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First-principles study of point defects in chalcopyrite ZnSnP2
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Chalcopyrite ZnSnP2 is an alternative photoabsorber material for solar cells because of its controllable band
gap, high absorption coefficient, and earth abundant constituents. In this study we systematically investigate its
native point defects including vacancies, interstitials, and antisites using first-principles calculations with the
Heyd-Scuseria-Ernzerhof hybrid functional. We evaluate the defect formation energies and defect single-particle
levels at the dilute limit using finite-size image-charge corrections and compare them with those reported for
CuInSe2 and CuGaSe2. The most likely donors and acceptors are cation antisites, Sn-on-Zn and Zn-on-Sn,
respectively. Because of their significantly low formation energies, they lead to Fermi level pinning in the band
gap under any growth condition, and constrain the carrier concentration. The Sn-on-Zn antisite in the neutral
charge state becomes an intrinsic DX center, a complex of the Sn interstitial and Zn vacancy, and shows a deep
donor level as reported for CuGaSe2.
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I. INTRODUCTION

CuInSe2 (CIS), a ternary I-III-VI2 chalcopyrite, is a
photoabsorber material for highly efficient photovoltaic cells
because of its high absorption coefficient [1], benign grain
boundaries [2], and good thermal stability [3]. By mixing
CIS (band gap, Eg = 1.05 eV) with CuGaSe2 (CGS) with
Eg = 1.68 eV, the band gap can be tuned to match the solar
spectrum. Currently the efficiency of CuIn1−xGaxSe2 based
cells can be beyond 20% [4]. It is, however, technologically
more worthwhile if expensive and scare In and Ga are replaced
by inexpensive and earth abundant species.

A promising candidate for an alternative photoabsorber
material is II-IV-V2 chalcopyrite ZnSnP2. The constituents Zn
and Sn are well mined, and the direct band gap of 1.68 eV [5] is
close to the optimum value at the Schockley-Quisser limit [6].
The absorption coefficient is high and almost comparable
with CGS (>104 cm−1 above 1.9 eV) [7]. In addition, when
temperature is increased to 990 K, cation disorder occurs
and consequently a sphalerite structure with a lower band
gap emerges [1]. The change of the cooling rate during
crystallization makes it possible to obtain crystals with various
degrees of cation ordering. The experimentally reported band
gaps of the sphalerite ZnSnP2 range from 1.22 to 1.38 eV,
and hence fine tuning of the band gap may be attained via the
control of cation ordering [5,8,9]. The band gap can also be
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tuned by alloying with CdSnP2 [7], which is isostructural to
ZnSnP2 and has a smaller direct gap of 1.17 eV [10].

In semiconductors, native point defects can dominate the
electronic properties, leading to unintentional conductivity and
carrier recombination. Undoped ZnSnP2 is known to be a
p-type semiconductor. Rubenstein and Ure prepared ZnSnP2

by a solution growth method under a tin excess condition, and
observed p-type conductivity using Hall and room temperature
thermoelectric probe measurements [11]. Their chemical
analysis suggested that Zn is deficient compared to Sn and
P in the samples and, therefore, the source of the p-type
conductivity is possibly Zn vacancies. Miyauchi et al. observed
a donor-acceptor transition level in ZnSnP2 crystals grown
by solution growth and normal freezing methods [12]. From
the difference in the photoluminescence spectra before and
after annealing under a Zn atmosphere, they speculated that
Sn-on-Zn antisites and Zn vacancies act as shallow donors and
acceptors, respectively.

Despite the experimental efforts, the defect physics is
not well established in ZnSnP2. In terms of technological
applications, it would be important to find out whether ZnSnP2

can be inverted to an n-type semiconductor by doping for
the fabrication of the p-n homojunction solar cells. Such
dopability is partly ruled by the position of the pinning level,
where the formation energy of a charged defect becomes zero
in the band gap [13]. When an acceptor pinning level is located
near midgap, n-type doping is prohibited. This is because when
the Fermi level is located near the CBM, acceptors associated
with the pinning level have negative formation energies and
spontaneously emerge until the Fermi level is decreased to the
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pinning level. Demers and van de Walle have reported that
P interstitials form a deep acceptor pinning level in Zn3P2,
hindering its n-type doping [14]. Persson et al. have also shown
a deep pinning level of the Cu vacancy in CGS, which has
almost the same band gap as ZnSnP2 (Eg = 1.68 eV) [13].
Regarding CIS and CGS, a wide variety of defects have been
theoretically investigated [13,15–20]. Lany and Zunger have
reported using the local density approximation (LDA) that
intrinsic DX centers and a metastable state of the Se vacancy
exist in CIS and CGS [16,17,21]. Recently, Pohl and Albe
systematically revisited the native defects in CIS and CGS
using a hybrid functional, and carefully analyzed the results
in comparison with previous theoretical and experimental
findings [19]. In this study we systematically investigate
native defects in ZnSnP2 using first-principles calculations and
compare the defect properties to those in CIS and CGS to find
whether the defect physics observed in CIS and CGS holds
in II-IV-V2 chalcopyrite ZnSnP2. We have adopted a hybrid
density functional that can well reproduce the experimental
band gap of ZnSnP2 and is expected to reduce self-interaction
errors that prevail in local and semilocal functionals. Further-
more, image-charge corrections are carefully applied to defect
formation energies and defect single-particle levels to predict
them at the dilute limit.

