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Asymmetric Cherenkov acoustic reverse in topological insulators
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A general phenomenon of the Cherenkov radiation known in optics or acoustics of conventional materials
is a formation of a forward cone of, respectively, photons or phonons emitted by a particle accelerated above
the speed of light or sound in those materials. Here we suggest three-dimensional topological insulators as a
unique platform to fundamentally explore and practically exploit the acoustic aspect of the Cherenkov effect. We
demonstrate that by applying an in-plane magnetic field to a surface of a three-dimensional topological insulator
one may suppress the forward Cherenkov sound up to zero at a critical magnetic field. Above the critical field
the Cherenkov sound acquires pure backward nature with the polar distribution differing from the forward one
generated below the critical field. Potential applications of this asymmetric Cherenkov reverse are in the design
of low energy electronic devices such as acoustic ratchets or, in general, in low power design of electronic circuits
with a magnetic field control of the direction and magnitude of the Cherenkov dissipation.
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I. INTRODUCTION

The Cherenkov radiation, discovered experimentally by
Cherenkov [1] in optics of transparent media and theoretically
explained later by Tamm and Frank [2], represents a general
and important channel of energy dissipation. This kind of
dissipation arises whenever fast particles propagate in media
with which they interact via certain microscopic mechanisms.
This dissipation mechanism is not restricted to only optical
media where particles exciting photons have velocities in
excess of the speed of light in those media. It also appears in
solids where particles move faster than sound and, as a result,
excite lattice vibrations or phonons. In both cases the photons
or phonons are distributed within a forward cone centered
around the momentum of the particle producing the Cherenkov
light or sound.

Focusing on the Cherenkov sound, or the acoustic
Cherenkov effect, one may distinguish three aspects particu-
larly important in practice. The first aspect is related to energy
losses in electronic devices. Indeed, in any solid electrons
are coupled to the lattice. The strength of this coupling
is temperature independent. Therefore, at any temperature
fast electrons emit phonons, i.e., lose their energy via the
Cherenkov dissipation limiting in this way the efficiency of de-
vices. The second aspect of the acoustic Cherenkov effect is its
use in building acoustic devices. Here implementations include
acoustic amplifiers based on Si/SiGe/Si heterostructures [3],
the GaAs technology [4], and piezoelectric semiconductors [5]
as well as terahertz sound sources based on graphene [6].
Finally, the third aspect of the Cherenkov sound consists
of investigation of the properties of the media where it
propagates, because the character of the Cherenkov sound
strongly depends on these properties. This aspect of the
Cherenkov sound has been, e.g., exploited in Ref. [7] to study
properties of ultracold Bose gases.

In the above first two practical aspects of the Cherenkov
acoustic effect it is essential to have a, possibly, simple control
over the magnitude and direction of the generated sound. In
particular, for the device efficiency it is crucial to reduce
the energy losses, and it is thus attractive to get an external
access to the Cherenkov radiation with the possibility to
completely close this dissipation channel. Alternatively, an

external control is invaluable to direct the Cherenkov sound
along specific directions and block its propagation in some
others. In this situation one meets a fundamental problem of
overcoming the forward Cherenkov cone, which in an optical
setup has been addressed in Ref. [8] within photonic crystals.
In these systems a possibility of generating pure backward
Cherenkov light has been demonstrated at the expense of the
system’s spatial inhomogeneity. An acoustic implementation
of backward Cherenkov sound has also been explored in
electronic systems with spin-orbit interactions, which is partic-
ularly appealing for future spintronic devices. For example, in
two-dimensional electron gases with the Bychkov-Rashba [9]
spin-orbit interaction, interchiral transitions are responsible
for the generation of the sound outside [10] the Cherenkov
cone. The strong spin-orbit interaction in topological insula-
tors [11,12] and the helical [13,14] nature of their surface states
offer an alternative [15] possibility for generating backward
Cherenkov sound due to only intrachiral transitions between
the anisotropic [16] surface helical states.

