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Non-Fermi-liquid behavior in nonequilibrium transport through Co-doped Au chains
connected to fourfold symmetric leads
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We calculate the differential conductance as a function of temperature and bias voltage, G(T ,V ), through
Au monatomic chains with a substitutional Co atom as a magnetic impurity, connected to a fourfold symmetric
lead. The system was recently proposed as a possible scenario for observation of the overscreened Kondo
physics. Stretching the chain, the system could be tuned through a quantum critical point (QCP) with three
different regimes: overscreened, underscreened, and non-Kondo phases. We present calculations of the impurity
spectral function by using the numerical renormalization group for the three different regimes characterizing
the QCP. Nontrivial behavior of the spectral function is reported near the QCP. Comparison with results using
the noncrossing approximation (NCA) shows that the latter is reliable in the overscreened regime, when the
anisotropy is larger than the Kondo temperature. For these parameters, which correspond to realistic previous
estimates, G(T ,V ) calculated within NCA exhibits clear signatures of the non-Fermi-liquid behavior within the
overscreened regime.
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I. INTRODUCTION

The Fermi liquid (FL), or the Landau-Fermi-liquid theory,
is in the basis of our understanding of many properties of
the metal state at sufficient low temperatures. For instance,
the electrons in a normal, nonsuperconducting metal at low
temperatures behave as a FL. Also, magnetic impurities with
spin SI = 1/2 embedded in a nonmagnetic metal exhibit the
Kondo anomaly, which could be theoretically explained by
the one-channel Kondo (1CK) [1] and one-channel Anderson
(1CA) [2] models. Both models lead to a ground state that
can be described by a FL. Even for low-dimensional systems,
such as quantum dots coupled to metallic leads, transport
measurements at low temperatures were found in agreement
with FL predictions. Specifically, conductance through a
single-electron transistor at low temperature is in quantitative
agreement with the calculated one from the Anderson impurity
model [3].

On the contrary, the non-Fermi-liquid (NFL) paradigm
describes a system which displays a breakdown of the Fermi-
liquid properties. A large class of heavy fermion materials,
such as Ce and U alloys, are examples of a metallic state that
is not a Fermi liquid [4,5]. Exotic properties of these alloys
at low temperature, such as significant residual entropy and
nonsaturated magnetic susceptibility, can be understood on
the basis of the two-channel Kondo (2CK) model introduced
early by Nozières and Blandin [6], which is one example of the
NFL quantum impurity model. In low dimensions, the simplest
example of NFL is the Luttinger liquid, given by interacting
fermions in one dimension [7].

From the experimental point of view, the realization of
the two-channel (2C) state was studied in a double dot
system proposed by Oreg and Goldhaber-Gordon [8,9], who
showed that the differential conductance as a function of
bias voltage V follows a

√
V behavior, which is, again,

characteristic of 2C physics [9]. Much theoretical work has
been done [10,11] in order to develop a theory of such an

experimental setup on the basis of the two-channel Anderson
(2CA) Hamiltonian. In this model, two symmetric independent
electron modes screen a localized level with spin SI =
1/2. Among other interesting properties coming from this
model, both the impurity contribution to the entropy at zero
temperature, S = 1

2 ln(2), and the conductance per channel at
low temperatures, G(T ) � a − b

√
T , display a NFL behavior

[12–14]. The key property to observe the NFL signatures
in the above-mentioned experiment was the setup capability
to control the coupling constants between the dot and two
independent reservoirs, J1,J2, to make them symmetric ones,
J1 ∼ J2. The requirement of symmetry between the scattering
channels [6] is very difficult to achieve in real materials,
making the NFL observation hard to find.

Recently, two different realizations of a 2CK effect, with
a robust symmetry between the two conduction channels,
were proposed [15,16]. In Ref. [15], Tsvelik et al. show a
possible realization of the overscreened multichannel Kondo
model in a system of spin chains. In this model, N spin
S = 1/2 Heisenberg chains interact with a cluster of N extra
spins 1/2. Some interesting examples of real materials that
could exhibit the necessary symmetry between the scattering
channels were proposed [15]. In Ref. [16] a fourfold symmetric
Co-doped Au chain was proposed as a scenario to exhibit
NFL behavior by Di Napoli et al. The Co atom, considered
as a magnetic impurity, mixed the 3d7 and 3d8 configurations
through the hopping with 5dxz and 5dyz electrons of Au, which
play the role of two independent and symmetric scattering
channels. The broken axial symmetry along the chain by a
fourfold symmetric crystal field is an essential ingredient to
observe the NFL signatures. Stretching the system might be
a way to pass through a quantum critical point (QCP) that
divides three different phases: overscreened, underscreened,
and finally another one without the Kondo effect. Specifically,
within the overscreened regime, two different properties of
the NFL behavior have been found: the conductance per
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channel as a function of temperature through the Co following
a G(T ) � a − b

√
T form and the Co entropy contribution

having a residual value of S = 1
2 ln(2) at zero temperature.