II. COMPUTATIONAL DETAILS

The calculations were performed using the projector
augmented-wave (PAW) method [23] as implemented in
VASP [24,25]. PAW data sets with radial cutoffs of 1.22, 1.59,
and 1.01 Å for Zn, Sn, and P, respectively, were employed.
Zn 3d and 4s, Sn 5s and 5p, and P 3s and 3p were
described as valence electrons. For the perfect crystal, lattice
constants and internal atomic positions were fully optimized
until the residual stresses and forces converged to less than
0.03 GPa and 0.005 eV/Å, respectively. Defect calculations
were performed using the theoretical lattice constants of the
perfect crystal. The internal atomic positions were relaxed
until the residual forces reduce to less than 0.02 eV/Å. Wave
functions were expanded with a plane-wave basis set. Cutoff
energies were set to 400 and 300 eV for the calculations of
the perfect crystal and defective systems, respectively; the
estimation of stress in the former requires a higher cutoff
energy to reduce the spurious Puray stress. Spin polarization
was considered for all defects.

The LDA and generalized-gradient approximation (GGA)
significantly underestimate the band gaps of semiconductors,
which can lead to erroneous defect properties even qualita-
tively. Thus, we adopt the Heyd-Scuseria-Ernzerhof (HSE)
hybrid functional [26–28], which describes the electronic
structures of semiconductors and insulators more accurately
than the LDA and GGA [28–31] and have been applied

to their point defects [14,19,32,33]. In the HSE functional,
short-range exchange interactions are described by mixing
nonlocal Hartree-Fock (HF) exchange into the exchange of the
Perdew-Burke-Ernzerhof generalized-gradient approximation
(PBE) [34]. The screening parameter and mixing of HF
exchange were set at the HSE06 values of 0.208 Å−1 and
0.25 throughout this study [28].

The formation energy of a point defect is calculated
as [35–37]

Ef [Dq] = {E[Dq] + Ecorr[D
q]} − EP −

∑
niμi

+q(εVBM + �εF ), (1)

where E[Dq] and EP are the total energies of the supercell
with defect D in charge state q and the perfect crystal
supercell without any defect, respectively. ni is the number
of removed (ni < 0) or added (ni > 0) i-type atoms and
μi refers to the chemical potential. The chemical potentials
can be controlled within the range where the host system is
stable. We calculated a Zn-Sn-P chemical potential diagram at
0 K (see details in Sec. III B), and determined the region of
allowed chemical potentials. εVBM is the energy level of the
valence band maximum (VBM). εVBM + �εF represents the
Fermi level, and �εF changes within the band gap. Apart
from the approximated exchange-correlation functional, an
error in the defect formation energy mainly comes from the
spurious electrostatic interactions between the periodically
repeated cells, and Ecorr[Dq] corresponds to correction energy
for it (see Sec. III C in detail). Note that the potential
alignment is not considered because it is unnecessary when
the image-charge correction is properly applied to the defect
formation energy [37].

For defect calculations, a 64-atom supercell constructed
by expanding the conventional unit cell [Fig 1(a)] and a �

centered 2 × 2 × 2 k-point sampling for the reciprocal space
integration were employed based on the test calculations
shown in Sec. III C. Calculations with a 216-atom supercell
constructed from the primitive unit cell and a �-only k-point
sampling were also performed to complement the 64-atom
supercell calculations. Almost the same results were obtained
using these two sets of calculations. In the case where
different charge states of a defect give rise to different atomic
configurations, we performed calculations using the structures
converged at other charge states, and compared their energies
after applying the finite-size correction to find out the lowest
energy configuration. Such multiple configurations appeared
in Sn and P vacancies, and Zn, Sn, and P interstitials. The Fermi
level at which the formation energies of a defect in different
charge states equalize is referred to as thermodynamical
transition level. From Eq. (1), the thermodynamical transition
level between charge states q and q ′ εTTL(D,q/q ′) is written
with respect to the VBM as

εTTL(D,q/q ′) = −{E[Dq] + Ecorr[Dq]} − {E[Dq ′
] + Ecorr[Dq ′

]}
q − q ′ − εVBM. (2)

Its position with respect to the conduction band minimum (CBM) or VBM corresponds to the thermal ionization energy of a
donor or acceptor.
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III. RESULTS AND DISCUSSION

A. Fundamental properties of perfect crystals

The Bravais lattice of the chalcopyrite structure is the body-
centered tetragonal. There are eight atoms in the primitive
unit cell [Fig. 1(a)], and its space group is I 4̄2m. Each
anion (cation) is surrounded by four nearest neighbor cations
(anions) as in the zincblende structure. In ZnSnP2, Zn and Sn
are coordinated by four P, while P is coordinated by two Zn
and two Sn. Table I summarizes band gaps, lattice constants,
and displacement parameters of P calculated using the LDA
as parametrized by Perdew and Zunger [38], PBE [34],
PBE+U [39] (U − J = Ueff = 7 eV), which corrects on-site
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FIG. 1. (Color online) (a) Conventional and primitive unit cells
of chalcopyrite ZnSnP2. Interstitial sites surrounded by four cations
and four anions, respectively, represented as ic and ia and interatomic
distances are also shown. Note that the P-P distances of the second
nearest neighbors are widespread because of the displacements of
P from the corresponding positions in the zincblende structure.
(b) Brillouin zone of ZnSnP2 in the body-centered tetragonal system
and its high symmetry points. (c) and (d) Calculated band structure
and density of states for ZnSnP2 using (c) PBE and (d) HSE06. The
energy zeros are set at the VBM. Horizontal dashed lines indicate
the VBM and CBM. Note that the density of states near the CBM is
significantly small due to a large band dispersion.

