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Orbital magnetization of correlated electrons with arbitrary band topology
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Spin-orbit coupling introduces chirality into the electronic structure. This can have profound effects on the
magnetization induced by the orbital motion of electrons. Here we derive a formula for the orbital magnetization
of interacting electrons in terms of the full Green’s function and vertex functions. The formula is applied within
dynamical mean-field theory to the Kane-Mele-Hubbard model that allows both topological and trivial insulating
phases. We study the insulating and metallic phases in the presence of an exchange magnetic field. In the
presence of interactions, the orbital magnetization of the quantum spin Hall insulating phase with inversion
symmetry is renormalized by the bulk quasiparticle weight. The orbital magnetization vanishes for the in-plane
antiferromagnetic phase with trivial topology. In the metallic phase, the enhanced effective spin-orbit coupling
due to the interaction sometimes leads to an enhancement of the orbital magnetization. However, at low doping,
magnetization is suppressed at large interaction strengths.
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I. INTRODUCTION

Magnetism of matter in thermal equilibrium is a purely
quantum-mechanical phenomenon. For conventional metals
one usually identifies two contributions: a paramagnetic
one—Pauli—due to the magnetic moment of the spin and
a diamagnetic one—Landau—due to the orbital motion of
electrons [1]. In the free-electron case, the magnitude of the
spin contribution is larger by a factor of 3 compared with the
orbital contribution so that the system exhibits paramagnetism.
However, orbital magnetism depends sensitively on details of
the electronic structure and sometimes deviates strongly from
conventional Landau diamagnetism. For instance, narrow gap
materials, such as bismuth [1] and graphene [2], exhibit consid-
erably enhanced diamagnetism. Also, the chirality imposed on
electronic states by spin-orbit coupling leads to the appearance
of new states of matter with peculiar magnetic responses. For
example, it has recently been shown experimentally that some
iridate compounds [3,4] possess strong orbital magnetism that
dominates over spin paramagnetism.

The modern theory of orbital magnetization [5–10] focuses
on a crystalline system of independent electrons in a state that
breaks time-reversal symmetry. In this theory, the orbital mag-
netization comes from the orbital motion of carriers and from a
correction due to the Berry curvature. It has become important
to generalize this modern theory of orbital magnetization to
include the effect of interactions. Indeed, the first-principles
application of the theory for ferromagnetic transition metals
has shown that this theory underestimates the orbital magneti-
zation [11,12]. It is reasonable to expect that interactions can
explain this discrepancy. Also, interactions renormalize the
electronic structure of the system in some cases so drastically
that they cause a phase transition. Interactions can therefore
modify both contributions to the orbital magnetization.

Here we derive a formula for the orbital magnetization
of an interacting system in terms of the fully interacting
Green’s function and of the corresponding vertex functions.
The proposed formalism can be used for systems with arbitrary
band topology along with any method capable of calculating

the interacting Green’s function, such as GW or dynamical
mean-field theory (DMFT). As a simple example, we apply
this formula to the Kane-Mele-Hubbard (KMH) model [13] in
the presence of an exchange magnetic field that acts on spins
only to break time-reversal symmetry. We allow for a chiral
symmetry-breaking perturbation in the KMH so that we can
study both the correlated topological insulating phase and the
trivial insulating phase.

II. DERIVATION

The thermodynamic definition of the orbital magnetization
density at zero temperature is

Morb = −
(

∂K

∂B

)
n,B=0

, (1)

where K is the grand potential per unit volume of the system,
B is a magnetic field, and the derivative is evaluated at constant
electron density. To focus on the orbital contribution, we
exclude the Zeeman energy. The full algebraic derivation is
given in Appendix A. But it is in fact simple to understand
the procedure and final result. One cannot take directly the
derivative with respect to a uniform magnetic field since,
fundamentally, K is a function of a vector potential that
must depend on position (see also Ref. [9]). Hence, going
to Fourier space, one must expand K in powers of qb and
Ac and keep the part of the derivative that is antisymmetric
under exchange of the Cartesian directions b and c. Computing
εabc ∂2K

∂iqb∂Ac
(εadeiqdAe) with εabc the fully antisymmetric Levi-

Civita tensor, we thus obtain 2 ∂K
∂Ba

Ba . The expression for K

in the presence of the gauge field A(q) involves an energy
vertex multiplied by a dressed Green’s function that depends
on two wave-vector indices k − q/2 and k + q/2 since we do
not have translational invariance [see Eq. (A5) in Appendix
A]. That Green’s function depends implicitly on A, which
also appears in the energy vertex through the usual Peierls
substitution. Taking derivatives with respect to qb and Ac and
taking the antisymmetric part in the limit of zero field, we
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obtain the orbital magnetization. Algebraically, one finds

Ma
orb =

(
ie

2�

)(
1

Nβ

)∑
k,ωm

εabcTr

{[
H0 − μ1 + �

2

]
G
(

−∂G−1

∂kb

)
G
(

−∂G−1

∂kc

)
G
}
eiωm0+

+
(

1

2Nβ

)∑
k,ωm

Tr

[
[H0 + (iωm − μ)1]G

(
∂�(B)

∂Ba

)
B=0

G
]
. (2)

Derivatives with respect to ki appear because in the zero-field
limit, derivatives with respect to Ai or to qi are proportional
to ∂

∂ki
. The identity ∂G

∂kb
= −G ∂G−1

∂kb
G has been used repeat-

edly. The interacting single-particle Green’s function entering
Eq. (2) is

G(k,iωm) = [(iωm + μ)1 − H0(k) − �(k,iωm)]−1, (3)

where H0 denotes the noninteracting part of the Hamiltonian,
� is the electron self-energy, β is the inverse temperature,
μ is the chemical potential, and ωm denotes the Matsubara
frequencies. Bold quantities are written in spinor notation, and
their size is 2n × 2n, where n denotes the number of orbitals
within the unit cell.

