . At incidence of radiation
of frequency ω, the transmitted intensity is periodically modulated
which results in space-oscillating carrier temperature shown by
different colors. If the magnetic field and the temperature gradient are
in phase, the ratchet current is excited due to the Nernst-Ettingshausen
effect.

II. NERNST-ETTINGSHAUSEN RATCHET

Under unpolarized excitation, the electric current is gener-
ated due to heating of the carriers. The absorbed intensity-
modulated radiation creates a space-oscillating distribution
of the electron temperature. In the presence of the magnetic
field, the Lorentz force acting on carriers results in the electric
current jy (the Nernst-Ettingshausen effect).

These currents flow in opposite directions in the areas with
positive and negative temperature gradients; see yellow arrows
in Fig. 1. If the magnetic field that is modulated in the x

direction is in phase with the temperature gradient, so that the
average (1) is nonzero, then a net ratchet current is generated.
In this section, we derive the current caused by this mechanism,
which can be called the Nernst-Ettingshausen ratchet current.

The radiation with the space-modulated intensity creates a
periodic modulation of the electron temperature. The space-
modulated correction to the temperature δT (x) is found from
the energy balance equation [5,7]

δT (x)

τε

= 2|E0(x)|2 e2τtrvF/pF

1 + (ωτtr)2
, (3)

where τε is the energy relaxation time, vF, pF are the
Fermi velocity and Fermi momentum, and τtr is the transport
relaxation time.

The electric current density of the Nernst-Ettingshausen
effect is given by [16,17]

jNE
y =

(
βyx − βxx

σyx

σxx

)
dT

dx
, (4)

where σ̂ and β̂ are the conductivity and the thermoelectric
tensors, respectively. For degenerate electrons with the Fermi
energy εF � T , we have

σxx = Ne2τtrvF

pF
, βxx = −Ne2π2T

3cp2
F

d(τtrpFvF)

dεF
,

(5)

σyx = −B
Ne3τ 2

trv
2
F

cp2
F

, βyx = B
Ne2π2T

3cp2
F

d
(
τ 2

trv
2
F

)
dεF

.

Here, N is the two-dimensional concentration. Hereafter, we
assume that the magnetic field is weak: ωcτtr � 1, where ωc =
eBvF/(cpF) is the cyclotron frequency. This condition means
that the cyclotron radius greatly exceeds the mean free path
vFτtr.

By averaging the current density (4) over the structure
period while accounting for Eq. (3) and the coordinate
dependence of the magnetic field, we obtain the Nernst-
Ettingshausen contribution to the magnetic ratchet current in
the form jy = �χNE

0 , with � given by Eq. (1) and

χNE
0 = 2π2Ne4T τεv

2
Fτ

2
tr

3cp2
F[1 + (ωτtr)2]

d

dεF

(
vFτtr

pF

)
. (6)

This equation demonstrates that χNE
0 has a Lorentzian fre-

quency dependence. However, the magnetic ratchet current
is determined by energy dispersion and an elastic-scattering
mechanism.

For magnetic ratchets based on topological insulators or
graphene, the carriers have linear energy dispersion εp = v0p,
and the transport relaxation time is τtr ∝ 1/εF for scattering
by short-range defects, while for Coulomb impurity scattering,
τtr ∝ εF. It follows from Eq. (6) that the Nernst-Ettingshausen
contribution is absent at Coulomb impurity scattering. In
contrast, for short-range defects, we have

χNE
0 = − 4π2Ne4T τεv

2
0τ

3
tr

3cp4
F[1 + (ωτtr)2]

. (7)

The situation is opposite for parabolic energy dispersion
realized in ratchets based on semiconductor heterostructures:
The Nernst-Ettingshausen contribution is zero at short-range
scattering when τtr is independent of the Fermi energy, while
at Coulomb scattering with τtr ∝ εF, this contribution is given
by Eq. (7) where v2

0 is substituted by −v2
F.