TABLE I. Band gap Eg , lattice constants a and c, their ratio, and
displacement parameter u of P in ZnSnP2 calculated using different
exchange-correlation functionals. The band gap of mBJ is estimated
with the relaxed structure by HSE06. Note that both VBM and CBM
are located at the � point in any result. For PBE+U , the effective
on-site Coulomb potential of U − J = Ueff at Zn-3d orbitals was set
at a typical value of 7 eV.

Eg (eV) a (Å) c (Å) c/a u

LDA 0.83 5.58 11.20 2.01 0.22
PBE 0.69 5.71 11.44 2.01 0.23
PBE+U 0.89 5.69 11.41 2.01 0.23
TPSS 0.92 5.67 11.35 2.00 0.23
rTPSS 1.01 5.64 11.27 2.00 0.23
HSE06 1.68 5.67 11.36 2.00 0.23
mBJ 1.71 – – – –
Expt. [5,22] 1.68 5.651 11.302 2.00 0.24

Coulomb interactions in the selected localized orbitals (Zn-3d

in the present case) and improves their electronic struc-
tures [40–42], Tao-Perdew-Staroverov-Scuseria (TPSS) meta-
GGA [43], revised TPSS (rTPSS) [44], and HSE06 alongside
experimental values. The results show typical tendencies;
the band gaps calculated using the LDA, PBE, PBE+U ,
TPSS, and rTPSS are significantly underestimated. The lattice
constants using the LDA are underestimated while those using
the GGA and GGA+U are overestimated. The meta-GGA
functionals predict lattice constants better. The band gap
calculated using HSE06 shows excellent agreement with the
experimental gap. This is in contrast with CIS and CGS
for which we need to change the screening parameter or
mixing of HF exchange in HSE functional to reproduce
the experimental band gaps [18–20,31,45,46]. The lattice
constants and displacement parameter are also close to the
experimental values. We also calculated the band gap using
modified Becke-Johnson (mBJ) potential [47] at the HSE06
theoretical lattice constants. It also excellently agrees with the
experimental gap.

The band structure and density of states (DOS) obtained
using PBE and HSE06 are shown in Figs. 1(c) and 1(d).
The total DOS was calculated using the tetrahedron method
with Blöchl corrections [48]. The projected density of states
(PDOS) was evaluated within the spheres centered on the
atomic sites with radii of 1.27, 1.57, and 1.23 Å for Zn, Sn,
and P, respectively. Between the PBE and HSE06 calculations,
the shapes of the valence and conduction bands are almost
the same, respectively. Both reproduce the direct-type band
structure, although the band gaps are different. Due to a
larger self-interaction error in PBE, the position of the Zn-3d

band using PBE is 2 eV higher than that using HSE06, and
the position changes with respect to the Sn-5s band. The
VBM at the � point is mainly composed of P orbitals with
slight hybridization with Zn and Sn orbitals. The antibonding
characteristics between cation and anion orbitals at the valence
band are not so pronounced in ZnSnP2 compared with CIS and
CGS, since the Zn-3d states are much deeper than the Cu-3d

states. On the other hand, the CBM, which also locates at the
� point, is primarily composed of Zn and Sn orbitals.
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FIG. 2. (Color online) Chemical potential diagram for the Zn-Sn-
P ternary system involving ZnSnP2 and its competing phases obtained
using HSE06. The space groups of the most stable structures are
shown in brackets. The four vertices of the ZnSnP2 stable region are
labeled A–D and the corresponding chemical potentials are listed
in Table. II. The chemical potential of element i �μi is defined
with respect to that of element i in its standard state μ◦

i as �μi =
μi − μ◦

i . The standard states of Zn, Sn, and P are set to the solid
Zn(P 63/mmc), Sn(Fd3m), and P(Cmca). The calculated heats of
formation of Zn3P2, ZnP2, Sn4P3, and ZnSnP2 are −1.35, −0.95,
−0.33, and −1.01 eV/formula unit, respectively.

B. Chemical potential diagram

As shown in Eq. (1), defect formation energies depend
on the chemical potentials. Under an equilibrium condition,
the chemical potentials are constrained by the formation of
competing phases. Here the region of the chemical potentials
is determined using HSE06 total energies. We considered Zn
(P 63/mmc), Sn (Fd3m and I41/amd), P (Cmca), Zn3P2

(P 42/nmc), ZnP2 (P 21/c and P 41212), and Sn4P3 (R3m)
as competing phases. We found that the Fd3m and P 21/c

structures are stable for Sn and ZnP2, respectively. The entropy
contributions are neglected since they are expected to be small
for these solid phases and partly cancel out.

Figure 2 shows the calculated chemical potential diagram
for the Zn-Sn-P ternary system. The values at the four vertices
of the stable region of ZnSnP2 are labeled A–D and listed
in Table II. The range of the chemical potentials directly

TABLE II. Chemical potentials of the constituent atoms of
ZnSnP2 at points A–D in Fig. 2 (�μi in eV).

Point �μZn �μSn �μP

A −0.17 0 −0.42
B −0.20 −0.05 −0.38
C −0.88 −0.05 −0.04
D −0.79 0 −0.11

affects the controllability of defect concentrations via growth
conditions. It is noteworthy that the allowed chemical potential
of Zn ranges between −0.88 and −0.17 eV, whereas that of
Sn between −0.05 and 0 eV, meaning the control of the Sn
chemical potential is difficult by changing growth conditions.
This would be in part due to the difference of the cohesive
energies between the Zn and Sn metals. The calculated
(experimental [49]) cohesive energies of Zn and Sn are 1.17
(1.35) and 3.13 (3.14) eV, respectively, which indicates that
the Sn metal is much more stable, and consequently the stable
region of ZnSnP2 is largely reduced.