Equation (2) is an antisymmetric response that cannot
be attributed to Lorentz forces and therefore survives in
the absence of a magnetic field. It is valid for both trivial
and topological insulators as well as for metals. In the
noninteracting case Eq. (2) reduces to the modern theory of
orbital magnetization (see Appendix B). We apply Eq. (2) then
to the KMH model with a chiral symmetry-breaking term as
an example that will illustrate the effect of interactions.

III. KANE-MELE-HUBBARD MODEL

The Hamiltonian on the honeycomb lattice reads

H = −t
∑
〈ij〉

ĉ
†
i 1ĉj + iλSO

∑
〈〈ij〉〉

ĉ
†
i τ · (δ(1)

ij × δ
(2)
ij

)
ĉj

− λ

(∑
i∈A

ĉ
†
i 1ĉi −

∑
i∈B

ĉ
†
i 1ĉi

)
+ U

2

∑
i

(ĉ†i 1ĉi − 1)2, (4)

where ĉ
†
i ≡ (c†i↑,c

†
i↓) is a spinor and c

†
i↑ creates an electron with

spin σ on site i. The second term is a mirror symmetric (z →
−z) spin-orbit interaction, which involves spin-dependent
hopping between pairs of second neighbors 〈〈ij 〉〉 with δ

(1,2)
ij

as the vectors connecting first-neighbor legs and τ as the Pauli
spin matrices [13].

We use DMFT with two single-site impurity models per
unit cell [14]. Thus the self-energy is a block-diagonal matrix
with 2 × 2 elements �A,�B in spin space. We use an exact
diagonalization impurity solver [15] with eight bath sites. To
treat long-range in-plane antiferromagnetic order, we add a
self-consistent Weiss field to the bath [16]. As a check of the
accuracy of the method, we compare our DMFT calculation
with those obtained from a quantum Monte Carlo study [13].
We find that the critical values of Uc for the transition between
the quantum spin Hall (QSH) and the antiferromagnetic (AFM)
phase are within a few percent of each other and similarly for
the value of the single-particle gap for λSO = 0.1t .

In the DMFT approximation, the current vertex corrections
from ∂�/∂kb,c vanish and since the scalar �(B) is independent
of k, it cannot depend on B linearly, so ∂�(B)/∂Ba = 0.

At half-filling, the noninteracting system with inversion
symmetry (λSO 	= 0,λ = 0) describes a QSH insulator with
helical edge states. In the system without inversion symmetry
(λ 	= 0), a phase transition between the QSH insulator and a
band insulator occurs at λ > 3

√
3λSO [13].

The Hubbard repulsion induces a transition from the
correlated QSH phase to a Mott insulator with long-range
in-plane antiferromagnetic order at a critical value [13,17]
(see Appendix C). Throughout the QSH phase, the bulk gap
remains open. At the magnetic transition, the time-reversal
symmetry underlying the topological protection of the QSH
state is broken: A change in the topological invariant from
nontrivial to trivial does not require the closing of any gaps
[13].

In the correlated QSH insulator, time-reversal symmetry is
preserved, and therefore the net orbital magnetization is zero.
Nevertheless, the integrand morb(k) in the general result Eq. (2)
has a strong k and μ dependence. We first study its behavior
in the noninteracting case since it contains many features that
remain in the interacting system.

IV. RESULTS

A. Noninteracting case

In the noninteracting system with a chemical potential
in the band gap, one can use the low-energy description
near the Dirac points to obtain an approximate analytical
expression for the Berry curvature correction contribution
(see Appendix D),

m
Berry
orb (q) =

(
e

4�

)∑
s,sv

[(
�s2

v + �
2v2

F q2
)1/2 + μ

]

× sv�s
v�

2v2
F[

�s2
v + �2v2

F q2
]3/2 , (5)

where m
Berry
orb (q) is the magnitude of mBerry

orb (q), �s
v = (−λ +

ssv3
√

3λSO) is a valley and spin-dependent gap, �vF =
(3/2)at is the Fermi velocity of the helical Dirac fermions, q is
in the neighborhood of the valley, sv = ±1 is the pseudospin
valley index, and s = ±1 is the electron spin index. The orbital
moment contribution has a similar structure.

Consider first a trivial insulator λ > 3
√

3λSO. Since �s
v

has a valley and spin-independent sign, Eq. (5) shows that
the orbital magnetization integrand within each band has an
opposite sign in the two valleys [18]. Even though each band
has states with both chirality, in the presence of a nonzero λSO,
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FIG. 1. (Color online) Orbital magnetization for the noninteracting KM model. Panels (a) and (b) show the partial (band) orbital
magnetization for the trivial band insulating phase λSO = 0.1t, λ = 0.8t and the QSH insulating phase λSO = 0.1t, λ = 0, respectively.
The partial orbital magnetization in the presence of a time-reversal symmetry-breaking exchange field h = −0.04t acting on spins only is
shown by solid lines. Dashed lines show the partial orbital magnetization in the absence of an exchange field. The shaded area shows the
bulk spectrum gap. Symbols for valence and conduction bands are identified in panel (b). In panels (c) and (d), h = −0.04t . The total orbital
magnetization as a function of μ is in (c). In (d) orbital magnetization with λSO = 0.1t as a function of λ/t for electron densities n = 1.0, 1.1,
and 1.25. The semimetal phase at the boundary between the QSH insulator and the trivial band insulator is broadened slightly by the applied
exchange field. All data are in units of (ea2t/2�), where a is the lattice constant.

states with opposite chirality are not balanced, and each band
has a net chirality. When λSO vanishes, states with opposite
chirality balance each other, and the net orbital magnetization
of each band is individually zero: A response of type Eq. (2)
is not present in this case.

For the topological insulator (QSH) with inversion sym-
metry λSO 	= 0, λ = 0, the m

Berry
orb (k) of each band has the

same sign for the two valleys, i.e., for a given spin, each
band has only states with a specific chirality, giving rise to a
large contribution to orbital magnetization. A small λ breaks
the symmetry between the two valleys.