The Cherenkov sound in these spin-orbit coupled systems
represents fundamental interest and can be exploited to study
the properties of these systems. However, its practical use
in electronic devices could be limited because of some
drawbacks. First, although backward Cherenkov sound ap-
pears, it is not pure because together there always appears
forward Cherenkov sound. Second, the magnitude of the
Cherenkov sound is fixed by the system parameters which are
difficult or even impossible to switch during device operation.
Additionally, in the case of topological insulators the required
anisotropy of the helical surface states starts to play a role at
rather large energies and momenta. This could limit the use of
the anisotropy in applications of topological insulators in the
future generation of integrated electronic circuits operating at
low energies.

To avoid the above mentioned drawbacks we propose in
this paper a simple way to externally control the Cherenkov
dissipation by means of an in-plane magnetic field. For this
type of control surface helical states of three-dimensional
topological insulators turn out to be most suitable, especially at
low energies relevant for applications of topological insulators
in low power design electronics. One of the relevant device
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applications we discuss is an acoustic ratchet. This acoustic
spin-orbit ratchet may be considered as a phonon alternative
to the electron spin-orbit ratchet proposed in Ref. [17] within
a two-dimensional Bychkov-Rashba electron gas.

The paper is organized as follows. In Sec. II we qualitatively
describe the picture of the Cherenkov acoustic reverse where
the forward sound reverses to the backward one when an in-
plane magnetic field exceeds a critical value. The actual polar
distribution of the forward and backward Cherenkov sound is
found in Sec. III where we demonstrate that the Cherenkov
reverse has an asymmetric character. We further explain the
physical reason of this asymmetry and suggest using it in
electronic devices such as acoustic ratchets. In Sec. IV we
conclude the paper.

II. CHERENKOV REVERSE ON A SURFACE OF A
THREE-DIMENSIONAL TOPOLOGICAL INSULATOR

The low energy surface helical states of a three-dimensional
topological insulator are described by the Dirac Hamiltonian,

Ĥ0 = v(p̂x σ̂y − p̂y σ̂x), (1)

where v is the Dirac velocity and p̂i , σ̂i , i = x,y are the
momentum and spin operators. The important difference of
this Dirac Hamiltonian from the one describing graphene [18]
is that in Eq. (1) the particle momentum is coupled to the real
spin and not to the pseudospin describing the lattice degree of
freedom in graphene.

Exactly this circumstance provides an opportunity to
control the Cherenkov dissipation in a three-dimensional
topological insulator applying an in-plane magnetic field to
its surface. Indeed, such a field is described by the Zeeman
contribution ĤZ to the total Hamiltonian,

Ĥ = Ĥ0 + ĤZ,
(2)

ĤZ = 1
2gμBσ̂H,

where g is the g factor, μB is the Bohr magneton, σ̂ =
iσ̂x + jσ̂y , and H = iHx + jHy . Therefore, the position of the
Dirac point, which is the minimum of the conduction band
and the maximum of the valence band, becomes magnetic
field dependent as can be seen from the energy-momentum
dispersion relation,

εμ(p) = μ
[
v2p2 + v|p|gμB|H| sin(φH − θp)

+ (
1
2gμB|H|)2] 1

2 , (3)

where μ = ±1 is the chiral index (+1-conduction band, −1-
valence band), and φH and θp are, respectively, the angles of
the in-plane magnetic field and the helical particle momentum
with respect to the x axis.

In topological insulators the Dirac velocity v is usually
much larger than the sound velocity c. For example, for
Bi2Te3 these velocities are v ≈ 3.87 × 105 m/s and c ≈
2.84 × 103 m/s. The relation v � c implies [15] that the
Cherenkov sound may be generated only due to transitions
|pμ〉 → |p′μ′〉 with μ = μ′. These two remarkable features
specific to topological insulators, the magnetic field shift of
the Dirac point and the intrachiral nature of the Cherenkov

