
PHYSICAL REVIEW B 90, 125303 (2014)
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In the singlet-triplet qubit architecture, the two-qubit interactions required in universal quantum computing
can be implemented by capacitative coupling, by exploiting the charge distribution differences of the singlet and
triplet states. The efficiency of this scheme is limited by decoherence, that can be mitigated by stronger coupling
between the qubits. In this paper, we study the capacitative coupling of singlet-triplet qubits in different geometries
of the two-qubit system. The effects of the qubit-qubit distance and the relative orientation of the qubits on the
capacitative coupling strength are discussed using an accurate microscopic model and exact diagonalization of it.
We find that trapezoidal quantum dot formations allow strong coupling with low charge distribution differences
between the singlet and triplet states. The analysis of geometry on the capacitative coupling is also extended to
the many-qubit case and the creation of cluster states.
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I. INTRODUCTION

Two-electron spin eigenstates in semiconductor double
quantum dots (DQD) were proposed as qubits [1] by Levy
in 2002 [2] and allow a scalable architecture for quantum
computation [3]. The universal set of quantum gates for two
spin singlet-triplet DQD qubits has been demonstrated exper-
imentally [4–6]. In this architecture, the two-qubit operations
required for universality are implemented using long-distance
capacitative coupling by the Coulomb interaction, in which
the charge asymmetries of the singlet and triplet states are
exploited [3,6,7]. The capacitative coupling of singlet-triplet
qubits, resulting in a two-qubit CPHASE-gate, has been
achieved in experiments [6].

The capacitative two-qubit operation can be used to create a
maximally entangled Bell state between singlet-triplet qubits.
Entanglement is an essential resource in quantum information
technology and it is at the heart of all quantum computing
[8]. Coupling more than two qubits together allows the
generation of multipartite entangled states, including the
Greenberger-Horne-Zeilinger (GHZ) [9–11] and cluster states
[12,13]. These highly entangled states have applications for
example in the proposed one-way quantum computer [14,15],
an alternative to the circuit model of quantum computing [16].

In implementing the qubit operations, the coupling be-
tween the quantum dot and the semiconductor environment
leads to a common problem in quantum computing, namely
decoherence. The most important electron spin decoherence
sources considering singlet-triplet qubits are the coupling to
the nuclear spins in host materials such as GaAs [17–20]
and the effects of the fluctuating charge environment [21–23].
In the experimental realizations of quantum gate operations,
the effects of decoherence can be minimized by decreasing the
gate operation times. In the case of the two-qubit capacitative
gate, this can be achieved by enhancing the qubit-qubit
coupling. Stronger coupling also allows the use of smaller
charge asymmetries that are less susceptible to the charge
noise [23–26].

In this paper, we model the capacitative coupling of
singlet-triplet qubits using accurate exact diagonalization (ED)
techniques. We study different qubit geometries and find
that the ones allowing stronger couplings and hence more

efficient quantum gate architectures are those in which the
quantum dots of the qubits form a trapezoid. We also find
certain “dead angles” geometries, in which the capacitative
coupling disappears completely. The analysis on the effects of
qubit-qubit geometry is also extended to the many-qubit case,
where we use an accurate microscopic model to simulate the
creation of cluster states between singlet-triplet qubits.

This paper is organized as follows. In Sec. II, we discuss the
computational methods and the simulation model used in the
paper. Section III is devoted to the analysis of the two-qubit
coupling. We study the effects of the distance of the qubits and
their relative orientation on the strength of the capacitative
coupling and the entangling properties of the two-qubit gate.
We find the geometries yielding strong qubit-qubit coupling
and analyze the two-qubit gate operation in different coupling
geometries. In Sec. IV, we simulate the creation of cluster
states by CPHASE operations between adjacent qubits.

II. MODEL AND METHODS

A. Continuum model

A lateral GaAs quantum dot system with N electrons is
described with the Hamiltonian

H =
N∑

j=1

[
− �

2

2m∗ ∇2
j + V (rj ,t)

]
+

∑
j<k

e2

4πεrjk

, (1)

where m∗ = 0.067 me and ε = 12.7 ε0 are the effective elec-
tron mass and permittivity in GaAs, respectively. The external
potential V (r) for quantum dot systems is approximated with a
piecewise parabolic potential that consists of several parabolic
wells. A confinement potential of n parabolic wells can be
written as

V (r) = 1
2m∗ω2

0 min
1�m�n

{|r − Rm|2} + Vd (t,r), (2)

where {Rm}1�m�n are the locations of the minima of the
parabolic dots, and ω0 is the confinement strength. A time-
dependent detuning potential Vd (t,r) is included.

In our ED computations, the electrostatic detuning between
the two minima of a DQD system is modeled as a step function
that assumes constant values at each dot. The discontinuity in
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the detuning potential is found to have no effects compared to
the continuous case of our previous study [27]. The detuning
of a singlet-triplet qubit is defined as the potential energy
difference between the two parabolic minima of the qubit;
i.e., if the qubit consists of parabolic wells at R1 and R2, the
detuning is given as ε(t) = V (R1,t) − V (R2,t).

B. Lattice model

Although accurate, the continuum model ED is compu-
tationally very expensive and thus limited to small particle
numbers (no more than two S − T0 qubits can be modeled ac-
curately) and a full scanning of various QD system geometries
is not possible. A more flexible method for studying systems
of several S − T0 qubits is the extended Hubbard model with
the inclusion of a long-range Coulomb interaction.