For both band insulator and QSH insulator, mBerry
orb (q) of the

valence (conduction) bands (summed over spin) have opposite
signs as required by the fact that the KM model preserves time-
reversal symmetry, and therefore the orbital magnetization is
zero.

A numerical evaluation of Eq. (2) with the full Green’s
functions confirms the above analysis that is based on the
Dirac approximation: Panels (a) and (b) of Fig. 1 show the
partial orbital magnetization contribution of each band in
the trace entering Eq. (2) as a function of chemical potential. In
the band insulator, Fig. 1(a), the partial orbital magnetization is
constant for a chemical potential lying in the gap (shaded area),
whereas it linearly changes in the QSH insulator, Fig. 1(b),
with a slope proportional to the Chern number of the band
[7]. This can be interpreted as an effect due to populating the

edge states. Although there is no edge in an extended system,
this demonstrates that the bulk response can be encoded in
the boundary as expected from bulk-boundary duality [19].
In the band insulator the absolute value of the partial orbital
magnetization of each band increases when μ increases outside
the gap, reaches a maximum once μ is at the energy of the van
Hove singularity of the corresponding band, and then decreases
for larger chemical potentials.

Applying a small uniform exchange (Zeeman) field
−h
∑

i ĉ
†
i τ zĉi , perpendicular to the plane, breaks time-reversal

symmetry and mirror symmetry with respect to the plane and
induces a nonzero orbital magnetization [20]. At small field
strengths, the QSH state survives, regardless of the broken
time-reversal symmetry [21]. The variation in the orbital
magnetization is given by the difference between the Bloch
states carrying circulating currents in opposite directions. A
nonzero h shifts the energy of the Kramer’s pair bands relative
to each other and creates these differences. Figures 1(a) and
1(b) show how the exchange field breaks the balance between
Bloch states carrying opposite circulating currents.

Panel (c) of Fig. 1 shows the orbital magnetization of the
KM model in the topological and trivial phases in the presence
of an exchange field. The direction of the orbital magnetization
depends on the signs of λSO and of h. As can be seen from the
figure (green and purple lines) in the topological insulator
the orbital magnetization is independent of Hamiltonian
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FIG. 2. (Color online) Morb of the interacting KMH model as a function of U/t . Panel (a) at half-filling. The shaded area shows the
correlated QSH phase. In panel (b), Morb with λSO = 0.1t, λ = 0 as a function of U/t for electron densities n = 1.1 (top) and n = 1.25
(bottom). A small exchange field h = −0.04t is applied. There is an out-plane AFM phase for n = 1.1 at U/t � 5.4.

parameters. This can be understood as follows: In the insu-
lating phase only the Berry curvature correction contributes to
the net orbital magnetization. The applied Zeeman term does
not change the Berry curvature of the bands 	s(q). However it
linearly changes the energy vertex −sh in the Berry curvature
correction of the orbital magnetization. Thus the net orbital
magnetization due to the field is h

∑
q,s 	s(q). The orbital

magnetization is also independent from the position of the
chemical potential in the gap. Scanning μ in the gap does
not cause any change in the orbital magnetization due to the
presence of opposite Chern indices in the QSH insulator.

The orbital magnetization of the trivial insulator [red line
in Fig. 1(c)] is zero, meaning that for each Bloch state there is
another state carrying opposite-circulating current. However,
note that a trivial insulator with a vanishing Chern index can in
general have a small but finite orbital magnetization. Indeed,
in the noninteracting case the energy vertex in Eq. (2) makes
the expression for orbital magnetization different from that
for the Chern index. In the trivial insulator phase of the KMH
the following two conditions make the orbital magnetization
vanish: particle-hole symmetry and k independence of the
correction to the energy vertex due to the exchange field.

Away from half-filling the orbital magnetization shows
a complex structure that arises from both contributions of
the orbital magnetization. Nevertheless, the behavior can be
understood by inspecting Figs. 1(a) and 1(b). Comparing green
and purple lines in Fig. 1(c) shows that in the metallic phase
of the doped topological insulator, the absolute value of the
orbital magnetization takes larger values upon increasing the
spin-orbit coupling.

Finally, Fig. 1(d) shows Morb as a function of staggered
ionic potential and λ/t for electron densities n = 1.0, 1.1,
and 1.25. At a small doping level n = 1.1, the response
changes from paramagnetic (diamagnetic) to diamagnetic
(paramagnetic) as λ/t increases, reflecting the crossover from
a doped QSH to a doped band insulator. At a higher doping
level n = 1.25, only the magnitude of the response changes
when λ/t increases.

B. Interacting case

In general, electronic correlations enhance the effects of
spin-orbit coupling due to the suppression of the effective

bandwidth [22]. This can be seen in a system with a staggered
sublattice potential where the real part of the self-energy
renormalizes λ → λren < λ, increasing the stability of the
topological insulator with increasing interaction.

Figure 2(a) shows the orbital magnetization of the cor-
related QSH insulator (λSO = 0.1t,λ = 0) in the presence
of a small exchange field h as a function of interaction
strength U . The interaction suppresses the orbital magneti-
zation. This can be explained as follows. Although the time-
reversal symmetry forbids elastic single-particle scattering
processes, two-particle scattering renormalizes the velocity
[16,23]. Within DMFT, one finds vren

F � zvF , where z is the
quasiparticle weight. The small exchange field does not change
the scattering processes very much, and this renormalization
is valid even in the presence of the field. Also, the band gap
smoothly evolves from its U/t = 0 value to its renormalized
value �s,ren

v = z{�s
v − Re[
A,s(0) − 
B,s(0)]} [24]. With in-

version symmetry, the zero-frequency self-energies cancel,
and we have �s,ren

v � z�s
v . We can then use the quasiparticle

Hamiltonian Hqp

0 = z1/2[H0 − Re �(0) − μ1]z1/2 with z as
the diagonal matrix of the bulk quasiparticle weights with
zA = zB ≡ z to describe the correlated QSH insulator. Then,
the Berry curvature of the correlated QSH insulator is given by
the second line of the Eq. (5), except that the bare quantities are
replaced by renormalized ones �s

v → �s,ren
v and vF → vren

F .
Replacing the renormalized quantities in the Berry curvature
equation, one can see that the quasiparticle weight cancels
out from the equation and one finds unrenormalized Berry
curvature for the interacting case. However, in the presence
of the interaction, the energy vertex is renormalized as well.
This renormalization leads to a suppression of the orbital
magnetization. Using the numerically obtained value of z, we
verified that the orbital magnetization is renormalized by the
quasiparticle weight.