FIG. 1. (Color online) The schematic picture of the Cherenkov
acoustic reverse on a surface of a three-dimensional topological
insulator subject to an in-plane magnetic field. The helical particle’s
momentum and energy before exciting the Cherenkov sound are p
(black thick horizontal arrows) and ε, while after emitting a phonon
with momentum q (red wavy arrows) they become p′ (black thick
inclined arrows) and ε′. An in-plane magnetic field (blue vertical
arrows) is applied in the direction opposite to the y axis. The black
circles represent low energy isotropic surfaces of constant energy
given by Eq. (3). Their center pH (black dot) is the magnetic field
dependent Dirac point. In the upper part pH < |p| resulting in pure
forward Cherenkov sound. In the lower part pH > |p|. In this case
the Cherenkov sound reverses and acquires pure backward nature. In
both cases the Cherenkov sound distribution is shown as the shaded
red area with phonon momenta q (red wavy arrows) inside.

sound, provide a simple possibility for an external control of
the Cherenkov dissipation.

To qualitatively explain the idea let us consider the
Cherenkov sound excited by a helical particle in the conduction
band. The particle has energy ε and momentum p along
the x axis (θp = 0). An in-plane magnetic field is applied
perpendicular to the vector p (φH = −π/2). As demonstrated
in Fig. 1, the low energy Dirac-like isotropic character of the
constant energy surfaces does not change in the presence of
an in-plane magnetic field which only shifts the Dirac point
from zero to pH . The Dirac point is a special point of the
helical particle energy-momentum dependence, Eq. (3), and
tuning the magnitude of the magnetic field to the critical
value |H| = Hc, such that pH = |p|, changes the behavior
of the system. Indeed, as one can see from Fig. 1, in the
case |H| < Hc one has pH < |p|, and the momentum p of
the helical particle exciting the Cherenkov sound touches the
corresponding constant energy surface from the inside of the
Dirac cone. In such a situation the energy and momentum
conservation admits only such helical particle’s final states,
characterized by energy ε′ and momentum p′, which result in
purely forward Cherenkov sound located inside the Cherenkov
cone. On the other side, when |H| > Hc, the Dirac point
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satisfies pH > |p|, and one is in the situation where p touches
the constant energy surface from the outside of the Dirac cone.
As shown in Fig. 1, under such circumstances the energy and
momentum conservation reverts the Cherenkov sound placing
it outside the Cherenkov cone, i.e., enforces it to acquire pure
backward nature.

III. TWO-DIMENSIONAL DISTRIBUTION OF THE
FORWARD AND BACKWARD CHERENKOV SOUND

To quantitatively verify this picture and to find out the actual
distribution of the Cherenkov sound and its dependence on the
in-plane magnetic field, we calculate the imaginary part of
the self energy describing the interaction [19] between helical
particles and phonons,

Ĥph =
∑

k

�ω(k)(b†kbk + 1/2),

Ĥel−ph = gph

∑
σ

∫
drψ̂†

σ (r)ψ̂σ (r)ϕ̂(r), (4)

ϕ̂(r) = i
∑

k

√
�ω(k)

2V

[
exp

(
i
kr
�

)
bk − H.c.

]
.

FIG. 2. (Color online) The polar distributions of the Cherenkov
sound intensity W (φ) on a surface of Bi2Te3 for the case |H| < Hc.
The magnitude of the helical particle momentum |p| = 4.05 × 10−27

is chosen to be small to stay within low energies well captured by the
Dirac isotropic model. The polar distributions correspond to different
magnitudes of the magnetic field, i.e., to different values of the
parameter h: 0.0 (black), 50.0 (red), 100.0 (blue), 150.0 (green). The
critical value of h corresponding to Hc is hc = 272.0. The Cherenkov
sound is purely forward for all h < hc. When h increases, W (φ)
decreases and totally vanishes at h = hc.

In Eq. (4) b
†
k, bk are the phonon creation and annihilation

operators, respectively, the phonon spectrum is �ω(k) = c|k|,
gph is the strength of the coupling to phonons, V is the volume,
and ψ̂†

σ (r), ψ̂σ (r) are, respectively, the helical particle creation
and annihilation field operators.