In this model, a system consisting of Nq singlet-triplet
qubits (N = 2Nq electrons and QDs) can be described using
the Hamiltonian

H =
∑
iσ

Eiσ a
†
iσ aiσ −

∑
ijσ

tijσ a
†
iσ ajσ

+U
∑

i

ni↓ni↑ +
∑
σσ ′

∑
i<j

Uijniσ njσ ′ . (3)

Here, i and j are the site indices, and σ and σ ′ the spin indices.
Eiσ are the on-site energies at each QD, tijσ the tunneling
element between dots, and U the on-site Coulomb repulsion.
Uij is the long-range Coulomb interaction between sites i and
j , and niσ the charge at site i with the spin σ . In this paper, the
tunneling tijσ = tij is nonzero only between the adjacent dots
inside a qubit (i.e., there is no tunneling between the qubits).
The long-range electron-electron interaction is given as

Uij = C

|ri − rj | − η
, (4)

where C = e2/4πε is the Coulomb-strength, and ri and rj are
the locations of the dots i and j . η > 0 is an extra constant
conveying the fact that in reality the wave functions have finite
widths. The parameters of the Hubbard model (U , tij , and η)
can be fitted to continuum model data in order to produce more
realistic results.

C. Computational methods

The continuum Hamiltonian (1) is diagonalized using
the ED method. In the ED many-body calculations, the
one-particle basis is the eigenstates corresponding to the
confinement potential (2). The multiparticle basis, in which
the Hamiltonian of Eq. (1) is diagonalized, is constructed
from the single-particle eigenstates as the antisymmetrized
Fock states. The one-particle eigenstates {|ψp〉}N1

p=1 (the
eigenbasis size being N1) are computed using the multi-
center Gaussian basis {|φi〉}Ng

i=1 (the method is described
in detail by Nielsen et al. [26]). The Coulomb-interaction
matrix elements Vi,j,k,l = 〈φi |〈φj |1/|r1 − r2||φl〉|φk〉 can be
computed analytically in the Gaussian basis. The elements
Vi,j = 〈φi |V (r)|φj 〉 can also be computed analytically for
certain confinement potentials V (r), but generally they must
be obtained using numerical integration. The matrix elements

Ṽp,q and Ṽp,q,r,s corresponding to the one-particle eigenstates
are then computed from the Gaussian elements by basis
changes, as Ṽp,q = ∑

i,j 〈ψs |φi〉〈φj |ψq〉Vi,j and Ṽp,q,r,s =∑
i,j,k,l〈ψp|φi〉〈ψq |φj 〉〈φk|ψr〉〈φl|ψs〉Vi,j,k,l (the sums go

from 1 to Ng).
In the computation of the one-particle eigenstates,

{|ψp〉}N1
p=1, an evenly spaced grid of several hundred Gaussian

functions (up to Ng = 500) is used. The grid dimensions
and the Gaussian widths are optimized and the convergence
of the states is verified by comparing the energies to ones
obtained with a much larger grid. We perform the basis change
corresponding to the elements Ṽp,q,r,s with an Nvidia Tesla
C2070 graphics processing unit which was programmed with
CUDA [28], a parallel programming model for Nvidia GPUs.
The many-body eigenstates are computed with ED using 18
first single-particle states (N1 = 18). This basis size is found
to be sufficient for the convergence of the results (the relative
difference of the many-body ground-state energies with 18
and 24 single-particle states is less than 0.1% up to very high
detuning region).

The continuum Hamiltonian is diagonalized using the
Lanczos algorithm for sparse matrices. In the Lanczos method,
only the ground state and its energy are obtained accurately.
The higher lying eigenstates can be obtained using a “ladder
operation.” The kth state |ψk〉 is obtained as the ground state
of the Hamiltonian

Hk = H + δ

k−1∑
s=1

|ψs〉〈ψs |, (5)

where H is the original Hamiltonian of the system and
δ > 0 is a penalizing constant that moves the lower eigenstates
{|ψ〉s}k−1

s=1 above the desired kth state. The lattice Hamiltonian
of Eq. (3) can be diagonalized directly, as its linear dimensions
do not exceed 100 in the computations done in this study.

The time evolution of a S − T0 qubit system, described by
the wave function |ψ(t)〉 and governed by the Hamiltonian
H (t), is computed by propagation,

|
(t + �t)〉 = exp [−i�tH (t)/�] |
(t)〉. (6)

Here, t and �t are time and time step length, respectively.
H (t) is either the lattice or the continuum Hamiltonian. In
the continuum case, the exponential is computed using the
Lanczos method.

III. TWO CAPACITATIVELY COUPLED QUBITS

In the capacitative coupling of singlet-triplet qubits, the
interqubit operations are achieved by exploiting the differences
of the charge distributions of the singlet and triplet states
under exchange interaction. With nonzero exchange, achieved
by electrically detuning the qubits, the singlet state localizes
more into the dot with lower potential; i.e., the lowest singlet
state is a superposition of the symmetric charge state |S(1,1)〉
and the localized charge state |S(0,2)〉. The triplet, however,
stays in the (1,1) charge configuration due to its spatially
antisymmetric wave function. As the singlet and triplet states
have different charge distributions, the Coulomb repulsion
between two neighboring qubits depends on their states. This
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creates an entangling two-qubit CPHASE gate when two
qubits are detuned simultaneously towards the |S(0,2)〉 regime.

The strongest coupling is achieved when the two qubits
A and B are initiated in the xy plane of the Bloch sphere,
and then evolved under exchange, causing them to entangle.
The entanglement can be characterized by an entanglement
measure, such as concurrence [8]. Concurrence C assumes
values between 0 and 1, and the bigger the value, the stronger
the entanglement.