Like the spin component, the net Morb would be zero for any
AFM phase. Furthermore, although the orbital magnetization
integrand may change drastically in the xy-AFM phase of
the KMH model, even in the presence of the exchange
field the orbital magnetization vanishes because it is a
trivial insulator. A study of AFM-Mott insulating perovskite
transition-metal oxides with a small net FM moment using
the modern theory of orbital magnetization has shown similar
results [25].
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The right-hand panel of Fig. 2 shows Morb of the interacting
doped QSH with λSO = 0.1t, λ = 0 at h 	= 0 as a function of
U/t . The early drop with U/t of |Morb| at n = 1.25 is due to the
shift in the Fermi energy with respect to the rounded van Hove
singularity. It does not occur at n = 1.1. Then, as a function
of U/t the effective enhancement of λSO leads to an increase
in |Morb|, but, eventually, at large U/t the interaction effects
described in the insulator lead to a net decrease in |Morb|.

V. CONCLUSIONS

In conclusion, we have introduced a practical many-body
approach for the calculation of the orbital magnetization
|Morb| of interacting systems with chiral electronic states.
Using the Kane-Mele-Hubbard model in the presence of
an exchange field as an example, we have shown that in
the correlated topological insulator, |Morb| is decreased by
the bulk quasiparticle weight z. In the doped topological
insulator, the behavior of |Morb| is nonmonotonic. Interaction
effectively enhances the spin-orbit coupling and in turn the
orbital magnetization while at the same time introducing
scattering processes which reduce the orbital magnetization.
Interplay between these two mechanisms determines the
orbital magnetization of a correlated system. The proposed
formalism can be used for real material calculations along
with any method capable of calculating the interacting Green’s
function.
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APPENDIX A: ORBITAL MAGNETIZATION

Here we present two derivations for the formula that gives
the orbital magnetization of an interacting system. The first
one follows the presentation in the main text. The second one
generalizes the method introduced in Ref. [9] to interacting
systems. The latter method is more compact but perhaps less
intuitive.

1. Derivation I

In this subsection, we provide details of the derivation
for the orbital magnetization formula presented in the main
text. Since at the Hamiltonian level the magnetic field
comes in through a vector potential A, we must assume a
long-wavelength variation in A(r) = A0 exp(iq · r) and take
the limit q → 0 at the end to recover a uniform magnetic
field B. The procedure is illustrated in Fig. 3 in terms of dressed
Feynman diagrams.

The variation in the total energy due to a small change in
vector potential is

δK �
(

∂K

∂Aq

)
Aq=0

· δAq. (A1)

One then expands ∂K
∂Aq

in powers of q up to linear order. Since
Aq itself is not expanded in powers of q, one obtains

∂K

∂Aq
(q) � ∂K

∂Aq
(q = 0) + J(q = 0)q + · · · , (A2)

where J(q = 0) is the Jacobian matrix with the elements
Jbc(q = 0) = (∂2K/∂qb∂Ac)q=0. The first term on the right-
hand side of Eq. (A2) is zero because a uniform vector potential
does not change the total energy of the system. Therefore, the
first nonzero term in δK in the limit of q → 0 is

δK = 1

2
{dAq · [J(q = 0)q] − dAq · [JT (q = 0)q]}

= 1

2

(
∇q × ∂K

∂Aq

)
q=0

· (q × dAq)

= i

2

(
∇q × ∂K

∂Aq

)
q=0

· dB, (A3)

where we have taken the antisymmetric part on the right-hand
side because the symmetric part contains contributions from
pure gauge transformations, hence it cannot change the total
energy. In the last identity we used the definition of the static
magnetic field in terms of the vector potential B(q) = −iq ×
Aq. Thus the orbital magnetization is given by

Morb = − i

2

(
∇q × ∂K

∂Aq

)
(q,A)=0

, (A4)

where it is understood that derivatives with respect to q do not
act on Aq.

If we can compute the interacting Green’s function G(A)

in the presence of the space-varying vector potential, the total
energy per unit volume of the system can be calculated from

K = 1

2Nβ

∑
kωm

Tr
{[

H(A)
0,k−q/2,k+q/2 + (iωm − μ)δq,0

]

× G(A)
k+q/2,k−q/2

}
eiωm0+

, (A5)

where H(A)
0 denotes the noninteracting part of the Hamiltonian.

It contains the vector potential through minimal coupling or
through the Peierls substitution. The superscript (A) indicates
that the quantity must be calculated in the presence of the field.
The superscript is absent for quantities calculated at B = 0. In
the presence of the nonuniform vector potential, the interacting
Green’s function G(A) depends on two wave vectors. It takes
the form

G(A)
k+q/2,k−q/2(iωm) = [

(iωm + μ)δq,0 − H(A)
0,k+q/2,k−q/2

−�
(A)
k+q/2,k−q/2(iωm)

]−1
, (A6)

where �(A) denotes the electron self-energy. In the following
we use the short-hand notations k− ≡ k − q/2 and k+ ≡
k + q/2.
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(
abc

2 )∂qb
∂Ac

q

λ
E,(A)
k−,k+

∣
∣
A=0,q=0

= (
abc

2 )∂qb

∂Ac
q
λ

E,(A)
k−,k+

∣
∣
A=0

∣
∣
q=0

+ (
abc

2 )∂qb

λE
k−,k+

−∂Ac
q
G(A)−1

k+,k−

∣
∣
A=0

∣
∣
q=0

=

+(
abc

2 )