III. POLARIZATION-DEPENDENT MAGNETIC RATCHET

For calculation of the polarization-dependent currents, we
solve the Boltzmann kinetic equation for the distribution
function f p(x). We assume that the radiation photon energy �ω

is much smaller than εF. In order to account for the polarization
of radiation, we consider its electric field as a force acting on
the carriers together with the Lorentz force:

F p(x) = e[E(x)e−iωt + c.c.] + e

c
v p × B(x). (8)

Here, v p is the velocity of a carrier with the momentum p.
The kinetic equation has the following form:

[∂t + v p,x∂x + F p(x) · ∇ p]f p(x) = St(f p), (9)

where the right-hand side is the elastic collision integral.
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We assume that the electron mean free path vFτtr and the
energy-diffusion length vF

√
τtrτε are small compared with

the superlattice period d. The magnetic field is taken into
account in the first order, provided ωcτtr � 1. We also neglect
the ac diffusion, provided vF � ωd. On the other hand, no
restrictions are imposed on the value of ωτtr. In the first order
in the electric field, the solution has the form

f (1)
p (x) = e(−df0/dp)τ1(p)/p

1 − iωτ1(p)
p · E(x) + c.c. (10)

Here, f0(p) is the Fermi-Dirac distribution function, and we
introduce elastic relaxation times of the nth angular harmonics
of the distribution function τn(p) (n = 1,2). Note that the
transport time τtr = τ1(pF).

We obtain the correction to the distribution function as
a result of three more iterations of the kinetic equation
accounting for the magnetic field B(x), the space gradient
∂x , and once more the radiation electric field E(x). The
gradient should not be taken at the last stage because the result
nullifies after averaging over the coordinates. Therefore, after
substitution of f

(1)
p (x) into the kinetic Eq. (9), we obtain the

four corrections which differ by the order of perturbations:

δf (∂xEB)
p , δf (B∂xE)

p , δf (E∂xB)
p , δf (∂xBE)

p .

The electric current density is given by

j = νe
∑

p

v p δf p, (11)

where the factor ν accounts for the spin and valley degeneracy:
ν = 2,4 and 1 for magnetic ratchets based on semiconductor
heterostructures, graphene, and topological insulators, respec-
tively. Correspondingly, we get four contributions to the ratchet
current.

Calculations show that all four contributions yield

χ̃L = χL,

i.e., the currents sensitive to the linear polarization plane
orientation, given by Eq. (2), have equal magnitudes. The
contributions to χL, to the helicity-dependent current χC , as
well as to the polarization-independent current χ0, which is
not related to heating, are given by

χ
(∂xEB)
0 = Ne4vFτtr

4c[1 + (ωτtr)2]

[
1 − ω2τtrτ2

1 + (ωτ2)2
τ2

(
v2

Fτ
2
tr

p2
F

)′

−τtr

(
v2

Fτ
2
tr

)′

p2
F

]
, (12a)

χ
(∂xEB)
L = Ne4vFτ

2
tr

4cp2
F[1 + (ωτtr)2]

(
v2

Fτ
2
tr

)′
, (12b)

χ
(∂xEB)
C = Ne4vFτtr

4c[1 + (ωτtr)2]

[
ωτ2(τtr + τ2)

1 + (ωτ2)2

(
v2

Fτ
2
tr

p2
F

)′

−
(
v2

Fτ
2
tr

)′

ωp2
F

]
. (12c)

Hereafter, the prime means differentiation over pF.

The second contribution is given by

χ
(B∂xE)
L = Ne4v2

Fτ
3
tr (pFvFτtr)′

2cp3
F[1 + (ωτtr)2]2

, (13a)

χ
(B∂xE)
0 = χ

(B∂xE)
L + Ne4v2

Fτ
2
tr

4cpF[1 + (ωτtr)2]2

× 1 − ω2τtr(τtr + 2τ2)

1 + (ωτtr)2
τ2

(
vFτtr

pF

)′
, (13b)

χ
(B∂xE)
C = Ne4v2

Fτ
2
tr

4cpF[1 + (ωτtr)2]2

×
[
ωτ2

(
2τtr + τ2 − ω2τ 2

trτ2
)

1 + (ωτ2)2

(
vFτtr

pF

)′

−
(
1 − ω2τ 2

tr

)
(pFvFτtr)′

ωp2
F

]
. (13c)

The next contribution is sensitive only to the linear
polarization,

χ
(E∂xB)
L = − Ne4τtr

2cp3
F[1 + (ωτtr)2]