C. Corrections on defect formation energies and defect single
particle levels

When performing charged defect calculations, we should
address finite-size image-charge corrections on defect forma-
tion energies. In this study such corrections were performed
with the scheme proposed by Freysoldt, Neugebauer, and
Van de Walle (FNV) [50] with our extensions described in
Ref. [37]. Starting from the point charge (PC) model, the
correction energy of the FNV scheme is written as

EFNV = EPC − q�VPC,q/b|far, (3)

where EPC is the screened Madelung energy. �VPC,q/b denotes
the difference between the defect-induced potential with
respect to the bulk potential and the PC potential, and
�VPC,q/b|far is �VPC,q/b at a place far from the defect in
the supercell [37,50–53]. Our implementation uses atomic
site electrostatic potential for determining the defect-induced
potential, which has been shown to be effective for relaxed
atomic configurations [37]. The atomic site potential was
evaluated in the spheres with radii of 0.95, 1.41, and 0.96 Å
for Zn, Sn, and P, respectively. We have tested this scheme
with sets of calculations using various supercell sizes for the
Sn vacancy with q = −4 (V−4

Sn ) and Zn-on-Sn antisite with
q = −2 (Zn−2

Sn ), both of which do not involve perturbed host
states (PHS) with electron and hole occupation for donorlike
and acceptorlike states, respectively. Test calculations were
performed using PBE since HSE06 calculations using large
supercells are computationally too expensive.

Our extension of the FNV correction scheme uses a static
dielectric tensor, namely the sum of the ion-clamped dielectric
tensor (εele) and ionic contribution (εion), to account for
anisotropic screening [37]. For the PBE test calculations we
obtained them using density functional perturbation theory
with PBE [54,55]. The electronic part includes local field
effects. In tetragonal systems, only diagonal components are
nonzeros and ε11 and ε33 are independent. The calculated
εele

11 , εele
33 , εion

11 , and εion
33 are 11.69, 11.96, 2.36, and 2.55,

respectively. We can see that εele mainly contribute to the
static dielectric tensor rather than εion, and anisotropy is rather
small in ZnSnP2. The latter would be related to the fact that
the chalcopyrite structure is close to the cubic zincblende
structure. In the HSE06 defect calculations we used the
summation of the electronic part calculated using HSE06 and
the ionic part calculated using PBE+U , the latter of which
would be acceptable because the ionic contributions are much
smaller than the electronic components. The calculated εele

11
and εele

33 using HSE06 with a finite electric field approach are
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9.49 and 9.58. These are smaller than the PBE values partly
due to the increase of the band gap by HSE06. The ionic
contributions of PBE+U are εele

11 = 2.51 and εele
33 = 2.88.

Figures 3(a) and 3(b) show the formation energies of V−4
Sn

and Zn−2
Sn using various supercells constructed by expand-

ing the conventional and primitive unit cells. Without any
correction, significant cell size dependencies exist; an error
in Ef [V −4

Sn ] amounts to 2.4 eV with the 64-atom supercell.
Using the extended FNV scheme, Ef [V−4

Sn ] and Ef [Zn−2
Sn ] are

well corrected, and the cell size dependencies are drastically
reduced. As shown in Figs. 3(a) and 3(b), after the corrections,
calculations with the 64-atom supercell and a �-centered
2 × 2 × 2 k-point sampling are slightly more accurate than
those with the 216-atom supercell and a �-only k-point
sampling.

The electrostatics-based correction energy up to the L−3

order, where L is the dimension of a supercell, is null for
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FIG. 3. (Color online) Uncorrected and FNV corrected relative
formation energies of (a) V−4

Sn and (b) Zn−2
Sn as a function of the

supercell size and shape. Natom is the number of atoms in the supercell
before introducing a defect. The 64- and 216-atom supercells were
used with a �-centered 2 × 2 × 2 k-point sampling, and 512- and
1000-atom supercells were with a �-only k-point sampling. The 216-
atom supercell with a �-only k-point sampling was also considered.
Calculations were performed using PBE. Zeros of the relative energies
are set to the corrected energies calculated with 1000-atom supercells.

neutral defects [57]. This is, however, true only for the cases
where defect-induced charges are localized within supercells.
As shown in Fig. 4(a), the formation energy of neutral Zn0

Sn

has a cell size dependence similar to that of Zn−2
Sn . This is

because two holes occupy delocalized acceptorlike states and
spill out from the supercells. The charge of the acceptorlike
states significantly overlaps with their images and acts like
the background charge [58]. The same behavior has been
reported for the neutral Zn interstitial in ZnO [58] and some
neutral defects in InP [59]. In general, this can be expected
for not only neutral but also charged defects with PHS.
Without a correction, the error in Ef [Zn0

Sn] is estimated to
be roughly 0.5 eV with the 64-atom supercell; thus we need
a special treatment for such defects. When calculating the
native defects in ZnO using hybrid functionals, Oba et al.
estimated the correction energies of defects with PHS by
extrapolating the defect formation energies obtained with a set
of different supercell size and shape using the GGA [58]. This
procedure cannot account for the difference between defect
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FIG. 4. (Color online) (a) Uncorrected Zn0
Sn formation energies

and those obtained by Eq. (4). The supercell and k-point sampling
sets are the same as those in Fig. 3, and the band dispersion corrections
for shallow acceptor states [56] are applied for the 64- and 216-atom
supercells with 2 × 2 × 2 sampling. Zero of the relative energy is set
to the extrapolated value using a function of aN−1

atoms + bN
−1/3
atoms + c.