λE
k−,k+

∣
∣
q=0

−∂qb
G−1

k−,k−

∣
∣
q=0 −∂Ac

q
G(A)−1

k+,k−

∣
∣
A=0

q=0

+(
abc

2 )

λE
k−,k+

∣
∣
q=0

−∂Ac
q
G(A)−1

k+,k−

∣
∣
A=0

q=0
−∂qb

G−1
k+,k+

∣
∣
q=0

+(
abc

2 )

λE
k−,k+

∣
∣
q=0

−∂qb
∂Ac

q
G−1

k+,k−

∣
∣
A=0

q=0

FIG. 3. (Color online) Diagrammatic expansion of the change in total energy due to the presence of a magnetic field, evaluated in the
zero-field limit. Lines show the fully dressed Green’s function λE ≡ [H0 + (iωm − μ)1] is the energy vertex, and k− ≡ k − q/2, k+ ≡ k + q/2.
The second diagram on the first line is independent of q, and its derivative with respect to q vanishes. Evaluating the diagrams in the limits
q → 0 and Aq → 0 the derivative with respect to Aq is replaced by −(e/�)∂k, whereas the derivative with respect to q is replaced by (±1/2)∂k

depending on the momentum of the propagator line. The first two diagrams on the second line are equal in this limit and give the first line of
Eq. (2).

Taking the derivative of the energy K in Eq. (A5) as
required by the definition of the orbital magnetization Eq. (A4)
gives

Ma
orb = −iεabc

4Nβ

∑
kωm

Tr

{
∂

∂qb

(
∂λ

E,(A)
0,k−,k+

∂Ac
q

∣∣∣∣∣
A=0

Gk+,k−

−λE
0,k−,k+Gk+,k+

∂G(A)−1
k+,k−

∂Ac
q

∣∣∣∣∣
A=0

Gk−,k−

)}
q=0

eiωm0+
,

(A7)

where λ
E,(A)
0,k−,k+ ≡ [H(A)

0,k−,k+ + (iωm − μ)δq,0] is the bare en-
ergy vertex. Its derivative with respect to the gauge potential

gives the bare current vertex. The Green’s function that
multiplies this vertex must be evaluated at A = 0, so it is
diagonal in momentum space, and Gk+,k− = 0. In the last term
of the equation, we have used the identity (∂G(A)/∂Ac

q) =
G(−∂G(A)−1/∂Ac

q)G. The derivative of the inverse of the
Green’s function with respect to the gauge potential is the
dressed current vertex function which can be related to
the bare current vertex using the Bethe-Salpeter equation.
In the last term on the right-hand side of Eq. (A7), one can
see that the dressed current vertex adds momentum −q. The
Green’s functions on either side are evaluated at zero vector
potential and hence are diagonal in momentum index.

Performing the derivative with respect to qb, keeping in
mind that the first term in the above equation is identically
zero, we find

Ma
orb = −iεabc

4Nβ

∑
kωm

Tr

⎡
⎣− λE

0,k−,k+

⎛
⎝∂Gk+,k+

∂qb

∂G(A)−1
k+,k−

∂Ac
q

∣∣∣∣∣∣
A=0

Gk−,k− + Gk+,k+
∂

∂qb

∂G(A)−1
k+,k−

∂Ac
q

∣∣∣∣∣∣
A=0

Gk−,k−

+ Gk+,k+

∂G(A)−1
k+,k−

∂Ac
q

∣∣∣∣∣∣
A=0

∂Gk−,k−

∂qb

⎞
⎠
⎤
⎦

q=0

eiωm0+
. (A8)

In the limits q → 0 and Aq → 0, we can replace (∂/∂Ac
q) by −(e/�)∂/∂kc and (∂/∂qb) by (±1/2)(∂/∂kb), depending on the

momentum of the propagator line. After this replacement, we can see that the first and the last terms in the above equation are
equal. Finally, using the identity (∂G/∂qb) = G(−∂G−1/∂qb)G, we have the formula for the orbital magnetization,

Ma
orb =

( e

�

)( iεabc

4Nβ

)∑
kωm

Tr

⎧⎨
⎩[H0 + (iωm − μ)1]

⎡
⎣G

∂

∂qb

∂G(A)−1
k+,k−

∂Ac
q

∣∣∣∣∣
A=0,q=0

G + G
(

−∂G−1

∂kb

)
G
(

−∂G−1

∂kc

)
G

⎤
⎦
⎫⎬
⎭ eiωm0+

.

(A9)
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The derivative of G(A)−1 contains two terms, one is the
derivative of H(A)

0 , and the other one is the derivative of the
self-energy. The former term vanishes because there is no q
dependence left once the derivative with respect to A is evalu-
ated at A = 0. We then define (iεabce/2�)(∂2�(A)−1/∂qb∂Ac

q)
by (∂�(B)−1/∂Ba). Only the gauge-invariant part of �B

contributes to the derivative. The resulting formula can be
used directly to obtain the orbital magnetization. However, it
is also possible to rewrite the last term to obtain the form in the
main text by recalling that the energy vertex H0 + (iωm − μ)1
can be written as G−1 + 2(H0 − μ1) + �. In that case, the
product between G−1 and the last term in the above equation
leaves a term that is symmetric with respect to the current
vertices and therefore vanishes due to the cross product.

2. Derivation II

In this subsection we provide an alternative derivation
for the orbital magnetization based on a generalization of
the method introduced in Ref. [9] to the case of interacting
systems. As we will verify, in this method, it is the uniform
magnetic field that appears explicitly so that the formalism is
manifestly gauge invariant. In addition, despite the fact that
the Hamiltonian is not translationally invariant, any measured
quantity can be calculated in an explicitly translationally
invariant manner.