The purpose of the present contribution is to complement
the study of the Co-Au chain model with properties not shown
in Ref. [16]. First, we present calculations of the impurity
spectral function obtained with the numerical renormalization
group (NRG) [17] for the three different phases reinforcing the
presence of a QCP. Nontrivial behavior of the spectral density
near the QCP is discussed. Second, we present calculations
of the differential conductance, G(T ,V ), through the Co atom
within a nonequilibrium situation by using the noncrossing
approximation (NCA) solution of the model in its overscreened
regime. We obtain that G(T ,V ) also displays clear signatures
of NFL behavior in this regime. We also show the limitations
of the NCA to describe the other regimes and to capture very
small energy scales.

The paper is organized as follows. In Sec. II we introduce
the model. The different regimes of the system are also
discussed. In Sec. III the numerical solution of the model
is presented within the NRG and NCA approaches. Finally, in
Sec. IV some conclusions are drawn.

II. MODEL

According to ab initio calculations, the Co atom embedded
in a Au chain [Fig. 1(a)], is in a 3d7 configuration with
the three holes coupled to a total spin S = 3/2 [16]. This
atomic configuration seems to be robust even if the noble
metal changes from Au to Ag and Cu [18]. One d hole is
shared between the half-filled 3dxy and 3dx2−y2 (�4-symmetry)
orbitals while the other two are in the degenerate 3dxz, 3dyz

(�3-symmetry) ones.
According to transport measurements, the pure Au chain

only has 6s bands crossing the Fermi level [19]. However,
the presence of environmental O impurities can push up and
stabilize the 5dxz and 5dyz bands of Au at and above the Fermi
level [18]. While the �3 symmetries of the Au chain can be
tuned in order to make these band conductors, there is no
similar mechanism to get electrons of Au with �4 symmetry
at the Fermi level due to their high localization. Details of the
first-principles calculations can be found in Refs. [16,18].

FIG. 1. (Color online) Sketch of the pure chain with (a) a substi-
tutional Co and (b) a trimer connected to a fourfold symmetric axis
leads.

According to this, the 5dxz and 5dyz bands of Au represent
two independent and symmetric channels that screen the
localized moment at the corresponding symmetries of the Co
impurity. The �4-symmetry levels in Co have frozen its charge
and spin fluctuations due to the absence of hybridization with
the Au neighbors.

As previously mentioned in the introduction, in a system
with a fourfold symmetric axis such as a trimer with one
Co atom connected to body-centered-cubic leads [Fig. 1(b)],
the degeneracy between the 3dxy and 3dx2−y2 orbitals of Co
is broken, localizing the hole in the 3dxy orbital. Note that
exactly the same physics is obtained if both �4 orbitals are
interchanged. The energies of the localized three holes in the
Co atom are Exy = −0.2 eV and Exz = Eyz = −0.3 eV, where
we set the Fermi level as the zero of energy. The spin-orbit
coupling (SOC) in the Co atom induces a splitting D between
the projections Sz = ±3/2 and Sz = ±1/2 of the quadruplet
that belongs to the total spin S = 3/2. The calculation of D was
exactly done by solving a 120 × 120 matrix of the Hamiltonian
of the 3d7 configurations [20]. For the real parameters of the
setup shown in Fig. 1(b), the value of the anisotropy was found
to be D = 1.7 meV. While the ab initio calculations [16] have
been done in the system represented in Fig. 1(b), we want to
emphasize that the same physics is expected for any length of
the Au chain between the leads.

With this information the effective Hamiltonian that de-
scribes the system is given by

Heff =
∑
M3

(
E3 + D

2
M2

3

)
|M3〉〈M3| + E2

∑
αM2

|αM2〉〈αM2|

+
∑
νkασ

ενkĉ
†
νkασ ĉνkασ

+
∑
M3M2

∑
ανkσ

Vν

〈
3

2
M3

∣∣∣∣11

2
; M2σ

〉
|M3〉〈ᾱM2|ĉνkασ

+ H.c., (1)

where En, Mn represent the energies and the spin projections
along the chain, which was chosen as the quantization axis, of
states with n = 2,3 holes in the 3d shell of Co. The term
〈SM|S2S1; M2M1〉 stands for the standard SU(2) Clebsch-
Gordan coefficients.

The state with three holes and maximum spin projection
is denoted by |3/2〉 = d̂

†
xz↑d̂

†
yz↑d̂

†
xy↑|0〉, where |0〉 represents

the 3d10 configuration and d̂
†
β↑ = dβ↓, d̂

†
β↓ = −dβ↑, and d

†
βσ

create an electron with symmetry β and spin projection σ .
The states with two holes in Co can be constructed by

removing an α (α = xz,yz) hole. For instance, the maximum
spin projection of the state with two holes is given by |ᾱ,1〉 =
d̂α↑|3/2〉. Then the state |ᾱ,1〉 does not contain the hole with
symmetry α, which jumped to the Au band. In other words, if
the electron 5dxz of Au jumps to the Co, the remaining state
|yz,1〉 has holes in 3dyz and 3dxy , but not in 3dxz. The other
relevant states with two and three holes can be obtained by
using the spin-lowering operator.

