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Superradiance and enhanced luminescence from ensembles of a few self-assembled quantum dots
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We study theoretically the evolution of photoluminescence (PL) from homogeneous and inhomogeneous
ensembles of a few coupled quantum dots (QDs). We discuss the relation between signals from a given QD
ensemble under strong and weak excitation (full inversion and linear-response regimes): A system homogeneous
enough to manifest superradiant emission when strongly inverted shows a nonexponential decay of the PL
signal under spatially coherent weak excitation. In an inhomogeneous ensemble, the PL decay is always nearly
exponential with a qualitatively different form of the time dependence in the two excitation regimes and with a
higher rate under weak excitation.
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I. INTRODUCTION

Optical properties of arrays and ensembles of quantum dots
(QDs) continue to attract attention both from a theoretical
[1–5] and an experimental [6–8] point of view. This interest
is certainly motivated to a large extent by the possible
applications, in particular in laser structures [9,10]. However,
it is also driven by purely scientific interest in the fundamental
properties of these widely studied systems, which still seem
to be not completely understood. One of the currently debated
questions is the role of collective (superradiant) effects in
the luminescence of QD ensembles. Signatures of collective
emission were found in the time-resolved photoluminescence
(PL) of planar QD samples [6] and QD stacks [7]. In both cases,
the coupling between the dots [7,11] seems to be essential [12]
in order to overcome the detrimental effect of the ensemble
inhomogeneity on the collective dynamics [13,14].

In our recent work [12], we were able to propose a
model that reproduced the observed collective enhancement of
spontaneous emission in QD ensembles [6]. In that study, we
assumed weak excitation of the inhomogeneous QD system
and showed, in accordance with the experimental results,
that the collective emission effects under these conditions
are manifested by an increase of the PL decay rate, while
the general form of the time dependence of the PL signal
remains essentially exponential. On the other hand, the
usual superradiance [15,16] is observed in strongly excited
(occupation-inverted), homogeneous atomic samples, where
it is manifested as a delayed, sudden outburst of radiation
from the system [17], which therefore shows a markedly
nonexponential behavior.

While controlling the degree of initial inversion of a QD
ensemble may be out of the question, at least at the current
stage of development of the experimental techniques, it seems
reasonable to try to extend the theoretical analysis in order to
better relate the QD “superradiance” to its atomic prototype.
More specifically, it might be interesting to compare the PL
dynamics in inhomogeneous systems under strong excitation
(full occupation inversion) and under weak excitation (linear-
response regime), as a function of, e.g., the size of the ensemble
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or the degree of inhomogeneity. Based on such analysis, one
could be able to predict the behavior of the system in the
strong excitation regime based on the observation of the weak
excitation PL behavior. In particular, it might become clear
what kind of behavior a system should manifest under weak
excitation in order to be really superradiant in the sense of
developing the nonmonotonic PL response under (perhaps
experimentally unavailable at the moment) strongly inverting
excitation. As an additional benefit, the proposed analysis will
allow us to assess whether the weak excitation assumption
made in the previous work [12] did not suppress the PL decay,
thus forcing us to introduce the short-range coupling that might
turn out to be spurious if stronger excitation is assumed.

Thus, in this paper, we study the collective spontaneous
emission from small ensembles of coupled QDs, comparing
the time-resolved photoluminescence signal in the cases of
strong excitation (full inversion) and weak resonant excitation.
We show that the buildup of the superradiant emission peak
in a strongly inverted sufficiently homogeneous QD ensemble
correlates with the clearly nonexponential PL decay under
weak excitation of the same ensemble. On the other hand,
for more inhomogeneous ensembles (including the currently
realistic ones), in both excitation regimes the decay of the PL
signal may be indistinguishable from exponential. In the latter
case, rather surprisingly, the collective enhancement of the
decay rate is stronger under weak excitation.

The paper is organized as follows. In Sec. II, we describe
the model of a small ensemble of QDs and the method of
simulation. Next, in Sec. III, we present and discuss the
simulation results for the photon emission under different
excitation conditions. Finally, Sec. IV concludes the paper.

II. MODEL

We consider a planar, single-layer ensemble of a few (up to
eight) self-assembled QDs randomly and uniformly placed
in the sample plane (xy plane in the model). The model
of the ensemble closely follows that of our previous work
[12]: The positions of the dots are denoted by rα , where
α numbers the dots. We introduce the restriction that the
center-to-center distance between the QDs cannot be lower
than 10 nm (roughly the QD diameter). Each QD is modeled as
a pointwise two-level system (empty dot and one exciton) with
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the fundamental transition energy Eα = E + εα , where E is
the average transition energy in the ensemble and εα represent
the energy inhomogeneity of the ensemble, described by a
Gaussian distribution with zero mean and standard deviation
σ . Following our previous findings [12], we assume the dots
to be coupled by an interaction Vαβ , which is composed of
long-range (LR) dipole interaction (dispersion force) and a
short-range (SR) coupling (exponentially decaying with the
distance),

Vαβ = V
(sr)
αβ + V

(lr)
αβ .