A formula for the evolution of the concurrence by capacita-
tive coupling of two S − T0 qubits can be derived by writing the
Hamiltonian in the two-qubit basis {|SS〉,|ST0〉,|T0S〉,|T0T0〉},
which results in a diagonal matrix with the energies of the
aforementioned qubit basis states as its diagonal entries. In
this basis, the two-qubit wave function is written as |
(t)〉 =∑

X=S,T0

∑
Y=S,T0

αXY (t)|XY 〉, and at t = 0 all coefficients
αXY = 1/2 as the qubits are initiated in the xy plane. In the time
evolution of the system, each of the four terms obtains a phase
factor corresponding to its energy. Defining a 2 × 2-matrix,
M(t), so that M11(t) = αSS(t), M22(t) = αT0T0 (t), M12(t) =
αST0 (t), and M21(t) = αT0S(t), the concurrence is given as
C(t) = 2| det(M)| [8], yielding

C(t) = 1
2

√
2 − 2 cos (Ecct/�), (7)

with the differential cross capacitance energy between the two
double-dot systems,

Ecc = |ESS + ET0T0 − EST0 − ET0S |. (8)

Here, ESS is the energy of the qubit basis state |SS〉 =
|S〉A ⊗ |S〉B , and similarly for the other terms. Ecc determines
the speed of the gate operation and the frequency of the
entanglement oscillations. At time t when tEcc/� is an
odd multiple of π , C(t) = 1 and the maximal Bell-state
entanglement is achieved.

The physics of a system of two capacitatively coupled
S − T0 qubits (apart from the decoherence effects [18,19,22])
depend essentially on two things, the intraqubit tunneling (the
tunneling between the two dots of the qubit) and the Coulomb
repulsion between the qubits, i.e., how the two qubits are
located with respect to each other. The tunneling strength
controls the anti-crossing energy gap of the singlet charge
states |S(1,1)〉 and |S(0,2)〉. The locations and distance of the
qubits affect both the energy differences of the charge states
and the locations of the anticrossing, i.e., the detuning required
for the singlet transition from (1,1) to (0,2).

The topic of this section is the study of the effect of
the geometry of the two-qubit system on the capacitative
coupling strength and the entangling properties of the gate.
An illustration of the dot locations in a two-qubit system is
shown in Fig. 1. In this system, the confinement strength is set
to �ω0 = 4 meV and the intraqubit dot distance is |R1 − R2| =
|R3 − R4| = 80 nm. The geometry of this two-qubit system is
defined by the angles α and β and the interqubit distance d.

When modeling the qubits with piecewise parabolical
potentials, the intraqubit tunneling is determined by the
distance and the confinement strengths of the parabolic wells.
In order for the qubit to function properly, the tunneling barrier
between the dots has to be high enough that with zero detuning
the singlet and triplet states are approximately degenerate; i.e.,

FIG. 1. (Color online) Locations of the QDs of a two-qubit
system. Qubit A consists of dots at R1 and R2 and B of those at R3

and R4. The qubit-qubit distance is d = |R2 − R3|. The confinement
strength is �ω0 = 4 meV and the intraqubit dot distance is 80 nm.
The angles α and β determine the locations of dots 1 and 4.

the exchange can be set to a very small value. This sets lower
bounds for viable confinement strengths and intraqubit dot
distances. Changing the intraqubit tunneling does not have a
large effect on the capacitative coupling that is governed by
the interqubit Coulomb repulsion.

The locations of the qubits have a quite complex effect on
the behavior of the two-qubit gate. For example, the Coulomb
repulsion can either facilitate or inhibit the charge transitions
to |S(0,2)〉, depending on the locations of the low-detuned
dots in the two qubits. If the farthest away dots are detuned to
low potential, the transition to (0,2) can happen with lower
detuning as it decreases the repulsion between the qubits.
Next, we are going to study the behavior of the two-qubit
system with several different interqubit geometries. The results
shown and discussed in this section are obtained using the
continuum model unless stated otherwise. We will discuss the
contributions of the qubit-qubit distance (d in Fig. 1) and qubit
orientations (α and β in Fig. 1) separately.

A. Linear alignment of qubits

In the simplest case, both qubits, i.e., all four QDs, are
located in a straight line (corresponding to α = β = 0 in
Fig. 1). We study the effect of the qubit-qubit distance
d = |R2 − R3|. The farthest away dots at R1 and R4 are
detuned to low potential. The energies of the lowest eigenstates
are computed as a function of the detunings εA = V (R2) −
V (R1) = εB = V (R3) − V (R4) = ε. The energies with d =
100 nm are shown in the upper left and the energies with
d = 160 nm in the upper right plot of Fig. 2.

The figures show the anticrossing region of the |S(1,1)〉 and
|S(0,2)〉 states. When the detuning overcomes the repulsion
of two electrons occupying one QD, the ground-state singlet
shifts from (1,1) to (0,2). In addition to the |S(0,2)〉A ⊗
|S(0,2)〉B and |S(1,1)〉A ⊗ |S(1,1)〉B labeled in the figures,
there are also two other |SS〉-type states [the two blue middle
curves besides the S(0,2)S(0,2) and S(1,1)S(1,1)], namely
“the bonding state” and “the antibonding state,”

1√
2
|S(1,1)〉A ⊗ |S(0,2)〉B ± 1√

2
|S(0,2)〉A ⊗ |S(1,1)〉B,
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FIG. 2. (Color online) The energy levels of the two-qubit system as a function of the detuning (see Fig. 1 for the illustration of the system).
Both qubits are in the same detuning εA = εB = ε. The |SS〉 states are shown with the thick blue lines, the |ST0〉 and |T0S〉 states with the
red lines, and the |T0T0〉 state with the dashed black line. Illustrations of the corresponding QD formations are shown on top of the plots.
Upper left: (α = β = 0) with the qubit-qubit distance d = 120 nm. The different singlet-charge states are denoted with labels. Upper right:
Linearly aligned system with d = 160 nm. Lower left: A “dead angles” case α = β = 0.4534π with d = 120 nm. Lower right: Rectangular
qubit formation (α = −β = 0.5π ) with d = 120 nm.

where + corresponds to the bonding state and − to the
antibonding state. The energy eigenstates of a similar two-
qubit system are discussed with more detail in our previous
work [27], including cases with asymmetric detuning, ε1 �= ε2.