There are also states with three holes in the Co atom coupled
to a total spin S = 1/2 in which one of the β orbitals is doubly
occupied but, in view of the obtained ab initio calculations,
these can be considered as high exited states.
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The operator ĉ
†
νkασ creates a hole in the 5d shell of Au

with symmetry α where ν = L,R denotes the left or the
right side of Co atom, respectively. The hopping Vν defines
the hybridization �ν = 2π

∑
k |Vν |2δ(ω − ενk), neglecting the

weak dependence with the energy ω.
Consequently, the Hamiltonian in Eq. (1) describes fluctua-

tions between the quadruplet of the 3d7 configuration and two
triplets corresponding to the 3d8 configuration, with one xy

hole and the other in either α = yz or α = xz symmetries, via
the hybridization with the states of symmetry �3 of the Au
leads.

The last term in Eq. (1) represents the mixing Hamiltonian,
Hmix, between the impurity and conducting Au atoms. Writing
explicitly the nonvanishing Clebsch-Gordan coefficients, this
becomes

Hmix =
∑
ανk

Vν

(∣∣∣∣3

2

〉
〈ᾱ,1| +

√
2

3

∣∣∣∣1

2

〉
〈ᾱ,0|

+
√

1

3

∣∣∣∣ − 1

2

〉
〈ᾱ, − 1|

)
ĉνkα↑

+
(∣∣∣∣ − 3

2

〉
〈ᾱ, − 1| +

√
2

3

∣∣∣∣ − 1

2

〉
〈ᾱ,0|

+
√

1

3

∣∣∣∣1

2

〉
〈ᾱ,1|

)
ĉνkα↓ + H.c. (2)

The operator that creates a hole in the 3d shell of the Co
atom with symmetry α and spin σ can be represented by
Hubbard operators between states containing two and three
holes. In that case, the two holes forming the triplet are in the
xy and ᾱ orbitals. It can be written as follows:

d̂
†
α↑ =

∣∣∣∣3

2

〉
〈ᾱ,1| +

√
2

3

∣∣∣∣1

2

〉
〈ᾱ,0| +

√
1

3

∣∣∣∣ − 1

2

〉
〈ᾱ, − 1|,

d̂
†
α↓ =

∣∣∣∣ − 3

2

〉
〈ᾱ, − 1| +

√
2

3

∣∣∣∣ − 1

2

〉
〈ᾱ,0| +

√
1

3

∣∣∣∣1

2

〉
〈ᾱ,1|.

(3)

Then, the hybridization term of the Hamiltonian takes the
usual Anderson impurity form; that is,

Hmix =
∑
ανkσ

Vν(d̂†
ασ ĉνkασ + ĉ

†
νkασ d̂ασ ). (4)

We note that an expression of the impurity part of the
Hamiltonian in d operators is very involved due to the different
terms that enter the Coulomb interaction when all d orbitals
are included. This interaction is written explicitly in Ref. [20].

Depending on the value of the anisotropy D, interesting
and different physics emerges from this Hamiltonian. The role
played by D is to split the quadruplet states into two doublets
with spin projection M3 = ±3/2 and those with ±1/2. For
the case in which the anisotropy vanishes, D = 0, in addition
to the SU(2) channel symmetry the Hamiltonian also has the
rotational spin SU(2) one. For this isotropic case, the model
in Eq. (1) reduces to the underscreened impurity Anderson
model, in which the two channels with spin 1/2 compensate
a part of the total impurity spin 3/2. For one channel, the
model was solved exactly by Aligia et al., by using the Bethe

ansatz [21] for the spin-1 underscreened one-channel Kondo
model, and a singular FL ground state was found [22]. It is
natural to expect similar physics in our case for D = 0, which
corresponds to a spin 3/2 underscreened by two conduction
channels. The behavior of the conductance at low temperatures
indicates this is actually the case [16].

When the anisotropy takes positive values, as it was found
for the realistic case of the setup in Fig. 1(b), D = 1.7 meV,
the doublet with M3 = ±1/2 spin projections becomes the one
with lowest energy. Therefore, the two channels with spin 1/2
overscreened the effective impurity spin 1/2. Signatures of
NFL behavior in both the impurity contribution to the entropy
and the equilibrium conductance were previously reported
[16]. In general, the behavior of the model at low energies
agrees with the corresponding one to the two-channel Kondo
problem [23,24].

Finally, for negative values of the anisotropy D, which
could be achieved by stretching the chain, there is no Kondo
physics. This follows from the fact that the doublet M3 =
±3/2 is now the fundamental one and the two channels with
spin 1/2 cannot flip the projections ±3/2 into each other. A
residual entropy at zero temperature of ln(2) was found [16] in
this case and agrees with the nonscreened doublet M3 = ±3/2
at the impurity site.

III. NUMERICAL RESULTS

In this section we present an accurate solution of the local
spectral function by using the NRG as well as the differential
conductance at the Co site obtained within the NCA.

For the numerical calculations, the complete set of the
parameters determining the model was extracted from first-
principles calculations and is reported in Ref. [16]. Here we
summarize the parameters obtained. The total resonant level
width � = 0.6 eV is determined from the width of the peak of
the degenerate xz,yz states above the Fermi energy. From the
average position of these peaks, we define the charge transfer
energy to be E32 = E3 − E2 = −0.3 eV and finally, we take
the conduction 5dxz,yz bands extending from −W to W with
W = 5 eV.