The long-range dipole coupling is described by [12,18–20]

V
(lr)
αβ = −��0G(k0rαβ), α �= β,

and Vαα = 0, where rαβ = rα − rβ , �0 = |d0|2k3
0/(3πε0εr)

is the spontaneous-emission (radiative recombination) rate
for a single dot, d0 is the magnitude of the interband
dipole moment (assumed identical for all the dots), ε0 is the
vacuum permittivity, εr is the relative dielectric constant of
the semiconductor, k0 = nE/(�c), c is the speed of light,
n = √

εr is the refractive index of the semiconductor, and,
for a heavy-hole transition in a planar ensemble,

G(x) = −3

8

(cos x

x
+ sin x

x2
+ cos x

x3

)
.

For the SR coupling, which plays a much more important role
[12], only the overall magnitude and finite range are important,
hence we model it by the simple exponential dependence

V
(SR)
αβ = V0e

−rαβ/r0 .

The equation of evolution of the density matrix is then given
by [12,19]

ρ̇ = − i

�
[H0,ρ] + L[ρ]. (1)

Here the first term accounts for the unitary evolution of the
ensemble of coupled QDs with the Hamiltonian

H0 =
N∑

α=1

εασ †
ασα +

N∑
α,β=1

Vαβσ †
ασβ,

where we introduce the transition operators for the dots:
the “exciton annihilation” operators σα which annihilate an
exciton in the dot α, and the “exciton creation” operators σ †

α

which create an exciton in the dot α (the exciton number
operator for the dot α is then n̂α = σ †

ασα). In the standard
basis, the operators σ †

α,σα correspond to the raising and
lowering operators and can be represented by Pauli matrices
on a given two-level (pseudospin) system, σα = (|0〉〈1|)α =
(1/2)(σx − iσy)α . The second term describes the dissipation,
that is, the collective spontaneous-emission process due to
the coupling between the quantum emitters (QDs) and their
radiative environment (vacuum). This is modeled in terms of
the dissipator,

L[ρ] =
N∑

α,β=1

�αβ

[
σαρσ

†
β − 1

2
{σ †

βσα,ρ}
]

.

Here �αα = �0, �αβ = �βα = �0F (k0rαβ), with

F (x) = 3

4

( sin x

x
− cos x

x2
+ sin x

x3

)
,

and {. . . , . . .} denotes the anticommutator.
Note that, although our equations lead to a numerically

exact solution within the proposed model, the density-matrix
formalism restricts the available information to quantum-
mechanical averages, hence some aspects of the quantum
dynamics, such as, e.g., the field fluctuations that trigger the
superradiance on the very short time scales [4], although
present in the underlying microscopic physics, cannot be
explicitly accounted for in our approach.

The simulations are performed by randomly placing a given
number of QDs with a fixed surface density ν in the xy

plane, choosing their fundamental transition energies from the
Gaussian distribution, and then directly numerically solving
Eq. (1). Depending on the excitation conditions, a broad
variety of initial states can be thought of, with subsequent
dynamics depending on the amount of inversion as well as
on the degree of spatial coherence induced by the excitation.
Here, we restrict our discussion to the two extreme cases:
a fully inverted or weakly excited initial state. The former
is a product state (without spatial coherence or correlation
between the dots) characterized by the highest possible degree
of excitation (exciton number). In terms of our notation, this
fully inverted initial state corresponding to strong excitation
conditions is

∣∣�(FI)
0

〉 =
N∏

α=1

σ †
α |vac〉,

where |vac〉 is the “vacuum” state, that is, the crystal ground
state with filled valence-band states and empty conduction-
band states (no excitons in the QDs). In the case of a weakly
excited ensemble, the essential feature is the spatial coherence
between the QDs, which forms naturally when the whole
ensemble is coherently and resonantly illuminated but seems
to appear also under quasiresonant excitation conditions [6].
The equations of motion for exciton occupations (that govern
the PL signal) decouple from the evolution of interband
coherences and, when admitting at most one exciton in the
system, the total signal is simply proportional to the initial
average occupation. Hence, as our initial state reflecting the
weak excitation conditions, we formally take the coherently
delocalized single-exciton state

∣∣�(WE)
0

〉 = 1√
N

N∑
α=1

σ †
α |vac〉.