In position space with Riα ≡ Ri + rα , where Ri is the origin
of the ith unit cell and rα denotes the position of the αth ion
within the unit cell, K can be obtained from

K = 1

2Nβ

∑
RiαRjα′

∑
ωm

× Tr
{[

H0,RiαRjα′ + (iωm − μ)δRiαRjα′
]
GRjα′ Riα

}
eiωm0+

.

(A10)

In the presence of a small uniform magnetic field,
the noninteracting Hamiltonian becomes H0,RiαRjα′ → (H0 +
H′)RiαRjα′ exp[(ie/�)

∫ Rjα′
Riα

A(r) · dr], where H′ is some local
perturbation that includes atomic diamagnetism and A is the
gauge potential. The line integral of the gauge potential follows
a straight line from Riα to Rjα′ . Since the correction to the
Green’s function and the energy from H′ is on the order of |B|2,
we ignore it from now on. Thus, in the presence of the field, the
energy vertex in Eq. (A10) is multiplied by the Peierls phase,

exp(iφRiαRjα′ ) ≡ exp[(ie/�)
∫ Rjα′

Riα
A(r) · dr], and the Green’s

function should be evaluated in the presence of the field.
The linear response of the Green’s function to the field can

be obtained perturbatively as follows. The Green’s function
satisfies the following equation:∑

Rjα′

[
(iωm + μ)δRiαRjα′ − H0,RiαRjα′

]
e
iφRiαR

jα′

× G(A)
Rjα′ Rkα′′ − �

(A)
RiαRjα′ G

(A)
Rjα′ Rkα′′ = δRiαRkα′′ , (A11)

where �(A) is the electron self-energy and the superscript
(A) indicates that the quantity must be calculated in the
presence of the field to distinguish from quantities G and
� calculated at B = 0. Defining G̃(A)

RiαRjα′ and �̃
(A)
RiαRjα′ by

G(A)
RiαRjα′ = G̃(A)

RiαRjα′ e
iφRiαR

jα′ and �
(A)
RiαRjα′ = �̃

(A)
RiαRjα′ e

iφRiαR
jα′

[26], respectively, singles out the gauge-independent quantities
identified by a tilde. Indeed, we can rearrange the equation
for G̃(A)

RiαRjα′ and �̃
(A)
RiαRjα′ so that it is gauge invariant. It

suffices to multiply both sides of Eq. (A11) by e
iφRiα ,R

kα′′ . The
right-hand side remains unity, whereas on the left the three
phases combine together to give the magnetic flux threading
through the triangle formed by the three points Riα, Rjα′ , and
Rkα′′ . Independent of the gauge then, we obtain

∑
Rjα′

[
(iωm + μ)δRiαRjα′ − H0,RiαRjα′ − �̃

(A)
RiαRjα′

]

× G̃(A)
Rjα′ Rkα′′ e

(ie/2�)B·(Rjα′ −Riα )×(Rkα′′ −Rjα′ ) = δRiαRkα′′ . (A12)

This last equation is gauge invariant and translationally
invariant [27]. It tells us, along with the theorem on the
diagrammatic expansion of �̃

(A)
[26], that G̃(A) and �̃

(A)
can

depend only on B, not on A. This equation can thus be solved
for G̃(A) to first order in B by expanding the self-energy and the
exponential and then Fourier transforming. It is important to
define the Fourier transform as cRiα

= (1/
√

N )
∑

k eik·Riα ckα

so that the phase defined by k remains coherent even within
a unit cell. This is consistent with the definition of the Peierls
phase. With this definition of the Fourier transform, we obtain
[28]

G̃(A)
k = Gk + BaGk

(
∂�̃

(B)
k

∂Ba

)
B=0

Gk

+ ie

2�
BaεabcGk

(
∂G−1

k

∂kb

)(
∂Gk

∂kc

)
. (A13)

In the presence of the external field B, K must be calculated
with the trace expression Eq. (A10) but with the energy vertex
multiplied by the Peierls phase e

iφRiαR
jα′ . Combining that phase

with G(A)
RiαRjα′ shows that the gauge-invariant quantity G̃(A)

RiαRjα′

enters the observable K . Using Eq. (A13) for G̃(A)(k,iωm)
to first order and the definition of the orbital magnetization
Eq. (1), one obtains the orbital magnetization of interacting
systems presented in Eq. (2).

APPENDIX B: NONINTERACTING SYSTEM

In the noninteracting case the orbital magnetization can
be written as a summation over the occupied bands that
decomposes the orbital magnetization into the orbital moments
of the carriers plus a correction from the Berry curvature. Here
we thus discuss the noninteracting limit of our equation for the
orbital magnetization and show that, in that case, it reduces to
the modern theory of the magnetization.

Using the band representation of the Green’s function
g(b)

k (iωm) = [(iωm − μ)1 − εk]−1, where εk is a diagonal
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matrix, one can rewrite the orbital magnetization as

Ma
orb =

(
ie

2�

)(
εabc

Nβ

)∑
kωm

Tr

[
[H0(k) − μ1]g(b)

k (iωm)

(
∂H0(k)

∂kb

)
g(b)

k (iωm)

(
∂H0(k)

∂kc

)
g(b)

k (iωm)

]

=
(

ie

2�

)(
εabc

Nβ

)∑
k

∑
n,m

∑
ωm

(εnk − μ)
(

∂H0(k)
∂kb

)
nm

(
∂H0(k)

∂kc

)
mn

(iωm + μ − εnk)(iωm + μ − εmk)(iωm + μ − εnk)

=
(

ie

2�

)(
εabc

Nβ

)∑
k

∑
n,m

(εnk − μ)
∂

∂εnk

∑
ωm

(
∂H0(k)

∂kb

)
nm

(
∂H0(k)

∂kc

)
mn

(iωm + μ − εnk)(iωm + μ − εmk)

=
(

ie

2�

)(
εabc

N

)∑
k

∑
n,m

(εnk − μ)
∂

∂εnk

{(
∂H0(k)