A. Impurity spectral density near the quantum
critical point (NRG)

The impurity spectral function at the impurity site per
channel and spin is given by ρασ (ω) = − 1

π
Gr

ασ (ω), where
Gr

ασ (ω) is the Fourier transform of the retarded Green’s
function also per channel and spin,

Gr
ασ (t) = −iθ (t)〈{d̂ασ (t),d̂†

ασ (0)}〉. (5)

The equilibrium conductance through the Co atom as a
function of temperature, G(T ), depends on the total spectral
function,

ρ(ω) =
∑
ασ

ρασ (ω), (6)

and it is given by

G(T ) = G0
π�A

2

∫
dω( − f ′(ω))ρ(ω), (7)

125149-3



DI NAPOLI, ROURA-BAS, WEICHSELBAUM, AND ALIGIA PHYSICAL REVIEW B 90, 125149 (2014)

where G0 = 2e2/h is the quantum of conductance, f (ω) is
the Fermi function, � = �

2 = �L + �R represents the total
resonant level width, and A = 4�L�R/�2 stands for the
asymmetric connection between the Co atom and the left and
right leads.

As it was previously mentioned, the model presents rich
physics depending on the value of the anisotropy D. For
positive D and low temperatures, the conductance was success-
fully scaled by G(T ) = a − b

√
T , a behavior similar to the

two-channel Kondo model. Furthermore, a = G(0) was found
to be near G0, neglecting the small asymmetry between the
leads given by the factor A = 0.977 (see Fig. 4 of Ref. [16]).
This is half the value expected for a Fermi liquid with two
channels in the unitary limit (Kondo regime). Consequently,
within the overscreened regime, this seems to force the spectral
density at the Fermi level (chosen to be at ω = 0) to be
ρ(0) ∼ 2

π�
while the spectral weight per channel and spin

seems to be ρασ (0) ∼ 1
2π�

. This agrees with the known rule
for the 2CA impurity model [25], which can be obtained from
our model in the limit D → +∞ and also for the 2CK model
[14]. Several features in the Kondo resonance distinguish
the 1CA from the 2CA spin-1/2 model [4]. Among others,
(i) the spectral weight for the 2CA model at ω = 0 in the
Kondo regime is reduced to nearly half the value of the 1CA
model, ρσ (0) ∼ 1

π�
; (ii) the resonance in the 2CA model is

pinned at the Fermi level in contrast to the slight shift to
positive energies found in the 1CA model.

Within the underscreened regime, D = 0, the conductance
at temperature T = 0 seems to approach to 2G0 which implies
that the total spectral weight at the Fermi level should be near
ρ(0) ∼ 4

π�
. According to that, the spectral density at ω = 0

per channel and spin surprisingly agrees with that specified
by the generalized Friedel sum rule [26], for two orbitals
assuming an impurity occupation near 1 for each of them:
ρασ (0) ∼ 1

π�
. This result differs from that of the well-studied

1C underscreened Kondo effect in spin-1 molecules [27,28],
where it was found that the phase shift has a term π/2
in addition to that due to the contribution of the displaced
electrons [27].

For D < 0, the projections M3 = ±3/2 are not connected
by the hopping processes with both channels. One does not
have a spin Kondo effect and there is no rule for the spectral
density at the Fermi level. A continuous reduction of that
weight is expected when increasing |D| as a consequence of
the vanishing Kondo resonance. In the limit of D → −∞ the
model splits into two different resonant models and Fermi-
liquid results could be used.

Important questions arise at this point: How does the
spectral density evolve near the transition point from negative
to positive values of the anisotropy D? Does the transition
constitute a crossover or a quantum critical phase transition?
Are there more energy scales involved in the transition in
addition to the well-known Kondo scale?

In what follows, we present the results of the spectral
density from NRG calculations for different values of the
anisotropy D. The results are obtained from full density
matrix (FDM) NRG calculations which exploited the SU(2)
channel symmetry together with the Abelian U(1) symmetries
for total spin and total charge [29–31]. Further NRG-specific
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FIG. 2. (Color online) Spectral density of the Co atom as a
function of frequency in a logarithmic scale for different values of
D (NRG). The upper and lower panels show the data for positive
and negative ω, respectively. The arrows stand for the charge transfer
energy E32 and the anisotropy D.

parameters are � = 4 for the logarithmic discretization of
the conduction bands together with z averaging using Nz = 2
[32], and a truncation energy Etr = 10 in rescaled units
(as defined in Ref. [31]). This resulted in retaining up to
16 000 multiplets (53 000 states) per iteration with exact
diagonalization of state spaces of dimension up to 234 000
multiplets (846 000 states). The estimated resulting discarded
weight of δρ < 10−15 indicates numerically well-converged
data [33].

We start by defining the Kondo temperature, TK , for D = 0
as the half width at the half maximum of the spectral density.
For the model parameters representing the trimer it was found
to be TK ≈ 7 × 10−6 eV.