When the farthest away dots 1 and 2 are detuned to
low potential, i.e., when εA,εB > 0, the Coulomb repulsion
caused by the other qubit facilitates the transition to (0,2);
it is preferable for the electrons of qubit A to be as far as
possible from qubit B. The shorter the qubit-qubit distance d

the larger this effect is. This is evident from the figures. In the
upper left plot of Fig. 2, the anticrossing region starts around
ε = 3.9 meV, and in the upper right one around ε = 4.2 meV.
In the d = 100 nm case, the eigenenergies are higher due
to the larger repulsion. The energy differences of the qubit
states {|SS〉,|ST0〉,|T0S〉,|T0T0〉} are also affected, and the
width of the anticrossing region increases as the Coulomb
repulsion becomes more prominent. If the closer dots 1 and 2
are instead detuned to low potential (i.e., εA < 0 and εB < 0),

the anticrossing region will shift to higher detuning values, but
otherwise the behavior of the two-qubit system stays similar.

The values of Ecc [Eq. (8)] as a function of the detunings ε

with several different qubit-qubit distances are shown in Fig. 3.
The value of Ecc starts to increase when the detuning has
reached the anticrossing area, saturating to a constant value
when the singlet is fully in (0,2) [it stays constant until the
triplet also starts to undergo the transition to (0,2) at much
higher detuning]. The shorter the qubit-qubit distance, the
larger the maximal value of Ecc is, as with shorter distances the
Coulomb repulsion between the qubits has more contribution
in the energies of the qubit states.

B. Rotated qubits

Next, we discuss the effect of the orientation of the qubits
while keeping the qubit-qubit distance constant. The qubits
were set d = |R2 − R3| = 120 nm apart from each other,
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FIG. 3. (Color online) The values of the cross capacitance
Ecc = |ESS + ET0T0 − EST0 − ET0S | as a function of the detunings
εA = εB = ε with several different values of the qubit-qubit
distance d = |R2 − R3| and angles α and β (see Fig. 1).

with the intraqubit dot distance being 80 nm. The locations
of the farthest away dots (again detuned to low potential) were
varied. An illustration of the system can be seen in Fig. 1.
Probing the different values of the angles α and β in Fig. 1
would be very cumbersome using the continuum model. In
order to avoid having to compute new sets of one-particle
eigenstates corresponding to each dot configuration, we study
the angle dependence using the Hubbard model of Eq. (3) with
its parameters tij , U , and η fitted to the continuum model data.

In the case of a reference system of two S − T0 qubits with
the qubit-qubit distance 120 nm, intraqubit distance 80 nm,
confinement strength �ω0 = 4 meV, and linear alignment, a
good fit is obtained with tij = 27.8 μeV, U = 3.472 meV,
and η = 0.43 nm. The parameter fit is demonstrated in the
left panel of Fig. 4. The figure shows lowest energies of the
two-qubit system (see Fig. 1 for an illustration of the geometry

of the two-qubit system) as functions of the detunings of the
qubits, εA = εB = ε. As seen in the figure, the fitted energies
coincide with the continuum model ones. The fit is also tested
with asymmetric detunings, εA �= εB , and is found equally
good in that case. As the capacitative coupling of singlet-
triplet is governed by the energy differences of the qubit states,
the Hubbard model with the fitted parameters can be used to
accurately describe the coupling.

If the geometry of the system (i.e., the dot distances,
locations, and confinements) is changed, generally a new fit
for the parameters has to be computed. However, if the dot
distances and the confinement are kept the same and only the
qubit orientations (i.e., the angles α and β in Fig. 1) are changed
the same fit is found to agree well. The right panel of Fig. 4
shows the energies of a system with α = β = 0.4534π . The
Hubbard parameters correspond to the fit with α = β = 0, i.e.,
the same parameters used in the left panel of Fig. 4. As seen
in the figure, the energies differ now a bit more compared to
left panel but the fit can still be considered good. The Hubbard
model can thus be used to probe the values of α and β while
keeping the qubit-qubit distance constant (a task that would be
very cumbersome using the continuum model).

The maximum value of Ecc as a function of the angles α

and β is shown in Fig. 5. The figure is obtained by using the
Hubbard model of Eq. (3) with the parameters obtained in the
fit in Fig. 4. In Fig. 5, the detuning is symmetrical, εA = εB , but
the orientations resulting in high coupling apply for the general
case as well; i.e., the angle dependence of Ecc is similar also
to asymmetric detunings, such as εA = −εB . Figure 3 shows
the Ecc values as functions of the detunings ε with several
different angles.

As seen in Fig. 5, Emax
cc obtains its largest values along

the line α = −β that corresponds to the geometries in
which the QDs of the system form a trapezoid. The Emax

cc

values start to increase rapidly when the angles approach the
rectangular formation at α = π/2 and β = −π/2 and with
Emax

cc = 0.3186 meV. The qubit state energies in this case are

FIG. 4. (Color online) The lowest energies of a two-qubit system as function of the detunings εA = εB = ε. The thick black dashed
line shows the continuum ED energies, and the red line the Hubbard energies with the parameters tij = 27.8 μeV, U = 3.472 meV, and
η = 0.43 nm. These parameters have been obtained by fitting the Hubbard energies to continuum data corresponding to �ω0 = 4 meV
confinement, 80 intraqubit dot distance, 120 nm qubit-qubit distance, and linear alignment (α = β = 0 in Fig. 1). The energies of the fitted
case are shown in the left panel. The right panel shows the continuum ED and Hubbard energies in the system with α = β = 0.4534π (see
Fig. 1). The Hubbard parameters are the same as in the left panel; i.e., they are fitted to the α = β = 0 case.
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FIG. 5. (Color online) The maximum value Emax
cc of the differen-

tial cross capacitance energy Ecc as a function of the angles α and
β (see Fig. 1 for the description of the system). The Emax

cc values are
shown in meV. The values are computed using the extended Hubbard
model with its parameters fitted to the continuum model data.

shown in the lower right plot of Fig. 2. If the angles are further
increased in this direction, the values keep rising but in this
case the qubit-qubit distance becomes smaller than 120 nm.