∂kb

)
nm

(
∂H0(k)

∂kc

)
mn

(εnk − εmk)
[nF (εnk − μ) − nF (εmk − μ)]

}

=
(−ie

2�

)(
εabc

N

)∑
k

∑
n,m

(εnk − μ)

(
∂H0(k)

∂kb

)
nm

(
∂H0(k)

∂kc

)
mn

(εnk − εmk)2
[nF (εnk − μ) − nF (εmk − μ)]

+
(

ie

2�

)(
εabc

N

)∑
k

∑
n,m

(εnk − μ)

(
∂H0(k)

∂kb

)
nm

(
∂H0(k)

∂kc

)
mn

(εnk − εmk)

(
∂nF (εnk − μ)

∂εnk

)
. (B1)

At zero temperature the term involving the derivative of the Fermi function vanishes because [∂nF (εnk − μ)/∂εnk] becomes
δ(εnk − μ). By interchanging the band indices n and m in the term coming from nF (εmk − μ) and noting that the cross product
is giving a minus sign as well, the orbital magnetization is given by

Ma
orb =

(−ie

2�

)(
εabc

N

)∑
k

∑
n,m

(εnk + εmk − 2μ)

(
∂H0(k)

∂kb

)
nm

(
∂H0(k)

∂kc

)
mn

(εnk − εmk)2
nF (εnk − μ)

=
(−ie

2�

)(
εabc

N

)∑
k

∑
n

〈
∂kb

unk
∣∣[H0(k) − εnk]

∣∣∂kc
unk
〉
nF (εnk − μ)

+
(−ie

2�

)(
εabc

N

)∑
k

∑
n

2(εnk − μ)
〈
∂kb

unk
∣∣∂kc

unk
〉
nF (εnk − μ), (B2)

where we have used 〈unk|∇kH0(k)|umk〉 = (εnk −
εmk)〈∇kunk|umk〉. In the last identity, the first term is
the orbital moments of the carriers, whereas the second
term is a correction from the Berry curvature [8]. The Berry
curvature is given by 	n(k) = i∇k × 〈unk|∇k|unk〉, which
is an intrinsic property of the band structure because it only
depends on the wave function and can be interpreted as an
effective magnetic field in momentum space [29]. In a finite
system, the Berry curvature correction gives the surface
contribution to the orbital magnetization.

Next we show that in the large lattice spacing limit the
orbital moment contribution reduces to the conventional form.
At the atomic site located at Ri in the crystal, we can define
a set of Wannier orbitals |wni〉 = wn(r − Ri) so that the cell-
periodic part of the (nonrelativistic) Bloch states is given by

unk(r) = 1√
N

∑
i

e−ik·(r−Ri )wni(r − Ri). (B3)

Substituting the above equation in the orbital moment term, us-
ing the relation v = (−i/�)[r,H0], and finally taking only the
site-diagonal matrix elements i = j of the Wannier functions
one obtains the following relation for the orbital moment [11]:

μB

1

N

∑
i

∑
n

〈wni |r × p|wni〉nF (εnk − μ), (B4)

where μB = (e�/2me) is the Bohr magneton and where
we have exploited the fact that the bulk states carry no net
current, i.e.,

∑
n〈wni |v|wni〉 = 0 and made the approximation

p = mev. Clearly, in the limit of zero bandwidth (large lattice
spacing) the Wannier functions reduce to molecular (atomic)
spin orbitals, and this expression yields the standard usual
free atom orbital angular momentum and the corresponding
magnetic moment per atom.

Finally, we comment on the relation between the orbital
magnetization and the Chern number. The Chern number is an
integral of the Berry curvature over the first Brillouin zone [29].
As can be seen from Eq. (B2) and from the fact that the states do
not depend on chemical potential in the noninteracting system,
the derivative of the orbital magnetization with respect to μ is
proportional to the Chern number when we are in the insulating
state [7].

APPENDIX C: PHASE TRANSITION IN THE
KANE-MELE-HUBBARD

In the presence of a Hubbard-type interaction, the KMH
Hamiltonian has two phases: an interacting quantum spin
Hall insulator and a trivial AFM-xy insulator (λSO 	= 0).
The easy-plane AFM order is the result of the interplay
between the Hubbard interaction and the spin-orbit coupling.
The nearest-neighbor hopping generates an isotropic AF
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Heisenberg term (4t2/U )
∑

〈ij〉 Si · Sj in the strong-coupling
limit, whereas the next-nearest-neighbor hopping due to
spin-orbit coupling generates an anisotropic exchange term
(4λ2

SO/U )
∑

〈〈ij〉〉(−Sx
i Sx

j − S
y

i S
y

j + Sz
i S

z
j ) [30]. The z term in

the later exchange term favors antiparallel alignment of the
spin on the next-nearest-neighbor sites; thus, it introduces a
frustration to the nearest-neighbor AF correlation expressed
by the former exchange terms. On the other hand, the xy term
in the latter exchange term favors a ferromagnetic alignment,
so no frustration is introduced. As a result, the exchange term
coming from the spin-orbit coupling has a tendency to suppress
the z term of the AF order.

A transition from a quantum spin Hall state to a topo-
logically trivial state can occur either via the closing of the
bulk band gap or via the breaking of time-reversal symmetry.
In the KMH model, upon increasing the Hubbard repulsion,
a transition from the quantum spin Hall phase to a gapped
Mott insulator with long-range magnetic order occurs at
a critical value Uc/t [13]. At the magnetic transition, the
time-reversal symmetry underlying the topological protection
of the quantum spin Hall state is broken, and a change in the
topological invariant from nontrivial to trivial occurs without
closing any gap [31].