In Fig. 2 we show the impurity spectral density per channel
and spin for several positive values of the anisotropy D in units
of TK . By analogy with the Anderson model, the spectral data
are scaled by π�. In addition to the peak at the charge transfer
energy at ω = E32, the spectral density exhibits two shoulders
or satellite peaks at energies related to the anisotropy at ω =
±D for D > TK . These energies are indicated with arrows
in the lower panel, corresponding to negative frequencies.
Within the underscreened regime, as previously mentioned,
the maximum of the spectral density at low energy roughly
agrees with the expected one for FL behavior. From the Friedel
sum rule, one would expect π�ρασ (0) = sin2(π〈nασ 〉) [26],
which is near the result reported in Fig. 2 for an occupation
of the Co atom per channel and spin 〈nασ 〉 � 1/2. Using the
real parameters representing the system shown in Fig. 1(b), we
obtain 〈nασ 〉 = 0.428. Therefore, some degree of intermediate
valence is present which would lead to a 5% lower value, i.e.,
π�ρασ (0) � 0.95. To the best of our knowledge, however,
there are no exact results for the spectral weight at ω = 0 for
this kind of model, because it is expected to be a singular FL,
in which the Friedel sum rule is not valid. In the case of the
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FIG. 3. (Color online) Analysis of the low-energy scale T ∗ ex-
tracted from the NRG data (using even iterations n, with similar data
and conclusions for odd iterations [not shown]). For the determination
of T ∗, the exponential convergence of the rescaled and iteratively
subtracted ground-state energy E

(n)
0 at iteration n deep into the

low-energy fixed point was extrapolated towards larger energies
(smaller n), such that �Ẽ

(n∗)
0 := 1 (in rescaled energies) with �Ẽ

(n)
0

the plain exponential fit to |E(n)
0 − E

(∞)
0 | < 0.01. With this, the low

energy scale T ∗ := �−n∗/2 was determined individually for each
value of the anisotropy D. Finally, the fit to the analytical expression
for T ∗ was carried out for x > 3 (indicated by the vertical dotted
line), i.e., D < 0.11TK .

one-channel (1C) underscreened spin S = 1, Logan et al. have
found, on the basis of NRG calculations, that when the total
impurity occupation, 〈nimp〉, tends to 2, the normalized spectral
weight at the Fermi level, π�ρασ (0), approaches 1 instead of
0 as expected for a FL [27].

When the anisotropy D goes from D = 0 to D > 0, the
spectral weight at the Fermi level is reduced suddenly to half
its value. As previously mentioned, this agrees with the results
expected for the 2CA model. When D turns positive, there
is a new low-energy scale entering the system which controls
the crossover from the underscreened to overscreened phases.
An analysis of the low-energy spectrum, as shown in Fig. 3,
clearly suggests for D � TK the asymptotic form

T ∗ = aTKe−b(TK/D)1/2
, (8)

with a and b some dimensionless constants of order 1. It is
interesting to note that in the case of the 1C underscreened
spin-1 model including anisotropy, a similar scale was found
[28].

As can be seen in Fig. 4, for D � TK , the spectral weight
continuously increases when the energy approaches zero.
However, for D < TK the spectral weight increases until
|ω| ∼ T ∗. For |ω| < T ∗ a dip is opened and the spectral
density ρασ (0) is suppressed to nearly half its value for D = 0.
Therefore, the scale T ∗ represents the energy at which the
underscreened behavior of the spectral density turns to the
overscreened one. In Fig. 4 we show this peculiar behavior for
two selected values of the ratio, D/TK = 0.5 and D/TK =
0.05.

-2 10-6 -10-6 0 10-6 2 10-6

ω (eV)

0.5

0.75

1

πΔ
ρ ασ

(ω
)

D / TK ~ 5.00
D / TK ~ 0.50
D / TK ~ 0.05

T*

FIG. 4. (Color online) Spectral density per channel and spin for
different values of the ratio D/TK (NRG).

The results presented in Figs. 2 and 4 demonstrate that a
QCP separating the overscreened and underscreened phases is
present and NFL properties are obtained for any D > 0.

Finally, in Fig. 5 we present the results for negative values
of the anisotropy D. As can be seen, the spectral weight at the
Fermi energy is continuously reduced when the values of |D|
are increased. This is expected due to the vanishing Kondo
effect and follows from the fact that there are no spin-flip
processes connecting the M3 = ±3/2 projections.

B. Nonequilibrium transport properties (NCA)

In this section we analyze the differential conductance,
G(T ,V ), through the Co atom when a finite bias voltage
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FIG. 5. (Color online) Spectral density per channel and spin for
different negative values of the ratio D/TK (NRG).
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is applied to the system. For this purpose we calculated
the current through the Co atom for each temperature as a
function of bias voltage, I (V ), being G = dI/dV . The current
per channel can be expressed in terms of the corresponding
spectral density [34] obtained in the presence of the two
different chemical potentials μL and μR ,

Iα(V ) = 2πe

h

�L�R

�L + �R

∑
σ

∫
dω[fL(ω) − fR(ω)]ρασ (ω).

(9)

Whereas for the equilibrium situation we obtain the spectral
density exactly by using the NRG, within the nonequilibrium
one we employ the NCA to solve the model. To apply the
NCA we introduce auxiliary bosons for the triplets (tαM2 ) and
auxiliary fermions (qM3 ) for the quadruplet. In terms of the
auxiliary operators the Hamiltonian in Eq. (1) takes the form

Heff =
∑
M3

(
E3 + D

2
M2

3

)
q
†
M3

qM3 + E2

∑
αM2

t
†
αM2

tαM2

+
∑
νkασ

ενkĉ
†
νkασ ĉνkασ

+
∑
M3M2

∑
ανkσ

Vν

〈
3
2M3|1 1

2 ; M2σ
〉
q
†
M3

tᾱM2 ĉνkασ + H.c.