It is noteworthy that the energy of neutral Zn0
Sn shows a significant

cell size dependence, but it is reduced to less than 0.1 eV when using
Eq. (4). (b) Schematic of the approximation using Eq. (4). Since the
binding energy of the hydrogenlike state is approximated to be zero,
the energy of the defect with PHS is overestimated in any case.
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states calculated using the GGA and HSE06. We may instead
directly calculate defects with PHS using a gigantic supercell,
but it is unrealistic using HSE06. For instance, a 64 000-atom
supercell is indispensable for an accurate estimation of shallow
acceptor levels in Si [60].

Here we use an alternative way to estimate the energies
of defects with PHS. The thermal ionization energy of the
defect with PHS basically corresponds to its hydrogenlike
binding energy, and is typically less than 0.1 eV. When its
ionization energy is approximated to be zero, the energy of
a defect with unoccupied acceptorlike (occupied donorlike)
PHS becomes the same as the case where the PHS is occupied
(unoccupied) with the Fermi level at the VBM (CBM). A
schematic explanation is illustrated in Fig. 4(b). Then, the
energy of the defect with unoccupied acceptorlike PHS can be
written as

Ef [Dq] = Ef [Dq ′
]|�εF =0 + q�εF , (4)

and that of the defect with occupied donorlike PHS as

Ef [Dq] = Ef [Dq ′
]|�εF =Eg

+ q(�εF − Eg), (5)

where Ef [Dq ′
] is the energy of the defect without unoccupied

acceptorlike or occupied donorlike PHS in charge state q ′
and, therefore, q − q ′ is the charge of PHS, which is positive
for acceptorlike states and negative for donorlike states. As
shown in Fig. 4(a), this approximation significantly reduces
the cell-size dependence to less than 0.1 eV.

It is also known that defect single-particle levels have
cell size dependencies and the corrections also need to
be accounted for [52,61–63]. In this study we performed
the corrections based on the scheme proposed by Komsa
et al. [52] and Chen and Pasquarello [63]. A correction for the
defect single-particle level �εSP is related to the total-energy
correction as

�εSP = − 2

q
Ecorr, (6)

where Ecorr is the PC or FNV correction energy. Komsa et al.
extrapolated the vacancy levels in diamond to the infinite
interdefect distance limit using the point-charge correction
energies [52]. Chen and Pasquarello used the FNV correction
energies to estimate the F+ center single-particle level in
LiF [63]. We tested performances of these two schemes for
the P interstitial surrounded by anions in the +1 charge state
(P+1

ia ) and the Sn vacancy in the −4 charge state (V −4
Sn ).

The defect single-particle levels are determined by taking the
Brillouin-zone average [36]. As shown in Fig. 5, the FNV
corrections overshoot their single-particle levels, whereas the
PC corrections perform better. When deriving Eq. (6), the
short-range Coulomb interaction is assumed to be screened by
a scalar dielectric constant, but this might not be appropriate
for defect single-particle level corrections [63]. Based on the
test results shown in Fig. 5, we adopt Eq. (6) with the PC
correction energies.

D. Native point defects

In the present study we have studied 11 types of native
point defects: Zn, Sn, and P vacancies (VX, X = Zn, Sn,
and P), Zn, Sn, and P interstitials at the ic and ia sites
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FIG. 5. (Color online) Uncorrected and corrected defect single-
particle levels by adding − 2

q
Ecorr of (a) P+1

ia [for the lower occupied

in-gap state shown in Fig. 7(s)] and (b) V−4
Sn [for the upper occupied

in-gap state shown in Fig. 6(g)] with respect to the VBM as a function
of the supercell size. PC and FNV corrections were used for Ecorr

(see text in detail). The VBM was obtained from the calculation of
the perfect crystal. The supercells were constructed by expanding
the primitive cell, and PBE was adopted. All calculations were
performed with a �-centered 2 × 2 × 2 k-point sampling to enhance
the accuracy. Note that the defect single-particle levels of V−4

Sn are
located in the band gap when using PBE, but it is below the VBM
when using HSE06 and the 64-atom supercell before the cell-size
correction as shown in Fig. 6(g).

(Xia and Xic, X = Zn, Sn, and Se) depicted in Fig. 1(a), and
Zn-on-Sn and Sn-on-Zn cation antisites (ZnSn and SnZn). For
VZn, VSn, Zni , Sni , ZnSn, and SnZn, we considered relevant
charge states based on their formal charges. For example, the
charge states of Zni considered are 0, +1, and +2 for the
formal charge of Zn ion is +2 in ZnSnP2. On the other hand,
it has been reported that the Se vacancy and Se interstitial
in CIS and CGS are amphoteric and take both positive and
negative charges depending on the Fermi level [16,17]. Thus
we calculated VP and Pi with 0, ±1, ±2, and ±3 charges.
When a defect single-particle level disperses across a bulk
band edge, we adopted a discrete defect occupation scheme
proposed by Schultz [64]. In the cases where defects have
in-gap states, likely magnetic configurations were considered,
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FIG. 6. (Color online) Formation energies of (a) Zn, (b) Sn, and (c) P vacancies in ZnSnP2 under the Zn- and Sn-rich condition (vertex A
in the chemical potential diagram in Fig. 2) as a function of the Fermi level relative to the valence band maximum (VBM), which ranges up to
the conduction band minimum (CBM). For each charge state, only the energy for the most stable magnetic and atomic configuration is shown.
Note that the energy of a defect with unoccupied acceptorlike (occupied donorlike) perturbed host states (PHS) is assumed to be the same at the
VBM (CBM) as the case where the PHS are occupied (unoccupied) and is shown with a dashed line (see Sec. III C in detail). The positions of
thermodynamical transition levels are depicted with open circles. (d)–(k) Local structures and defect single-particle levels of selected vacancies.
Distances between the idealized vacancy position, which is assumed to be at the high-symmetric site, and the neighboring defects are shown
in unit of Å. In any case, the VBM was obtained from the HSE06 calculation of the perfect crystal. When a defect is metastable, the energy
difference from that of the most stable state is shown below the structures. In (i), the isosurface of the squared wave function for the defect
state is also shown. When the defect single-particle levels are located in the valence or conduction band before the finite-size correction, they
are schematically shown with dashed lines since their single-particle levels are not clearly defined. The positions of the defect single-particle
levels from the VBM after the finite-size correction are shown in unit of eV. Note that in (j) an occupied defect single-particle level is located
above the CBM after the correction, indicating it is an unstable state.