Along the line α = β, the values of Emax
cc decrease as the

angles are increased. Near α = β = π/2, the maximum value
has decreased to zero. For example, with α = β = 0.4534π

the maximum value is Emax
cc = 1.7648 × 10−10 meV compared

to the α = β = 0 value Emax
cc = 0.2159 meV. With these “dead

angles,” the energy difference ESS + ET0T0 − EST0 − ET0S

vanishes and Ecc is uniformly zero. The qubit state energies
for the dead angle case α = β = 0.4354π are shown in
the lower left plot of Fig. 2. Comparing this to the other
plots of the figure, the anticrossing area width is smaller,
and the intermediate bonding and antibonding |SS〉 states
are completely degenerate. As the angles are then further
increased, the values of Ecc start to rise again reaching Emax

cc =
0.06 meV at α = β = π/2. Figure 3 shows the Ecc values in
the rectangular case −α = β = 0.5π , with α = β = 0.45π

(close to the dead angle case), and with α = β = π/2.
It should be noted that the behavior of the Emax

cc as a function
of the angles α and β or the qubit distance d can be explained
electrostatically. Ecc obtains its maximum values when the
singlet is fully in the (0,2) configuration. Computing the value
of Emax

cc according to Eq. (8) so that the singlet consists of two
unit charges located at a single dot, and the triplet of one charge
per dot, yields the same angle dependence that is seen in Fig. 5.

The strength of the qubit-qubit coupling, the energy
difference Ecc, is observable by looking at the energies of
the two-qubit systems. The energy difference between the
intermediate bonding and antibonding states (the width of
the “middle bulges” in Fig. 2) determines the strength of the
capacitative coupling. In the cases where the bonding and
antibonding states are close to degenerate [a small “bulge” as
in Figs. 2(b) and 2(c)], Ecc assumes very small values, and the
qubits are only weakly coupled.

C. Gate operation

In implementing the capacitative CPHASE gate, the
strongly coupled geometries are preferable. Long gate
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FIG. 6. (Color online) The cross capacitance Ecc values as a
function of the charge in the low detuned dot 1 of qubit A, q1 (the
charge in the low detuned dot 4 of qubit B is exactly the same due
to symmetry). The inset shows at the small Ecc region relevant to the
CPHASE-gate operation time of tens of nanoseconds.

operation times mean more errors due to decoherence from
for example the charge noise [6,22,24]. In order to achieve fast
enough gate operation in the weakly coupled cases, one needs
larger charge distribution differences between the singlet and
triplet states. Charge-noise-induced decoherence, an important
error source in S − T0 qubits, is increased considerably when
the qubits are operated close to the (0,2) regime [3,22,24]. It
should be noted that there have also been theoretical studies on
additional effects beside the charge asymmetry, so called sweet
spots in capacitative coupling of S − T0, that can minimize the
charge noise coupling (e.g., Refs. [25,29]).

Figure 6 shows the fact that with weak coupling one needs
large charge asymmetries in order to achieve fast operation.
Figure 6 shows the Ecc values as a function of the charge in
the low detuned dot of qubit A (the charge in dot 4, the low
detuned QD of qubit B, is exactly the same due to symmetry).
The values are shown in three different geometries: linear with
d = 160, linear with d = 120 nm, and d = 120 nm with α =
β = 0.45π . It is evident from Fig. 6 that in the weakly coupled
α = β = 0.45π case, the Ecc values stay small even with very
large charge distribution asymmetries. In order to achieve the
gate operation time of for example 50 ns (meaning that it
takes 50 ns to achieve the maximal Bell-state entanglement), a
cross-capacitance energy of Ecc = 41.36 neV is required (see
the inset in Fig. 6). In the α = β = 0 case with d = 120 nm,
this corresponds to the charge asymmetry q1 = 1.0161 e, and
in the d = 160 case to q1 = 1.0257 e. In the weakly coupled
d = 120, α = β = 0.45π case, a much larger asymmetry of
q1 = 1.1203 e is needed for the same operation.

In addition to the charge-noise-induced decoherence, large
charge asymmetry can also cause problems in the form of the
singlet charge-state leakage. If the singlet is detuned close to
the (0,2) regime nonadiabatically, the leakage between (1,1)
and (0,2) could hinder the gate operation [27]. We simulate a
nonadiabatic detuning sweep to a charge state corresponding to
the aforementioned gate operation of 50 ns using the Hubbard
model (the parameters are fitted to the continuum model data).
The two-qubit system is initiated in |S(1,1)〉A ⊗ |S(1,1)〉B .
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FIG. 7. (Color online) Occupation of the lowest |SS〉 state as a
function of time. The two-qubit system is initiated in the |S(1,1)〉A ⊗
|S(1,1)〉B charge state. At t = 0 the detuning sweep is started. The
detuning is increased to its maximum value (ε = 3.92 meV in the
α = β = 0 case and ε = 4.25 meV in the α = β = 0.45π case) that
corresponds to a CPHASE operation with the duration of 50 ns. The
detuning sweep’s duration is τ = 0.01 ns. At t = 0.01 ns, when the
detunings have reached their final values, the system is let to evolve
for 0.001 ns.

The detunings are then increased linearly to their maximum
values (ε = 3.92 meV in the α = β = 0 case, ε = 4.22 meV
in the d = 160 nm case, and ε = 4.25 meV in the α = β =
0.45π case) during a time of τ = 0.01 ns. The occupations of
the lowest |SS〉 and |ST0〉 states are plotted as a functions of
time in Fig. 7.