(10)

The expressions for the physical operators d̂†
ασ in terms of

auxiliary particles are given by

d̂
†
α↑ = q

†
3/2tᾱ,+1 +

√
2

3
q
†
1/2tᾱ,0 +

√
1

3
q
†
−1/2tᾱ,−1,

d̂
†
α↓ = q

†
−3/2tᾱ,−1 +

√
2

3
q
†
−1/2tᾱ,0 +

√
1

3
q
†
1/2tᾱ,+1. (11)

Since only one state should be occupied at each time, the
total operator number of auxiliary particles must satisfy the
following constraint:

∑
M3

q
†
M3

qM3 +
∑
αM2

t
†
αM2

tαM2 = 1. (12)

The spectral density associated with the operator d̂†
ασ can

be obtained by convolution of the greater and lesser Green’s
functions of the auxiliary particles. For instance, the ρα↑(ω) is
given by

ρα↑(ω) = −1

4π2Q

∫
dω′

{
[G>

3/2(ω + ω′)G<
α,+1(ω′)

−G<
3/2(ω + ω′)G>

α,+1(ω′)]

+2

3
[G>

1/2(ω + ω′)G<
α,0(ω′)

−G<
1/2(ω + ω′)G>

α,0(ω′)]

+1

3
[G>

−1/2(ω + ω′)G<
α,−1(ω′)

−G<
−1/2(ω + ω′)G>

α,−1(ω′)]
}
, (13)

where Q is the impurity canonical partition function:

Q = −i

2π

∫
dω

⎛
⎝∑

M3

G<
M3

(ω) −
∑
α,M2

G<
M2

(ω)

⎞
⎠ . (14)

A similar expression allows to obtain ρα↓(ω) and, in the
absence of an applied magnetic field, as is actually our case,
ρα↓(ω) = ρα↑(ω).

In order to obtain the greater auxiliary Green’s function, a
self-consistent loop for the self-energies have to be solved,

�>
q3/2

(ω) = 1

2π

∑
να

�να↑
∫

dω′f (ω′ − ω + νμ)G>
ᾱ,+1(ω′),

�>
q−3/2

(ω) = 1

2π

∑
να

�να↓
∫

dω′f (ω′ − ω + νμ)G>
ᾱ,−1(ω′),

�>
q1/2

(ω) = 1

6π

∑
να

∫
dω′f (ω′ − ω + νμ)[2�να↑G>

ᾱ,0(ω′)

+�να↓G>
ᾱ,1(ω′)],

�>
q−1/2

(ω) = 1

6π

∑
να

∫
dω′f (ω′ − ω + νμ)[2�να↓G>

ᾱ,0(ω′)

+�να↑G>
ᾱ,−1(ω′)], (15)

together with the nonequilibrium Dyson equations

G
≷
i (ω) = Gr

i (ω)�≷
i (ω)Ga

i (ω), (16)

where the retarded Green’s functions are given by

Gr
i (ω) = 1

ω − εi − �r
i (ω)

. (17)

Within the NCA, the retarded and greater self-energies are
related by

�>
i (ω) = 2iIm�r

i (ω). (18)

An independent loop for the lesser self-energies is needed to
get the partition function and the lesser Green’s functions. The
loop is closed using again Eqs. (16):

�<
q3/2

(ω) = − 1

2π

∑
να

�να↑
∫

dω′f (ω − ω′ − νμ)G<
ᾱ,+1(ω′),

�<
q−3/2

(ω) = − 1

2π

∑
να

�να↓
∫

dω′f (ω − ω′ − νμ)G<
ᾱ,−1(ω′),

�<
q1/2

(ω) = − 1

6π

∑
να

∫
dω′f (ω − ω′ − νμ)[2�να↑G<

ᾱ,0(ω′)

+�να↓G<
ᾱ,1(ω′)],

�<
q−1/2

(ω) = − 1

6π

∑
να

∫
dω′f (ω − ω′ − νμ)[2�να↓G<

ᾱ,0(ω′)

+�να↑G<
ᾱ,−1(ω′)]. (19)

The equilibrium properties can be simply obtained by
setting μL = μR = 0 when solving the self-consistent loop
for the lesser and greater self-energies.

In the numerical procedure to solve the previous NCA
equations, we follow the computational algorithms that ensure
an accurate solution of the problem, detailed in Refs. [35–37].
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FIG. 6. (Color online) NCA impurity contribution to the entropy
(at equilibrium) as a function of temperature for D = 0 and D =
±0.0017 eV. Energies are given in units of the half bandwidth W .

In what follows we present the NCA results for the impurity
entropy, spectral density, and differential conductance for
different values of the anisotropy D.