In the second order in gph a derivation similar to the ones
in Refs. [10,15,20] allows one to represent the imaginary part
of the self energy �(εp+) in the form

Im[�(εp+)] = −g2
php2

8π�3

∫ π

−π

dφW (φ), (5)

where W (φ) is the polar distribution of the Cherenkov sound.
It can be written as the sum,

W (φ) =
∑

i

x2
i (φ)f1[xi(φ),φ]f2[xi(φ),φ], (6)

over all roots of the energy-momentum conservation equation,√(
v

c

)2

+ v

c
h sin(φH) + h2

4

−
√(

v

c

)2

f3(x,φ) + v

c
hf4(x,φ) + h2

4
− x = 0, (7)

where the physical meaning of x is the ratio |q|/|p| between
the magnitudes of the phonon and helical particle momenta.

FIG. 3. (Color online) The polar distributions of the Cherenkov
sound intensity W (φ) on a surface of Bi2Te3 for the case |H| >

Hc. The helical particle momentum is the same as for Fig. 2. The
polar distributions correspond to h = 450.0 (red), 500.0 (blue), 600.0
(green), 700.0 (black). The Cherenkov sound is of pure backward
nature for all h > hc.
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In Eq. (6) the functions f1,2(x,φ) are

f1(x,φ) = 1

2

⎛
⎝1 +

v
c
(1 − x cos(φ)) + 1

2h sin(φH)√(
v
c

)2
f3(x,φ) + v

c
hf4(x,φ) + h2

4

⎞
⎠ ,

(8)

f2(x,φ) =
⎡
⎣1 +

(
v
c

)2
f ′

3(x,φ) + v
c
hf ′

4(x,φ)

2
√(

v
c

)2
f3(x,φ) + v

c
hf4(x,φ) + h2

4

⎤
⎦

−1

,

where f ′(x,φ) ≡ ∂xf (x,φ). In Eqs. (7) and (8) the quantity h

is defined as h ≡ gμB|H|/pc and the functions f3,4(x,φ) are

f3(x,φ) = 1 + x2 − 2x cos(φ),
(9)

f4(x,φ) = sin(φH) + x sin(−φH + φ).

In Fig. 2 the polar distribution of the Cherenkov sound
intensity W (φ) on a surface of the three-dimensional topo-
logical insulator Bi2Te3 is shown for the situation depicted
in Fig. 1. Different values of h correspond to the magnetic
field magnitude such that |H| < Hc. The critical value Hc =
2|p|v/gμB is obtained from the condition pH = |p| where
pH = gμB|H|/2v. The value of |p| = 4.05 × 10−27 kg·m/s
is chosen to be small enough so that the isotropic Dirac
cone describes well [16] the energy-momentum dependence,
Eq. (3). Taking the g factor from Ref. [21], g ≈ 20, we
obtain for h = 0.0, 50.0, 100.0, and 150.0 the magnitude of
the magnetic field in Tesla: |H| = 0.0, 3.1, 6.2, and 9.3 T,

FIG. 4. (Color online) The polar distributions of the Cherenkov
sound intensity W (φ) on a surface of Bi2Te3 for the case |H| < Hc.
The helical particle momentum is the same as for Fig. 2. The polar
distributions correspond to h = 100.0 and φH = −π/2 (black), φH =
−π/4 (red) and φH = −3π/4 (blue). The Cherenkov sound is mainly
forward but narrow backward angular sectors appear for φH = −π/4
and φH = −3π/4.

respectively. From Fig. 2 it is clear that the Cherenkov sound
is purely forward for all |H| < Hc. With the increase of the
magnetic field magnitude the intensity of the Cherenkov sound
decreases. At the critical field Hc = 16.9 T the Cherenkov
dissipation fully disappears, i.e., W (φ) = 0 for all angles
−π ≤ φ < π .