In the d = 120 nm and α = β = 0 case, the singlet charge
distribution corresponding to the 50 ns gate operation is very
close to (1,1) (q1 = 1.0161 e), and thus the leakage from
the lowest singlet state to the higher one is negligible. In
Fig. 7, the occupations of the lowest |SS〉 and |ST0〉 states
are P (|SS〉) = 0.996 at the end of the detuning sweep. With
d = 160 nm, the final occupation is P (|SS〉) = 0.968. In the
α = β = 0.45π case, the final probability is P (|SS〉) = 0.840.
The weaker coupling arising from the geometry of the two-
qubit system and the consequent large charge asymmetries
required for the gate operation result in probability leaking
out of the qubit basis to higher singlet states if the detuning
sweep is too fast. In this case, the gate cannot achieve maximal
Bell-state entanglement [27] (the maximum concurrence is
given by the final occupation of the lowest |SS〉 state). On
the other hand, slow detuning pulses needed for an adiabatic
passage to (0,2) could cause problems in controlling the qubits
and their interaction. The nonadiabatic charge state leakage is
discussed with more detail in our previous study [27].

Our analysis shows that the values of Emax
cc increase with

decreasing qubit-qubit distance, and the largest values are
obtained with trapezoidal dot formations, i.e., with the angles
in Fig. 1 being α = −β. The strongest coupling (with a given
qubit-qubit distance) corresponds to a rectangular formation
of the qubits (α = π/2 and β = −π/2). In implementing the
coupling scheme, systems of large Emax

cc values are preferable.
Weak coupling arising from the geometry (long qubit-qubit
distance or the “dead angles” cases) can cause problems for

example in the form of charge-state leakage. It should be noted
that the angle dependence of Ecc was found to be similar also
with asymmetric detunings and with the closer dots 2 and 3
detuned to low potential (i.e., εA,εB < 0).

IV. SEVERAL QUBITS AND CLUSTER STATES

Bell states are created by applying a CPHASE gate between
two capacitatively coupled S − T0 qubits. By applying such
gates between all adjacent pairs of an n-qubit array, a state
belonging in the highly entangled class of cluster states is
created. A cluster state corresponding to a certain array of
qubits can be parametrized by a mathematical graph G =
(V,E), with the vertices V being the qubits and the edges
E corresponding to their couplings [12]. Cluster states have
applications for example in the proposed one-way quantum
computing scheme where the system of qubits is first prepared
into a cluster state and quantum computing algorithms are then
implemented by measuring the qubits in a certain order and
basis [15].

A general cluster state |φNq
〉 of Nq S − T0 qubits can be

written as

|φNq
〉 = 1

2Nq/2

Nq⊗
k=1

(|S〉kσ k+1
z + |T0〉k

)
, (9)

where the subscript k corresponds to the qubit number k,
and σ k+1

z is the z Pauli matrix, (here, σ
Nq+1
z = 1). In the

two-qubit case, |φ2〉 = 1
4 (|SS〉 − |ST0〉 + |T0S〉 + |T0T0〉), a

state which is equivalent to the maximally entangled Bell states
|
±〉 = 1√

2
(|SS〉 ± |T0T0〉) up to local unitary transforma-

tions. Similarly, |φ3〉 is equivalent to the maximally entangled
three-qubit Greenberger-Horne-Zeilinger (GHZ) states [9]
|GHZ±〉 = 1√

2
(|SSS〉 ± |T0T0T0〉). However, with Nq � 4,

the corresponding cluster states are not equal to the GHZ
states [12].

In generating cluster states, the CPHASE operations be-
tween qubits can in principle be applied in an arbitrary order,
simultaneously or in sequences [12,13,15]. In Ref. [30], we
proposed a three-qubit gate for the creation of the three-qubit
cluster state (or the GHZ state) in which the gate operation
consists of just one step, setting all three qubits to the
desired detuning values. In this scheme, the qubits were
placed symmetrically in a triangular formation. In this section,
we simulate the generation of GHZ states in several other
three-qubit geometries. The following subsections concentrate
in detail to two different qubit geometries that we use to
demonstrate both the sequential on and one-step preparation
of cluster states.

We simulate three qubits A (consisting of dots 1 and 2), B
(dots 3 and 4), and C (dots 5 and 6), with the intraqubit dot
distances being 80 nm and the qubit-qubit distances 120 nm.
The confinement strength is �ω0 = 4 meV. The detunings are
defined as εA = V (R2) − V (R1), εB = V (R4) − V (R3), and
εC = V (R5) − V (R6). The simulations are done using the
extended Hubbard model of Eq. (3). The parameters of the
model (tij = 27.8 μeV, U = 3.472 meV, and η = 0.43 nm)
are fitted to the two-qubit continuum model data with the same
dot distances. We characterize the entanglement in three-qubit
states using the pairwise concurrences and the three-tangle [11]
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FIG. 8. (Color online) Evolution of the concurrences in a three-
qubit system in the linear alignment geometry shown above the plot.
The thick line shows the three-tangle τABC and the thin line the
pairwise concurrence of qubits A and B, CAB . The qubits A, B,
and C are initiated in the state 1√

2
(|S〉 + |T0〉) with the detunings

εA = −εB = 4.0 meV and εC = 0. When CAB has reached the
maximum value 1 at t = 76 ns, the detunings εA and εB are decreased
to zero, after which εB and εC are increased to the values 4.1 meV
and −4.1 meV, respectively (the detuning sweeps are adiabatic with
respect to the charge-state transition, lasting 2.5 ns). The system is
then let to evolve for 200 ns.

that are computed at each time step as the system is evolved (the
six-electron wave function is projected onto the three-qubit
computational basis, and the concurrences are computed as in
[11]). The time evolution of the six-electron wave function,
|
(t)〉, is computed by propagation with the Hubbard Hamil-
tonian of Eq. (3), |
(t + �t)〉 = exp[−i�tH (t)/�]|
(t)〉.