In Fig. 6 we show the Co contribution to the entropy as a
function of temperature for different values of the anisotropy
D. The latter is calculated through numerical differentiation
of the free energy [36]. At high temperatures all the impurity
degrees of freedom are active due to the charge fluctuations
and therefore the entropy tends to S = ln(10) (in units of
the Boltzmann constant kB). As the temperature is lowered,
the charge transfer is frozen and the only active degrees of
freedom correspond to the local moment regime characterized
by a local spin 3/2, and therefore a plateau appears with
S ≈ ln(4). When the temperature reaches T ∼ |D|, the three
different regimes are separated. At low enough temperatures,
our model is expected to have entropy S = ln(2) when D < 0,
reflecting the presence of two decoupled local moments.
The same low-temperature limit should be reached for the
underscreened, D = 0, regime in which a doublet is still
present (see Fig. 3 of Ref. [16]). As can be seen from
Fig. 6, the NCA overestimates the expected value for the
underscreened case. This is related to the neglected vertex
correction within this approach. Surprisingly, the NCA entropy
at low temperatures for negative D is closer to the expected
one. Within the overscreened regime, the NCA entropy at
low temperatures gives the correct residual value of S ∼
1
2 ln(2). It is well known that NCA is a reliable technique for
the overscreened 2CA model. Regarding the thermodynamic
properties, the residual entropy and the scaling behavior of
the static magnetic susceptibility, among others, have been
successfully compared with exact Bethe ansatz results [5].

In Fig. 7 we show the NCA results for the spectral density
at equilibrium conditions for the same set of parameters as
in Fig. 2 for several values of D. For simplicity, we show
only the negative frequency data. When comparing the NCA
results with the NRG corresponding ones, it is clear that for

10-20 10-16 10-12 10-8 10-4 100

|ω|(eV)

0

0.2

0.4

0.6

0.8

1

πΔ
ρ ασ

(0
)

D / TK = 0.00
D / TK = 0.05
D / TK = 50.0

FIG. 7. (Color online) NCA spectral density per channel and spin
for different values of the ratio D/TK at equilibrium.

D = 0, the NCA spectral weight at the Fermi level is strongly
underestimated. This can be understood as follows. Within the
underscreened regime, D = 0, a scaling in the hybridization
�′ = �/3 in the system of NCA self-consistent equations
[Eqs. (15), (19), and (14)] leads to an identical system in
which the ground and excited states have degeneracies N = 4
and M = 6, respectively. For such a model, the NCA spectral
density at the Fermi level is expected to be ρ(0) ∼ 2π

(N+M)2�′

(see Appendix B of Ref. [5]) [38]. We have verified that our
calculations satisfy this rule. In addition, when D becomes
positive but lower than the Kondo temperature associated with
the underscreened case, the low-energy scale T ∗ is completely
absent. On the other hand, for large enough negative values of
the anisotropy (not shown), no Kondo resonance is expected.
However, the NCA spectral function develops a spurious spike
at the Fermi level at low temperatures, in analogy with other
cases of systems with a nondegenerate ground state in absence
of hybridization (see Fig. 3 of Ref. [37]). Therefore, we
conclude from the comparison with the NRG method that the
NCA approach does not represent a suitable technique for a
quantitative or even qualitative treatment of the problem when
D < TK .

Regarding the spectral function for D � TK , we found
the expected asymptotic low energy dependence ∼√

ω in
the limit ω → 0 and a slight overestimation of the spectral
weight at the Fermi level at very low temperatures. On the
other hand, for dynamical properties the NCA reproduces the
exact power law at low energies of all four-point auxiliary
correlation functions, as in the case of the spectral density
[4,36]. Specifically, for transport properties like equilibrium
conductance and differential conductance, both depending on
the spectral density, the NCA gives the exact nontrivial

√
T

and
√

V dependence, respectively [39,40].
In Fig. 8 we present the total differential conductance

through the Co atom for the real parameters in the trimer
geometry as a function of the bias voltage V and for several
temperatures. While for T = V = 0, a value of 2G0 is
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FIG. 8. Total differential conductance as a function of the bias
voltage for several values of temperature. The model parameters
correspond to the real configuration of the trimer sketched in Fig. 1(b)
with the parameters given in the text. Temperatures are given in units
of meV.

expected in the general case of two independent conductance
channels, we obtain nearly half of it in agreement with
NRG. This is, once again, an additional verification of the
nontrivial 2C behavior. The zero-bias anomaly (ZBA) reflects
the low-lying energy dependence of the spectral function and
a

√
V behavior is explicitly shown in the next two figures.

A slight overestimation of the unitary limit is also obtained
and follows from the corresponding one of the spectral weight
at the Fermi level. In addition to the ZBA, the differential
conductance exhibits two broad peaks located at eV ∼ ±2D,
related with the exited states ±3/2.

D. Ralph and Ludwig’s conformal field theory (CFT) [41]
solution of the 2CK problem suggested that a scaling of the
differential conductance G(T ,V ) as a function of T and V

should be possible with the form

G(T ,V ) − G(T ,0) = BT 1/2H

(
A

eV

kBT

)
, (20)

where H is a universal function with the properties H (0) = 0,
H (x) ∼ x2 for x � 1, and H (x) ∼ x1/2 for x � 1. Note that
when T → 0, G(T ,V ) − G(T ,0) is well behaved. A,B are
nonuniversal constants (i.e., sample dependent). The constant
B, which depends on the TK of each set, is determined from
the equilibrium conductance as shown in Eq. (27) of Ref. [36].