(
pFv

3
Fτ

2
trτ2

)′
, (14)

while χ
(E∂xB)
0 = χ

(E∂xB)
C = 0. In contrast, the fourth contribu-

tion does not change at rotation of the linear polarization plane
(χ (∂xBE)

L = 0), but has a polarization-independent contribution
and one sensitive to the radiation helicity,

χ
(∂xBE)
0 = Ne4v2

Fτtrτ
2
2 [1 − ω2τ2(2τtr + τ2)]

2cpF[1 + (ωτtr)2][1 + (ωτ2)2]2

(
vFτtr

pF

)′
, (15a)

χ
(∂xBE)
C = Ne4v2

Fτtrτ
2
2 ω

(
τtr + 2τ2 − ω2τtrτ

2
2

)
2cpF[1 + (ωτtr)2][1 + (ωτ2)2]2

(
vFτtr

pF

)′
.

(15b)

The relaxation time τ2 is present because, at the intermediate
stages of iterations of the kinetic equation, we obtained not
only the first but also the second angular harmonics of the
distribution function [18].

The above derived expressions are valid for any energy
dispersion of the two-dimensional carriers and for arbitrary
dependence of the scattering times on the Fermi wave vector.
In the next section, we analyze the obtained results for
magnetic ratchets based on two-dimensional systems with
a linear energy dispersion such as topological insulators
or graphene and on semiconductor heterostructures with a
parabolic dispersion.

IV. DISCUSSION

The results of the previous section demonstrate an existence
of a ratchet current independent of the radiation polarization
state, χ0, which is not related to the heating of carriers.
Comparing these results with Eqs. (6) and (7), we obtain
an estimate for the ratio of the Nernst-Ettingshausen and
elastic-scattering contributions to χ0:

χNE
0

χ0
∼ π2 T

εF

τε

τtr
.
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At liquid-helium temperature, the energy relaxation time
of two-dimensional carriers has an order of nanoseconds,
while the transport scattering time is τtr ∼ 1 ps. Therefore,
the Nernst-Ettingshausen contribution to the polarization-
independent current dominates at low temperatures for scat-
tering by short-range defects in ratchets based on topological
insulators or graphene and for scattering by smooth Coulomb
potential in semiconductor heterostructures. However, in two
opposite cases, χNE

0 = 0 (see Sec. II), so the elastic-scattering
contribution is dominant.

Equations derived for χi (i = 0,L,C), which are the sums
of four contributions,

χi = χ
(∂xEB)
i + χ

(B∂xE)
i + χ

(E∂xB)
i + χ

(∂xBE)
i , (16)

demonstrate that the frequency dependencies of the magnetic
ratchet currents strongly depend on both the carrier energy
dispersion and dominant elastic-scattering mechanism.

Characteristic values of χi can be estimated as

χ = Ne4v3
Fτ

4
tr

cp3
F

. (17)

The value of the ratchet current density is j ∼ � χ and has an
order of 1 μA/cm for systems with two-dimensional concen-
tration N = 1012 cm−2, Fermi velocity vF = 5 × 107 cm/s,
transport relaxation time τtr = 1 ps, period d = 1 μm, in the
magnetic field B = 1 T and for excitation power 1 W/cm2

with modulation amplitudes of both the magnetic field and ex-
citation intensity 1%. Photocurrents of this order of magnitude
can be easily detected experimentally.

For magnetic ratchets based on topological insulators or
graphene, the energy dispersion of two-dimensional carriers
is linear. We consider the two most actual elastic-scattering
mechanisms: scattering by Coulomb impurities and by short-
range defects. In the case of Coulomb impurities, the elastic-
scattering times have the following dependence on the Fermi
momentum:

τtr = 3τ2 ∝ pF.

Figure 2 shows frequency dependencies of the magnetic
ratchet currents for a linear energy dispersion. At Coulomb
impurity scattering, the polarization-independent current ∝ χ0

reverses its direction at ω ≈ τ−1
tr . The current sensitive to

the linear polarization degree ∝ χL nullifies as well, but it
occurs at ωτtr ≈ 2. In contrast, the radiation-helicity sensitive
contribution χC is sign constant, but it has a maximum at
ωτtr ≈ 0.6, as shown in Fig. 2(a).