A. Linear alignment and sequential preparation

In the linear alignment case (see the illustration in Fig. 8),
the Coulomb repulsion between the qubits affects the middle
qubit B differently compared to A and C. This asymmetry
between the qubits makes it difficult to set the detunings of
the qubits so that the Coulomb repulsion between them is
symmetric. With significantly asymmetric repulsion, entan-
gling the three qubits in a single step is not viable, as the
entanglement oscillates very irregularly in this case (see the
asymmetry discussions in Ref. [30]). Instead, we simulate a
more general scheme in principle applicable to any array of
S − T0 qubits in which the interactions between qubits are
turned on sequentially.

The evolution of the concurrences during the three-qubit
operation are shown in Fig. 8. All three qubits A, B, and C
are first initiated in the state 1√

2
(|S〉 + |T0〉). Qubits A and

B are then evolved under exchange with the detunings εA =
−εB = 4.0 meV. The pairwise concurrence CAB of A and B is
computed, and when it reaches the maximal value CAB = 1,

i.e., when A and B are maximally entangled, the detunings εA

and εB are decreased to zero adiabatically. Qubits B and C are
then detuned to the values εB = 4.1 meV and εC = −4.1 meV
adiabatically (i.e., in this pairwise operation, the farthest away
dots are again detuned to low potential). When the detunings
have reached their maximal values, the system is let to evolve
for 200 ns.

As the qubits A and B are evolved under exchange, they
start to entangle, as seen in the increasing values of CAB in
the figure. Switching off the detunings of A and B when their
subsystem has reached the maximal Bell-state entanglement,
and subsequently evolving B and C under exchange, results
in true three-qubit entanglement. The system starts to oscillate
between a GHZ state (τABC = 1, for example at t = 96 ns) and
a Bell state between qubits A and B (CAB = 1). The pairwise
concurrences CBC and CAC stay approximately zero in this
case; the entanglement in the system is either of the GHZ type
between all three qubits or between just A and B.

The frequency of the oscillations is given by the value of
Ecc similarly to Eq. (7) in the two subsystems (this also applies
to the frequency of τABC oscillations although their functional
form is different). In Fig. 8, B and C are detuned to higher
values, resulting in a larger value of Ecc and faster oscillations
compared to the beginning of the simulation.

If the detunings of A and B are switched off before (or
after) the maximal Bell-state peak, and B and C then detuned to
exchange, also CBC achieves nonzero values. In this case, τABC

never reaches 1, and the entanglement oscillates between CAB

and CBC . For example, if the switch-off is done at CAB = 0.7,
both CAB and CBC oscillate between 0 and 0.7, while τABC

assumes values between 0 and 0.49.
The linear system was also studied with other qubit-qubit

distances including asymmetric cases where the distance
of A and B is different from the distance of B and C.
The results were qualitatively similar to the ones already
discussed. The geometry of the three-qubit system defines
the Ecc values for the pairwise qubit couplings, which in turn
determine the frequencies of the entanglement oscillations.
Generally, the results discussed in Sec. III are directly
applicable to the sequential entanglement scheme of arbitrary
number of qubits, as in this case the entanglement is generated
using only two-qubit CPHASE operations.

B. Parallel alignment and one-step preparation

In the parallel alignment geometry (the illustration of
the geometry is seen in Fig. 9), the sequential coupling
scheme works similarly to that in the linear case discussed
in the previous section. The frequencies of the entanglement
oscillations are again determined by the pairwise Ecc values.
As the pairwise couplings are now of the rectangular type;
stronger couplings are achieved compared to the linear case,
as can be seen in Fig. 3. The qualitative features of the
entanglement oscillations in the sequential scheme remain
unchanged from the ones in Fig. 8.

Although the Coulomb repulsion between the three qubits is
still not symmetrical in the parallel formation, the differences
between qubits are smaller than in the linear case. This allows
the generation of GHZ states using a single detuning pulse
applied simultaneously to all three qubits, as in Ref. [30]. In

125303-8



CAPACITATIVE COUPLING OF SINGLET-TRIPLET . . . PHYSICAL REVIEW B 90, 125303 (2014)

0 100 200 300
0

0.5

1

t (ns)

τ A
B

C

0 20 40
0

0.5

1

t (ns)

τ A
B

C

0 0.2 0.4 0.6
0

0.5

1

t (ns)

τ A
B

C

0 0.02 0.04
0

0.5

1

t (ns)

τ A
B

C

FIG. 9. (Color online) The evolution of the three-tangle with
different detunings εA = εB = εC = ε in the parallelly aligned case
(the geometry is illustrated above the plots). At t = 0, all qubits are
initiated in the xy plane of the Bloch sphere. The qubits are then let
to evolve, and the concurrences and the three-tangle are computed at
each time step. The upper left plot corresponds to ε = 4.5 meV, the
upper right to ε = 4.7 meV, the lower left to ε = 4.9 meV, and the
lower right to ε = 5.6 meV.

this case, all qubits are again initiated in the xy plane with the
detunings εA = εB = εC = ε. The system is then evolved with
these constant detunings causing the qubits to entangle with
each other. Figure 9 shows the tangle evolution with different
detunings ε.

The value of the detunings, ε, has a large qualitative
effect on the τABC oscillations. When ε is below or above
the anticrossing region of the singlet charge states (i.e.,
ε < 4.6 meV or ε > 5.5 meV), τABC oscillates between 0
and 1 with an approximately constant frequency. As seen in
the upper left and lower right plots of Fig. 9, the wave form
is still not completely periodic due to the aforementioned
asymmetry between the qubits. When the detuning is in
the anticrossing region (upper right and lower left plots in
Fig. 9), the oscillations are more complex with modulation-
like behavior. Apart from the small asymmetry effects, the
qualitative features of the tangle oscillations are similar to the
symmetric triangular case of Ref. [30], in which the behavior
of the oscillations with different detunings is also discussed
with more detail.