Figure 9 shows the scaling plot of G(T ,V ) as a function of
(eV/kBT )1/2 for a general set of parameters and for several
values of the anisotropy D. From the half width at the half
maximum of the Kondo resonance of the spectral function at
equilibrium we found T D=0

K ∼ 1 × 10−6W , where W is the
bandwidth. As is clear from the figure, when the anisotropy D

becomes D � T D=0
K the curves collapse onto a single curve

proportional to (eV/kBT )1/2. For D � T D=0
K the differential

conductance follows the CFT scaling function expected for the
2CK model. For small D/T D=0

K the differential conductance
as a function of V/T displays a maximum and for larger

0 2 4 6 8 10
x1/2 =  (eV/kBT )1/2

0

2

4

6

8

H
(x

) =
 (G

(T
,V

)-
G

(T
,0

))
/B

T1/
2

→ ∞
0.5
0.2
0.1
0

D/TK

D=0

FIG. 9. (Color online) Scaling plot of the differential conduc-
tance G(T ,V ) for different values of the ratio r = D/T D=0

K at a
very low temperature, T = 0.001TK . Parameters are W = 1, E32 =
−0.67, � = 0.225. Here we define TK , for each set, from the half
width at the half maximum of the Kondo resonance of the spectral
function at equilibrium. The red dashed line indicates the limiting
behavior of Eq. (20) for large x.

V it deviates from the scaling expected for 2CK physics.
One expects that this maximum is related to the crossover
temperature scale T ∗, probably strongly renormalized out of
equilibrium. However, we believe that at low V , the NCA is
not reliable to identify accurately this energy scale.

In Fig. 10 we show the differential conductance as a
function of (eV/kBT )1/2 for the real parameters corresponding

0 1 2 3 4 5
x1/2 = (eV/kBT)1/2

0

0.5

1

1.5

2

2.5

H
(x

) =
 (G

(T
,V

)-
G

(T
,0

))
/B

T1/
2

T/TK = 0.5
T/TK = 0.05
T/TK = 0.01
T/TK = 0.005
T/TK = 0.001

FIG. 10. Differential conductance G(T ,V ) for different temper-
atures in units of the Kondo temperature TK ∼ 0.8 meV given by the
NCA for parameters corresponding to the trimer configuration, for
which the anisotropy was found to be D ∼ 1.7 meV.
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to the trimer configuration and for several temperatures. When
the charge fluctuations are inhibited due to the decreasing
temperature, the G(T ,V ) through the Co atom displays the
2C scaling behavior, in particular the

√
V dependence already

displayed in Fig. 9.

IV. CONCLUSIONS

In summary, extending a previous study of the entropy
and equilibrium conductance through a Co atom coupled to
monatomic Au chains with fourfold symmetric leads, we
have presented a comprehensive study of the equilibrium
spectral density using the NRG method and the nonequilibrium
conductance in the non-Fermi-liquid regime using NCA.

We found that a quantum critical point at the anisotropy
value D = 0 takes place. The three different phases, under-
screened, overscreened, and no Kondo phases, are charac-
terized by the weight of the Kondo resonance at the Fermi
level. Within the underscreened Kondo regime, the value of the
spectral density per channel and spin is given approximately
by ρασ (0) ∼ 1

π�
in analogy to the ordinary Kondo model,

although the system is expected to be a singular Fermi liquid.
On the other hand, within the overscreened regime, the spectral
weight is reduced to half this value, ρασ (0) ∼ 1

2π�
. We also

found that the Kondo temperature of the underscreened phase,
TK , plays an important role in the cases of positive values of
D. When 0 < D � TK , the way the system enters into the 2C
fixed point is mediated by a new energy scale T ∗ that depends
exponentially on the ratio TK/D.

We also present a solution of the model by means of the
noncrossing approximation not only at equilibrium but also
for nonequilibrium situations such as transport properties as a
function of the bias voltage. Our results suggest that the only

phase in which the NCA becomes a reliable method is the
overscreened regime in which the anisotropy value should be
D � TK . In particular, the NCA for D = 0 underestimates the
spectral weight at the Fermi level by 40% and for the cases
in which 0 < D � TK the low-energy scale T ∗ is missed.
In contrast, for D � TK , corresponding to the regime of
parameters for which 2C physics is more evident, we have
verified that the NCA gives the correct residual entropy
and (except for a slight overestimation) it also gives the
correct value of the spectral densities at the Fermi level. This
suggests that the NCA is a reliable approximation to study the
overscreened regime also at finite bias voltage, for which our
NRG methods are not appropriate.

For small values of temperature T and bias voltage V , the
obtained differential conductance agrees with the predictions
of conformal field theory for the 2CK model. Specifically, we
show that for realistic parameters corresponding to the system
of Fig. 1(b) the conductance through the Co atom as a function
of the bias voltage follows a

√
V dependence, in agreement

with the behavior expected for this kind of non-Fermi-liquid
model. Furthermore, a universal scaling behavior as a function
of (eV/kbT )1/2 is obtained.

Our results confirm the rich physics of the model. We expect
that our study can stimulate experimental studies on similar
systems.
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