At scattering by short-range defects, the situation differs
drastically. The relaxation times have the following depen-
dence on the Fermi momentum:

τtr = 2τ2 ∝ 1/pF.

As a result, the linear-polarization sensitive ratchet current is
absent: It follows from Eqs. (12)–(14) that the contribution
χ

(B∂xE)
L ∝ (pFτtr)′ = 0, and two other contributions, χ

(E∂xB)
L

and χ
(E∂xB)
L , exactly cancel each other. The polarization-

independent contribution changes its sign at ωτtr ≈ 0.6 and
has a maximum at ωτtr ≈ 1.5, as shown in Fig. 2(b). The
helicity-sensitive contribution χC has a maximum at ωτtr ≈ 1

FIG. 2. (Color online) Frequency dependencies of χi/χ (i =
0,L,C) for systems based on topological insulators or graphene
(a) at Coulomb impurity scattering and (b) at scattering by short-range
impurities. The inset highlights the region where χL changes its sign.

in this case. At ω → 0, it tends to zero since the circular-
polarization-dependent effects cannot be present in the static
limit. This occurs at ω ∼ τ−1

ε � τ−1
tr ; see Ref. [7] for details.

Now we turn to magnetic ratchets based on semiconduc-
tor heterostructures. In this case, the energy dispersion is
parabolic, and for Coulomb impurity scattering, we have

τtr = 2τ2 ∝ p2
F.

Substituting this into Eqs. (12)–(15), we obtain nonzero results
for all ratchet currents. The frequency dependencies are shown
in Fig. 3(a). Both χ0 and χL change their signs at ω ≈ τ−1

tr .
The helicity-dependent ratchet current ∝ χC behaves as 1/ω at
both large and small ωτtr and tends to zero at low frequencies
ω ∼ τ−1

ε .
Finally, at scattering by short-range defects, we have, for

two-dimensional carriers with a parabolic energy dispersion,

τtr = τ2,

and both scattering times are independent of pF. In this case,
the ratchet currents have amplitudes that are approximately
two times smaller than at Coulomb impurity scattering, as
shown in Fig. 3(b). The polarization-independent contribution
χ0 has a similar frequency behavior, while χL increases in the
frequency range 0 < ω < τ−1

tr and then decreases as 1/ω2 at
high frequencies. The helicity-dependent contribution χC has
a maximum at ωτtr ≈ 0.6 and then drops as 1/ω.

Results of calculations demonstrate that the most interesting
features in the frequency dependence of the magnetic ratchet

125316-4



ORBITAL MAGNETIC RATCHET EFFECT PHYSICAL REVIEW B 90, 125316 (2014)

FIG. 3. (Color online) Frequency dependencies of χi/χ (i =
0,L,C) for magnetic ratchets based on heterostructures with a
parabolic energy dispersion (a) at Coulomb impurity scattering and
(b) at scattering by short-range defects.

current are observed at ω ∼ τ−1
tr . This corresponds to the

terahertz frequency range, where ratchet currents are studied
intensively; see Refs. [3–5]. These frequencies are higher
than the characteristic plasmon frequency in the periodic
two-dimensional system. For lower frequencies where the
plasmon resonance is achieved, we expect enhancement of the
ratchet current, as has been demonstrated in similar structures
with nonmagnetic grating [6]. In sufficiently strong magnetic
fields, some new features in the magnetic ratchet current can
be present due to excitation of magnetoplasmons.

V. CONCLUSION

In conclusion, we have demonstrated a possibility of the
orbital magnetic ratchet effect. The microscopic theory of this
phenomenon is developed for the structures based on topolog-
ical insulators, graphene, and semiconductor heterostructures.
The Nernst-Ettingshausen ratchet current is shown to exist
only at short-range scattering in the systems with a linear
energy dispersion and at Coulomb impurity scattering for
parabolic dispersion. In the opposite cases, the polarization-
independent current is not related to the heating of carriers. The
ratchet currents sensitive to the linear and circular polarization
of radiation exist at any elastic-scattering potential, but their
frequency dependencies differ strongly for systems with linear
and parabolic dispersions.
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