This state is an equal superposition of states, each of which has
a single emitter (QD) inverted, hence it contains one exciton
and will lead to emission of a single photon (thus effectively
normalizing the signal to unit initial occupation).

In our discussion, we focus on the time evolution of the total
PL intensity, that is, the photon emission rate or, equivalently,
the exciton number decay rate. From Eq. (1), this is given in
terms of the density matrix by

I = − d

dt

∑
α

〈σ †
ασα〉 = −

∑
α

Tr(L[ρ]σ †
ασα).
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In our simulations, we use the parameters for a CdSe/ZnSe
QD system: �0 = 2.56 ns−1, n = 2.6, the average transition
energy of the QD ensemble E = 2.59 eV, and the QD surface
density ν = 1011/cm−2. For the tunnel coupling, we choose
the amplitude V0 = 5 meV and the range r0 = 15 nm, which
are the values used in the previous work [12] to reproduce the
experimental results [6].

III. RESULTS

In this section, we present the results of our simulations
of the time-resolved PL from ensembles of a few QDs under
different excitation conditions. In each case, we performed 100
simulations for ensembles with different spatial and spectral
distributions of the QDs and, subsequently, we averaged the
results.

In Fig. 1, we show the time dependence of the PL signal
from systems of four and eight QDs with a varying degree
of spectral inhomogeneity. Under strong excitation, when
the initial state is fully inverted (left panels), nonmonotonic
development of the PL signal is visible in the case of perfectly
homogeneous ensembles (red solid lines), corresponding to
the superradiant peak that would develop much more clearly
in larger ensembles. A weak nonmonotonicity is still visible
for a weakly inhomogeneous ensemble (σ = 5 meV, blue
dashed line), while for the more inhomogeneous ensembles
the PL decay is monotonic. Although the qualitative form
of the time dependence of the PL signal becomes hardly
distinguishable from exponential, the decay is noticeably faster
than that corresponding to a single QD (shown with a black
dotted line). Apart from a more pronounced maximum and a
faster decay in the case of eight QDs, there is no qualitative
difference between the two ensemble sizes. Under weak
excitation (linear-response regime, right panels in Fig. 1), the
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FIG. 1. (Color online) The PL signal under strong (a,c) and weak
(b,d) excitation for an ensemble of four (a,b) and eight (c,d) QDs, as
a function of the ensemble inhomogeneity: σ = 0, 5, 10, and 30 meV
for the solid red, dashed blue, dashed green, and dash-dotted gray
lines, respectively. The black dotted lines show the exponential decay
of PL from a single dot. All the curves are averaged over 100 QD
ensembles.

PL decay is always monotonic. However, in a homogeneous
or sufficiently weakly inhomogeneous system (red and blue
lines), the PL decay is nonexponential. In a larger system,
this nonexponential behavior extends to larger values of
inhomogeneity [green line, corresponding to σ = 10 meV, in
Fig. 1(d)], but eventually for strongly inhomogeneous systems
the decay also becomes exponential. Let us note at this point
that in the experimentally studied ensemble [6], one had
σ ≈ 18 meV.

Comparison of the simulated PL dynamics in a fully
inverted system [Figs. 1(a) and 1(c)] with that under weak
excitation [Figs. 1(b) and 1(d)] leads to the first main conclu-
sion of our analysis. A given system can emit in a different
way depending on the initial excitation. In practice, the control
of excitation conditions (initial state) may be limited. For
example, it may be hard to induce full inversion of all the QDs
in the ensemble. Our results allow one to infer the dynamics
of the system under full inversion based on the PL decay from
the same system under weak excitation: If the system, when
fully inverted, is able to show peaked, superradiant emission,
then it manifests its superradiant properties already in the
linear-response (weak excitation) regime by a nonexponential
decay of the PL signal. Conversely, a system in which,
when excited weakly, the PL signal decays exponentially
will show a monotonic decay, close to exponential, under
strong inversion. In fact, especially for a system of eight QDs,
the weak excitation dynamics is nonexponential already for
σ = 10 meV, while the decay under full inversion in such
an ensemble is monotonic and rather close to exponential,
apart from the initial phase of a few tens of picoseconds.
Thus, the conditions for developing actual superradiance (in
particular the spectral homogeneity of the system) are more
strict than those allowing deviations from exponential decay
in the linear-response regime. It may also be interesting to
note that the PL decay in inhomogeneous systems in the two
excitation regimes, even though close to exponential in both
cases, is still qualitatively different: the time dependence of the
PL signal, when plotted in the logarithmic scale, is concave
for strong inversion and convex in the linear-response regime,
at least for sufficiently short times (on the order of the PL
lifetime).