and only the results of the lowest energy states are shown
hereafter. For instance, V 0

Sn was calculated with three spin
states of 0, 2, and 4 μB . Finally, we found that the in-gap
state energetically favors low-spin states, i.e., the magnetic
moment of 0 or 1 μB for any defect. Among the native defects
considered, the candidates of donors are VP, Zni , Sni , Pi ,
and SnZn, whereas those of acceptors are VZn, VSn, VP, Pi ,
and ZnSn. Figures 6, 7, and 8 show the formation energies
of vacancies, interstitials, and antisites under the Zn-rich and
Sn-rich condition corresponding to vertex A in Fig. 2, and
local atomistic and electronic structures of selected defects.
Figure 9 summarizes the thermodynamical transition levels
of these defects. Defect properties are discussed in detail and
compared to those reported for CIS and CGS below.

1. Vacancies

Vacancies are fundamental and important defects in many
materials. In CIS (CGS), both Cu vacancy (VCu) and In (Ga)

vacancy are shallow acceptors and the Se vacancy (VSe) is
amphoteric and shows deep donor and acceptor transition
levels [13,15–17,19,20]. Among them, only VCu has a low
formation energy and is likely to affect the electrical prop-
erty [15,17,19,20]. As shown in Figs. 6(a) and 6(b), VZn and
VSn act as shallow and deep acceptors, respectively, in ZnSnP2.
V −2

Zn has no in-gap states apart from the PHS [Fig. 6(d)], and
its atomic neighbors are symmetric with inward movements
of P up to 0.17 Å. VZn can be abundant when the Fermi level
is located near the CBM under Zn-poor conditions. V 0

Sn can be
relaxed into two configurations: Neighboring P relax inwardly
and outwardly as shown in Figs. 6(e) and 6(f), in which the
distances between an idealized Sn vacancy position and its
neighboring P are 1.81 and 2.41 Å, respectively, whereas that in
perfect crystal is 2.52 Å. The inward structure is 4.5 eV lower in
energy. The electronic structures are also in stark contrast with
each other. The inward relaxation is nonsymmetric and forms
two neighboring P-P dimer antibondings and their unoccupied
defect states are pushed up above the CBM. On the other hand,
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FIG. 7. (Color online) The same as Fig. 6 but for (a) and (b) Zn, (c) and (d) Sn, and (e) and (f) P interstitials at the ic and ia sites. (g)–(t)
Local structures and defect single-particle levels of selected interstitials. Symmetrically equivalent atoms are labeled with alphabet symbols.
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FIG. 8. (Color online) The same as Fig. 6 but for (a) ZnSn and (b) SnZn antisites. (c)–(e) Local structures and defect single-particle levels
of (c) Zn−2

Sn , (d) Sn+2
Zn , and (e) Sn0

Zn DX center.

the outward configuration has weak P-P bonds, leading to deep
defect single-particle levels inside the valence band, and as a
result four delocalized holes are placed at the VBM. Thus we
can effectively write as V 0

Sn(outward) ≈ V −4
Sn (outward) + 4h+,

where h+ indicates a hole at the VBM or acceptorlike PHS.
Since an additional electron is placed at the CBM and VBM in
inward and outward configurations, respectively, the difference
of the energy cost to add an electron roughly corresponds to
the band gap; thus the highly negatively charged VSn such as
V −4

Sn favor outward structures. VSn, however, shows a rather
high formation energy and would occur in a low concentration
in ZnSnP2.

On the other hand, VP is amphoteric and show both deep
donor and acceptor transition levels [Fig. 6(e)], which is similar
to VSe in CIS and CGS [16,17]. The situation is, however,
qualitatively different in ZnSnP2. In the V 0

P configuration,
surrounding two Zn move outwardly but two Sn move inwardly
and construct a singly occupied in-gap state mainly composed
of an antibonding of a Sn-Sn dimer with a hybridization with
P-3p [Fig. 6(i)]. V −1

P and V +1
P then have an occupied and an

unoccupied in-gap state as shown in Figs. 6(h) and 6(i). These
V +1

P , V 0
P , and V −1

P have almost the same structure and we call
this stable structure. V +2

P has a hole at the VBM and, therefore,
can be written as V +2

P ≈ V +1
P (stable) + h+, whereas V −2

P has
an electron at the CBM and so V −2

P ≈ V −1
P (stable) + e−,

where e− indicates an electron at the CBM or donorlike PHS.
V −3

P relaxes not only to V −1
P (stable) + 2e− but to a metastable

state without occupied PHS as shown in Fig. 6(j). In the latter

FIG. 9. (Color online) Thermodynamical transition levels of the
defects considered. Among them, VZn and ZnSn are shallow acceptors,
whereas Snia and Snic are shallow donors: The acceptor and donor
levels associated with PHS are not shown in the figure.