APPENDIX D: KANE-MELE MODEL

In the absence of the electron-electron interaction, Eq. (4)
can be written in Fourier space in the form HKM

0 =∑
k �

†
kH0(k)�k with⎛

⎜⎜⎜⎜⎜⎝

−λ + λSOγk −tgk 0 0

−tg∗
k λ − λSOγk 0 0

0 0 −λ − λSOγk −tgk

0 0 −tg∗
k λ + λSOγk

⎞
⎟⎟⎟⎟⎟⎠,

(D1)

where �
†
k ≡ (a†

k↑,b
†
k↑,a

†
k↓,b

†
k↓). Here a and b operators re-

fer to the two sublattices of the honeycomb lattice; gk ≡∑
i exp(ik · δi) is related to the nearest-neighbor hopping

with δi=1···3 denoting the three first-neighbor bond vectors;
γ (k) = 2

∑
i sin(k · li), where l1 = δ2 − δ3, l2 = δ3 − δ1, and

l3 = δ1 − δ2 (see Fig. 4).
The KM Hamiltonian Eq. (D1) can be regarded as two

decoupled models for the ↑ and ↓ spins, each equivalent to
the spinless Haldane model, and described by 2 × 2 matrices.
Although Hσ individually breaks time-reversal symmetry,
the complete Hamiltonian satisfies it [31]. Furthermore, the
centrosymmetric Hamiltonian at half-filling (μ = 0) possesses
the discrete particle-hole symmetry c

†
iσ → diσ = sc

†
iσ , ciσ →

d
†
iσ = sciσ with s = ±1 depending on the sublattices [32].

Any finite λSO or λ opens a bulk gap. The eigenvalues of
the KM Hamiltonian are

ε∓(k) = ∓
√

t2|gk|2 + (−λ + λSOγk)2, (D2)

so that the spectrum has two bands, each of which has a
Kramers degeneracy between ↑ and ↓ spins. For λ = 0, a
bulk gap of size � = 6

√
3λSO opens up at the Dirac points.

For λSO/t > 1/(3
√

3) a minimal gap of size � = 2t is instead

(a)

x

y

δ1

δ2δ3

a1

a2

(b)

kx

ky

b1

b2

Γ K M K′

FIG. 4. (Color online) Panel (a): The honeycomb lattice with
lattice constant a consists of two sublattices A and B and is spanned
by the basis vectors a1 = a/2(

√
3,3), a2 = a/2(

√
3, − 3). Nearest-

neighbor lattice sites are connected by the vectors δ1 = a(0,1), δ2 =
a/2(

√
3, − 1), and δ3 = a/2(−√

3, − 1). Panel (b): The hexagonal
first Brillouin zone contains the two nonequivalent Dirac points
K = (4π/3

√
3a)(1,0) and K′ = −(4π/3

√
3a)(1,0).

found at the M = (2π/3a,0) point. For λSO = 0 the charge
gap is � = 2λ at the Dirac points [31].

The effective Dirac equation for states near the K and
K′ points is obtained from the following small q behav-
ior of g and γ : g(K + q) ≈ (3/2)a(qx + iqy), g(K′ + q) ≈
(3/2)a(−qx + iqy) with a as the lattice spacing, and γ (K +
q) = −γ (K′ + q) ≈ 3

√
3. The Hamiltonian can then be writ-

ten as

H(q) ≡ h(q) · τ = �vF (svτxqx + τyqy)

+ (−λ + ssv3
√

3λSO)τz, (D3)

acting on a two-component wave function with a given spin
that describes states on the A(B) sublattice. In the above
Hamiltonian, the valley index sv = ±1 stands for states at the
K(K′) points, and s = ±1 represents spin direction. �vF =
(3/2)at is the Fermi velocity of the helical Dirac fermions.

In the insulating phase of the KM Hamiltonian in the pres-
ence of an exchange field, only the Berry curvature correction
contributes in the net orbital magnetization. Equation (D3)
describes the low-energy physics of the KM Hamiltonian in
the insulating phase. Having the eigenstates, one can obtain
an approximate analytical expression for the Berry curvature
correction to the orbital magnetization integrand of each band
around a given valley. The Berry curvature for each energy
band is defined as 	n(q) = i∇ × 〈un(q)|∇q|un(q)〉. Using
the eigenstates |u−〉 = [exp(−iφ) sin(θ/2), − cos(θ/2)]T , and
|u+〉 = [exp(−iφ) cos(θ/2), sin(θ/2)]T , it can be shown that
in two dimensions the Berry curvature is given by [19,29]

	z
∓(q) = ±i

sin θ

2

(
∂θ

∂qx

∂φ

∂qy

− ∂θ

∂qy

∂φ

∂qx

)

= ± i

2

h · ∂qx
h × ∂qy

h

|h|3 . (D4)

One verifies from Eq. (D4) that the Berry curvature is
identically zero if hz = 0, i.e., for a centrosymmetric system
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without spin-orbit coupling. For Eq. (D3) with (∂hx/∂qy) =
(∂hy/∂qx) = (∂hz/∂qx(y)) = 0, the above equation reduces to

	z
∓(q) = ±i

hz

2|h|3
∂hx

∂qx

∂hy

∂qy

. (D5)

This in turn gives the orbital magnetization integrand coming
from the Berry curvature contribution as

m
Berry
orb (q) =

(
e

4�

)∑
ssv

[(
�s2

v + �
2v2

F q2)1/2 + μ
]

× sv�s
v�

2v2
F[

�s2
v + �2v2

F q2
]3/2 , (D6)

where �s
v = (−λ + ssv3

√
3λSO) is a valley and spin-

dependent gap.

An external exchange field adds the term −sh1 to the
Hamiltonian Eq. (D3). This perturbation does not change the
Berry curvature as follows clearly from its definition Eq. (D5).
However it linearly changes the energy vertex in the Berry
curvature correction of the orbital magnetization. Thus the net
orbital magnetization as a function of the exchange field is

Morb(h) = h
∑

q

	(q)

= h

(
e

4�

)∑
q

∑
ssv

sv�s
v�

2v2
F[

�s2
v + �2v2

F q2
]3/2 , (D7)

which is independent of the Hamiltonian parameters.
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