In view of the fact that the PL decay in an inhomogeneous
system is close to exponential and can be indistinguishable
from the latter based on actual experimental data, it seems
reasonable to extract the apparent decay rates from the
PL evolution by fitting the PL curves with an exponential
dependence. The result for the two ensemble sizes discussed
above and for a series of values of σ is shown in Fig. 2,
where the blue circles and red squares correspond to weak
and strong excitation, respectively. This result is the second
main conclusion of this work: the PL signal under weak
excitation decays faster than after fully inverting the system.
This means that the spatial coherence generated by the global
state preparation is higher than that achievable spontaneously
by the inhomogeneous system in the evolution of the inverted
state (contrary to the standard, highly symmetric case of
noninteracting, identical atoms [21], where the system evolves
via the subspace of maximally spatially coherent states).

For the sake of completeness, let us conclude our discussion
with a brief analysis of how the PL signal evolves with growing
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FIG. 2. (Color online) PL decay rates extracted from exponential
fitting to the PL decay curves for four (a) and eight (b) QDs. Blue
circles and red squares correspond to weak and strong excitation
regimes, respectively. Dashed lines are added to guide the eye. Black
dotted lines show the decay rate for a single QD.

ensemble size. The pertinent simulation results are presented
in Fig. 3. In a strongly inverted homogeneous ensemble
[Fig. 3(a)], nonmonotonicity develops already for three or
four QDs, in accordance with earlier findings for regular QD
arrays [13]. This is again reflected by nonexponential decay
under weak excitation [Fig. 3(b)]. For a realistic degree of
inhomogeneity [Figs. 3(c)–3(f)], the decay is only weakly
nonexponential. For strong excitation, the PL intensities
mostly differ by their magnitude (proportional to the number
of the QDs), with only a small variation of the shape (flattening
of the curve) at short times, which becomes stronger in larger
ensembles. In a weakly excited inhomogeneous ensemble, the
PL decay curves almost overlap and the difference of the
decay rate becomes unnoticeable for σ = 18.4 meV, which
corresponds roughly to the ensemble studied in the experiment
[6] (nonetheless, more careful quantitative analysis shows that
the rates do increase with the ensemble size [12]).

IV. CONCLUSIONS

We have modeled the evolution of the PL signal from
homogeneous and inhomogeneous ensembles of a few (up to
eight) coupled QDs. We focused on the comparison between
the PL response under strong excitation (fully inverted initial
state) and weak excitation (linear response).

We have shown that the signals from a given QD en-
semble in the two regimes, although obviously different,
are correlated: A system homogeneous enough to manifest
nonmonotonic, superradiant emission when strongly inverted
shows a nonexponential decay of the PL signal under spatially
coherent weak excitation. In a more inhomogeneous system,
the PL decay under weak excitation is close to exponential
and so is the time-resolved PL signal under full occupation

1

10

PL
 in

te
ns

ity

σ = 0
full inversion

(a)

0.1

1

10

PL
 in

te
ns

ity

σ = 0
weak excitation

(b)

1

10

PL
 in

te
ns

ity

σ = 10 meV
full inversion

(c)

0.1

1

PL
 in

te
ns

ity

σ = 10 meV
weak excitation

(d)

1

10

0 0.2 0.4 0.6 0.8 1

PL
 in

te
ns

ity
t (ns)

σ = 18.4 meV
full inversion

(e)

0.1

1

0 0.2 0.4 0.6 0.8 1

PL
 in

te
ns

ity

t (ns)

σ = 18.4 meV
weak excitation

(f)

FIG. 3. (Color online) The time-resolved PL signal as a function
of the QD ensemble size for three values of the ensemble inhomo-
geneity as shown and for the fully inverted (a,c,e) and weakly excited
(b,d,f) initial state. Red solid line: 2 QDs; blue dashed line: 4 QDs;
green dashed line: 6 QDs; gray dash-dotted line: 8 QDs.

inversion. The QD samples in which collective emission was
found experimentally [6] belong to the latter class.

While the PL decay converges to the simple exponential
form as the inhomogeneity grows, it retains a different
character in the two excitation regimes, showing concave and
convex behavior (in the logarithmic scale) for strong and weak
excitation, respectively.

Quantitatively, when fitting the nearly exponential PL decay
with a strictly exponential dependence, the decay under weak
excitation appears faster than in the fully inverted case. Hence,
simulations performed for weakly excited systems (which are
much less demanding computationally) yield an upper bound
on the apparent decay rates for a given system under any
excitation intensity.
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