configuration, the neighboring two Zn are close to each other in
addition to the Sn dimer and construct a bond composed mainly
of Zn-4s and Sn-5s orbitals. However, the occupied defect
single-particle level moves inside the conduction band after the
correction, indicating this electronic structure is unstable at the
dilute limit. Indeed, its formation energy is 1.0 eV higher than
that of V −1

P + 2e−. V +2
Se in CIS and CGS is also known to have

a metastable configuration [17], which is similar to V +3
P shown

in Fig. 6(k). The Sn-Sn dimer bond is absent in the outward
configuration, and the Sn-5p state exists in the band gap. The
energy of this configuration is, however, 0.8 eV higher than that
of V +1

P (stable) + 2h+. This is in contrast with the case of VSe in
CIS and CGS. As discussed in Ref. [16], negative-U behavior,
which indicates a net attractive electron-electron interaction,
can emerge as a consequence of large variation of the atomic
relaxation by changing the defect charge, but it does not happen
in VP of ZnSnP2. Although VP is expected to be inert for the
carrier generation, it is likely to exist in a high concentration
because of its low formation energy at any Fermi level.

2. Interstitials

We now discuss interstitials in ZnSnP2. In CIS (CGS), both
Cu and In (Ga) interstitials act as shallow donors, and the
Se interstitial shows deep donor and acceptor levels [18,19].
Especially the Cu interstitial has a significantly low energy
and can exist in a high concentration, depending on the growth
condition. Generally speaking, the stability of interstitials is
ruled by the size of the space, electrostatic potential, and
chemical bonding at the interstitial sites.

As shown in Figs. 7(a) and 7(b), both Znic and Znia show
deep donor levels. The in-gap states are mainly composed
of Zn-4s and P-3p orbitals [Figs. 7(g) and 7(n)]. Zn+2

ia is
lower in formation energy than Zn+2

ic by 0.65 eV, whereas
Zn0

ia is just 0.10 eV lower than Zn0
ic. This would be because

surrounding anions lower the electrostatic potential at the ia

site for positively charged Zn+2
ia . This is also consistent with

the defect single-particle levels shown in Figs. 7(g)–7(t): The
defect single-particle levels are higher at the ia site than at the
ic site in any defect. Zn+2

ia has a low energy when the Fermi
level is located near the VBM under the Zn-rich condition.
Snic and Snia show shallow donor behaviors, but their stable
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charge states are not +4 but +2 [Figs. 7(c) and 7(d)]. Sn+2
ic and

Sn+2
ia do not have any in-gap state, and occupied defect states

composed of Sn-5s and P-3p orbitals are located below the
VBM [Figs. 7(i) and 7(p)]. This indicates that the formal charge
of Sn at the interstitial sites is +2. Sn+4

i with unoccupied in-gap
states can also be obtained but, after finite size corrections, they
are found to be unstable [Figs. 7(j) and 7(q)]. Sn+2

ic is 0.33 eV
lower in formation energy than Sn+2

ia , perhaps due to a large
Sn+2 ionic radius. As shown in Figs. 7(e) and 7(f), Pic and Pia

can show various charge states depending on the Fermi level
and create two in-gap states comprising mainly P-3p states at
both ic and ia sites except for unstable P+3

ic . Both Sn and P
interstitials have high energies at any Fermi level and cannot
exist in high concentrations.

3. Antisites

Cation antisites can exist in I-III-VI2 and II-IV-V2 chal-
copyrites. In CIS and CGS, Cu-on-In and Cu-on-Ga antisites
are deep acceptors [19]. On the other hand, In-on-Cu and
Ga-on-Cu antisites are shallow and deep donors [19]. They
are considered to play important roles for the electrical
conductivity in CuIn1−xGaxSe2 because of low formation
energies of charged antisites. As shown in Figs. 8(c) and 8(d),
ZnSn and SnZn in ZnSnP2 have no in-gap states apart from
the PHS and the DX center. This is in stark contrast to CGS
with almost the same band gap and band edge positions with
ZnSnP2 [65]. ZnSn and SnZn have significantly low formation
energies and would therefore be abundant under any growth
condition in ZnSnP2. The distances of Zn+2

Sn -P and Sn−2
Zn -P are

almost the same as those in Zn-P and Sn-P in the perfect crystal
(see Fig. 1) and the local structures are symmetric.

In CGS, Ga0
Cu is known to be an intrinsic DX center, which

traps electrons, whereas it is metastable in CIS [19]. We also
calculated such a DX center in ZnSnP2. The atomic relaxation
was started after displacing Sn from the Zn site up to 2.5 Å
along the [112] direction towards the ic interstitial site so as to
construct a complex of Sni and VZn [19]. Through the atomic
relaxation, Sn did not return to the Zn site but remained near the
interstitial site surrounded by three P. The displacement from
the ideal Zn site is 1.12 Å. The defect state induced by the DX
center is composed of a hybridization between Sn-5sp and
surrounding P-3p states. As reported in Ref. [65], the VBM
positions of CIS, CGS, and ZnSnP2 with respect to the vacuum
level are within 0.1 eV. The position of doubly occupied DX
single-particle level is 0.7 eV from the VBM in ZnSnP2, and
Lany and Zunger [21] (Pohl and Albe [19]) have reported that
those of InCu in CIS and GaCu in CGS are 0.6 (0.6) and 0.5
(0.55) eV; thus they are well aligned relative to the vacuum
level although the constituent elements are different. On the
other hand, the thermodynamical transition level in ZnSnP2

(1.5 eV from the VBM) is slightly higher than that in CGS
(0.9 [21] or 1.3 eV [19]).