The Cherenkov sound distribution for larger fields,
|H| > Hc, is shown in Fig. 3. Here h = 450.0, 500.0, 600.0,
and 700.0 which correspond to H = 27.9, 31.0, 37.2, and
43.4 T. As expected from our qualitative discussion, at
|H| > Hc the Cherenkov sound is of pure backward nature.
Note that the maximum of the backward sound intensity is at
φ = ±π which corresponds to strictly backward sound. This
means that at large magnetic fields helical particles mainly
scatter strictly forward thus keeping the tendency to produce
backward sound in subsequent scattering unless they finally
reach the Dirac point pH .

For completeness we also present results for φH 	= −π/2.
In Fig. 4 we show the Cherenkov sound distribution for
the case |H| < Hc, while in Fig. 5 it is shown for the
case |H| > Hc. In both cases the symmetry of the angular
distribution of the Cherenkov sound breaks and it is no longer
of pure forward or backward nature as it was for φH = −π/2
shown as the black curves in Figs. 4 and 5, respectively.
In addition to the forward and backward Cherenkov sound
narrow angular droplets of the backward and forward sound
can be seen in Figs. 4 and 5, respectively.

FIG. 5. (Color online) The polar distributions of the Cherenkov
sound intensity W (φ) on a surface of Bi2Te3 for the case |H| > Hc.
The helical particle momentum is the same as for Fig. 2. The polar
distributions correspond to h = 700.0 and φH = −π/2 (black), φH =
−π/4 (red) and φH = −3π/4 (blue). The Cherenkov sound is mainly
backward, but narrow forward angular sectors appear for φH = −π/4
and φH = −3π/4.
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Finally, we would like to emphasize the asymmetry between
the forward and backward distributions. In particular, as shown
in Ref. [15], the strictly forward sound is absent, as can be
seen in Fig. 2. At the same time the strictly backward sound
in Fig. 3 is maximal. The physical reason for this asymmetry
lies in the helical nature of the particles on a surface of a
three-dimensional topological insulator. More precisely, the
spinorial structure of these states has a strong dependence on
the momentum orientation, and the sound distribution depends
on the mutual orientation between the momentum p and the
group velocity vg . The forward and backward sound defined
with respect to the momentum p is, of course, always forward
with respect to the group velocity vg . However, due to the
helical structure of the surface states, the sound distribution
has distinct shapes depending on whether the vectors p and vg

are parallel or antiparallel.
This asymmetry suggests an experimental challenge for an

implementation of an electronic device such as an acoustic
ratchet. In this device the magnitude of a periodic in-plane
magnetic field slowly changes from zero up to some maximal
value Hmax > Hc and back to zero. During this period no
strictly forward sound will be produced by helical particles
with a fixed momentum whereas they will produce the strictly
backward sound. Thus a directed phonon flow in the direction
opposite to the x axis will be created.

IV. CONCLUSIONS

In conclusion, the Cherenkov sound excited on a surface of
a three-dimensional topological insulator may be effectively

controlled by an in-plane magnetic field. Applying such a field
perpendicular to the helical particle propagation suppresses
the Cherenkov dissipation up to zero at a critical field. For
larger fields the Cherenkov sound asymmetrically reverses its
direction and acquires pure backward nature.

The magnetic field shift of the conduction/valence band
minimum/maximum in the momentum space and the depen-
dence of the spinorial structure of the helical particles on
the momentum orientation are specific to three-dimensional
topological insulators and do not have counterparts in conven-
tional systems where under the Zeeman split the energy bands
shift along the energy axis but not in the momentum space.
As a result, the Cherenkov sound on a surface of a three-
dimensional topological insulator in an in-plane magnetic
field is a unique physical phenomenon totally distinct from
what has been known about the Cherenkov radiation in
conventional materials without and with magnetic field as
well as in three-dimensional topological insulators without
magnetic field. This unique behavior occurs at low energies
and, thus, is of practical relevance in the control of the energy
dissipation in future low power design electronics based on
topological insulators as well as in building different acoustic
devices, in particular, acoustic ratchets generating directed
sound flows.
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