The one-step preparation scheme depends in a more
complex manner on the geometry of the S − T0 qubit system
than the sequential one. It could in principle be used in
the linear geometry of Fig. 8 as well, by again setting the
detunings to εA = εB = εC = ε and letting the system evolve.

FIG. 10. (Color online) A two-dimensional S − T0 qubit array.
The intraqubit dot distances are a and the qubit-qubit distances d .
The array is divided into N rows and M arrays. In each row, the
qubits are coupled parallelly and in each column linearly.

However, in this case, it is found to result in very irregular
entanglement oscillations that would be ill-suited for the
experimental creation of cluster states. The reason for this
difference between the two geometries is that in the linear
geometry, the effect of the repulsion by the two other qubits
depends heavily on the qubit in question. For example, the
repulsion by A and B pushes the charge in C towards dot 6, in
this case effectively lowering the Ecc value between qubits B
and C. On the other hand, the repulsion by B and C enhances
the Ecc value of A and B by pushing the charge in A into dot
1. In the parallel geometry, the interqubit repulsion acts by
inhibiting the transition to (0,2). Although the system is still
not symmetric between the three qubits, the aforementioned
effect is larger in B than in A and C; the effects of the
asymmetry are much smaller than in the linear case.

C. General case and qubit arrays

Finally, we will briefly discuss the creation of general clus-
ter states between S − T0 qubits. The generation of three-qubit
GHZ states was also studied with other intraqubit orientations
and distances, and the sequential entangling scheme was found
to work similarly to the linear case in all studied geometries.
In some sense, the parallel case discussed in the previous
section can be considered to be the optimal geometry as it
has the largest qubit-qubit couplings. The Coulomb-repulsion
asymmetry between the qubits is also quite small in this
formation.

Extending the sequential entanglement scheme beyond
three qubits (i.e., adding more qubits to the formations in
Figs. 8 and 9) results in an 1D array of qubits with a
corresponding cluster state. Coupling several of such 1D arrays
with each other then allows the creation of general graph states.
Figure 10 shows an illustration of a 2D array of S − T0 qubits.
In the figure, the 2D array is divided into N rows and M
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columns. In each row, the qubits are coupled parallelly and in
each column linearly.

In the array geometry of Fig. 10, it should in principle be
possible to entangle all qubits in a single row into cluster state
with one single detuning pulse (similarly as in Fig. 9). The
neighboring rows can then be entangled with each other again
sequentially in one step per a pair of rows. Entangling the
rows with each other should not affect the entanglement inside
rows as the detuning values required for large Ecc values in the
linear and parallel alignments differ considerably (see Fig. 3).
The total number of entangling steps for obtaining a cluster
state spanning the whole array is thus M + 1. A cluster state
corresponding to a given graph in the array can then be created
by measuring the qubits that do not belong to the graph in the
σz basis, which effectively removes them from the cluster [15].

In reality, however, fabricating perfectly symmetrical qubit
arrays is impossible. The asymmetries in the array probably
inhibit the one-step preparation of cluster states for entire rows
of qubits. Instead, the preparation has to be done one qubit
pair at a time, or at least between row and column segments
instead of whole rows and columns. There are also many
other experimental limitations, including how the electrostatic
gating defining the quantum dot potentials should be conducted
in such arrays. The experimental issues are however outside
the scope of this paper and the analysis in this section should
be considered a preliminary study on many-qubit arrays and
cluster states in the S − T0 qubit architecture.

V. DISCUSSION

Using exact diagonalization techniques, we have first
computed the energy eigenstates of a two-qubit system with
several different qubit-qubit distances and discussed their
effect on the capacitative coupling of the two qubits. Longer
qubit-qubit distances were found to result in weaker coupling
due to smaller differences in the Coulomb repulsion between
the qubit states. The effect of the orientation of the qubits
with respect to each other was also discussed. We find that
the coupling is strong with short qubit-qubit distances, and
trapezoidal dot formations. These geometries are preferable
in creating efficient two-qubit gates. They allow smaller

localization of the singlet electrons in the gate operation,
which in turn decreases the charge-based decoherence and
charge-state leakage between S(1,1) and S(0,2).

We also discussed the creation of cluster states and mul-
tiqubit entanglement using the capacitative coupling. Several
interqubit geometries were studied. We simulated the creation
of a three-qubit cluster states using the extended Hubbard
model with its parameters fitted to continuum model data.
We simulated both the simultaneous and pairwise detuning
schemes for the creation of three-qubit entanglement. We also
discussed the creation of cluster states corresponding to large
qubit arrays and arbitrary graphs.

In this paper, we have not modeled the decoherence
effects explicitly. Of the different sources of decoherence,
the charge noise is possibly the most severe in the case
of the capacitative coupling. The faster the gate operation,
i.e., the larger the differences in the singlet and triplet
charge distributions, the more susceptible the system is to
charge noise [22,24,25,29]. The ability to increase the qubit-
qubit coupling without increasing the charge distribution
differences is thus on demand. Another important source of
decoherence is the semiconductor nuclear spin bath [18,19].
It is however suppressed during the capacitative coupling
operation due to the significant exchange energy in the
qubits [4,31,32].

In conclusion, we have studied the capacitative coupling of
singlet-triplet qubits using exact diagonalization techniques.
Our analysis on the geometry of the two-qubit system and
its effect on the coupling strength can be used to aid experi-
mentalists in creating efficient realizations of the capacitative
coupling scheme. The geometries allowing stronger couplings
can be used to alleviate the decoherence problem, and we
see no reasons that would prevent their use in implementing
the coupling scheme experimentally. The analysis was also
extended to three qubits, and the scheme for the creation of
highly entangled cluster states should in principle be applicable
to any number of singlet-triplet qubits.
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