4. Dominant defects and carrier concentrations

Figures 10(a) and 10(b) summarize the defect formation
energies at vertices A (a Zn- and Sn-rich condition) and C (a
Zn- and Sn-poor condition) in Fig. 2 as a function of the Fermi
level. Once the defect formation energies are obtained, we can
calculate defect concentrations. Supposing that the entropy

FIG. 10. (Color online) Defect formation energies at (a) A (the
Zn- and Sn-rich condition) and (b) C (the Zn- and Sn-poor condition)
in the chemical potential diagram shown in Fig. 2. The defects not
specified here have higher energies than 2.5 eV at any Fermi level.
The formation energy of a pair of antisite defects SnZn + ZnSn is also
shown. The equilibrium Fermi levels without doping at 900 K and
those quenched to 300 K are calculated (see text in detail). The carrier
concentrations at the quenched Fermi levels and the upper limits due
to the Fermi level pinning are also depicted in the unit of cm−3. (c)
Equilibrium carrier concentrations as a function of the Fermi level at
300 and 900 K.

and pressure contributions to the Gibbs free energy of defect
formation are negligibly small, the defect concentration (C) is
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TABLE III. Defect and carrier concentrations at chemical potential conditions A and C in Fig. 2 in the unit of cm−3. Temperature is set at
900 K.

Condition Zn−2
Sn Sn2

Zn V −1
P V 0

P V 1
P V −2

Zn (SnZn+ZnSn)0 p n

A 1016 1015 1012 1014 1013 105 1018 1016 1013

C 1016 1016 1011 1012 109 1012 1018 1014 1015

calculated through a Boltzmann distribution as

C[Dq] = N [D]exp

(
− Ef [Dq]

kBT

)
, (7)

where N [D] is the number of sites for defect D times its
spin degeneracy, kB is the Boltzmann’s constant, and T is
the absolute temperature. The electron concentration in the
conduction band (n) and hole concentration in the valence
band (p) are obtained from the Fermi-Dirac distribution as

n =
∫ ∞

εCBM

D(ε)
1

e(ε−εF )/kBT + 1
dε, (8)

p =
∫ εVBM

−∞
D(ε)

1

e(εF −ε)/kBT + 1
dε, (9)

where D(ε) is the density of states in bulk. Figure 10(c) shows
the calculated carrier concentrations at 300 and 900 K as a
function of the Fermi level in ZnSnP2. The defect and carrier
concentrations are constrained by the condition of the charge
neutrality,

p − n +
∑

qC[Dq] = 0. (10)

By numerically solving this equation self-consistently, we can
determine the defect and carrier concentrations, and the Fermi
level [66].

The calculated Fermi level and defect and carrier concen-
trations at 900 K are shown in Figs. 10(a), 10(b), and Table III.
In addition, we calculated the Fermi levels at 300 K on the
premise that defect concentrations are quenched from 900 K,
but the defects can take different charge states in the ratio
determined by the Boltzmann distribution. After quenching,
the Fermi levels at 300 K are significantly close to the VBM
(p type) or CBM (n type) compared with those at 900 K.
Sustaining the net carrier concentration generated at 900 K
requires the Fermi level to approach the band edges at 300
K. As seen in Fig. 10, both p- and n-type ZnSnP2 can be
attained by changing the growth condition. Under the Zn-rich
condition, ZnSnP2 is p type, while it becomes n type under
the Zn-poor condition although carrier concentrations are not
very high (≈1015cm−3).

It is noteworthy that SnZn and ZnSn have lower formation
energies than VZn and Zni , and thus primarily determine
carrier type and concentrations. This is different from the
experimental suggestion that Zn vacancies would be the main
source of holes [11,12], and in contrast with the defects in
CIS and CGS, in which VCu, Cui , and antisites can have low

formation energies below 1 eV depending on the Fermi level
and chemical potentials [19]. Extrinsic doping is desirable for
attaining n-type doping of ZnSnP2, but the antisites lead to
Fermi level pinning and hinder both electron and hole carrier
injections with significantly high concentrations (p � 1018

and n � 1016). The formation of SnZn DX center does not alter
the carrier concentration since the thermodynamical transition
level is higher than the pinning level of the ZnSn acceptor even
under the Zn-poor condition.

We also calculated the antisite defect complex in the neutral
charge state (SnZn + ZnSn)0, which would be the most abundant
complex in ZnSnP2. The initial structure was constructed by
swapping Zn and Sn neighboring each other. As shown in
Figs. 10(a) and 10(b), its formation energy is significantly
low and independent of the growth condition, and the binding
energy of Sn+2

Zn and Zn−2
Sn is −1.35 eV/pair. Such a neutral

complex does not affect the carrier concentration, but when
SnZn becomes the DX center, a complex of DX+ZnSn can take
the −2 charge state. However, we found that (DX+ZnSn)−2

is 0.54 eV higher in energy than (SnZn + ZnSn)0 even in
the case where the Fermi level is at the CBM and therefore
unstable.

IV. CONCLUSIONS

We systematically investigated the native point defects in
ZnSnP2 using the HSE06 hybrid functional in conjunction with
finite-size corrections on defect formation energies and defect
single-particle levels. Defects dominating the carrier type and
concentrations are suggested to be antisite defects, i.e., ZnSn

(acceptor) and SnZn (donor). Although these defects lead to
the Fermi level pinning, the pinning levels are not so deep
and external doping would allow us to grow p- and n-type
ZnSnP2. We found that the change of the growth condition
might also change the doping type: Zn-rich conditions can
lead to p type, while Zn-poor conditions n type. VP has
a low formation energy as well as the antisites, but it has
only deep donor and acceptor levels. In addition, SnZn can
be a DX center when the Fermi level is located close to the
CBM.
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