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The attractive Hubbard model is investigated in the framework of lattice density-functional theory (LDFT).
The ground-state energy E = T + W is regarded as a functional of the single-particle density matrix γij with
respect to the lattice sites, where T [γ ] represents the kinetic and crystal-field energies and W [γ ] the interaction
energy. Aside from the exactly known functional T [γ ], we propose a simple scaling approximation to W [γ ],
which is based on exact analytic results for the attractive Hubbard dimer and on a scaling hypothesis within
the domain of representability of γ . As applications, we consider one-, two-, and three-dimensional finite and
extended bipartite lattices having homogeneous or alternating onsite energy levels. In addition, the Bethe lattice is
investigated as a function of coordination number. Results are given for the kinetic, Coulomb, and total energies,
as well as for the density distribution γii , nearest-neighbor bond order γij , and pairing energy �Ep , as a function
of the interaction strength |U |/t , onsite potential ε/t , and band filling n = Ne/Na . Remarkable even-odd and
super-even oscillations of �Ep are observed in finite rings as a function of band filling. Comparison with exact
Lanczos diagonalizations and density-matrix renormalization-group calculations shows that LDFT yields a very
good quantitative description of the properties of the model in the complete parameter range, thus providing a
significant improvement over the mean-field approaches. Goals and limitations of the method are discussed.
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I. INTRODUCTION

The study of strong electron-correlation phenomena and
in particular the description of pairing mechanisms leading
to superconductivity remain a major challenge in solid-state
physics. In conventional superconductors, pairing of electrons
is known to be induced at the Fermi energy by an effective
off-diagonal attractive interaction mediated by phonons. The
physics behind this most remarkable many-body effect has
been first explained by the theory of Bardeen, Cooper, and
Schrieffer (BCS) [1]. An alternative approach to study the
consequences of electronic pairing in metals is to consider
the Hubbard model [2] with attractive local interactions [3,4].
The conceptual differences between the paring mechanisms
in the BCS and Hubbard Hamiltonians could hardly be more
profound. The BCS interaction is most clearly understood from
a reciprocal k-space representation. It involves the scattering
of pairs of electrons having nearly the same energy since
the interaction is mediated by phonons, whose frequency
cannot be larger than the Debye frequency ωD . The narrow
momentum dispersion ��k caused by the interactions implies
that the spatial extension �r of the Cooper pairs is quite
large. Actually, �r is of the order of 1/�k = vF /ωD , where
vF = �kF /m∗ refers to the Fermi velocity. In contrast, the
Hubbard interaction is strictly local in real space. It involves
pairs of electrons occupying the same lattice site with opposite
spins. If regarded from a k-space perspective, the Hubbard
interaction is equivalent to assuming that the scattering
amplitude between pairs of electrons is independent of both the
incoming momenta and the momentum transfer. It is therefore
considerably interesting to investigate the attractive Hubbard
model, in order to assess the properties resulting from such
contrasting types of interactions.

Over the past years, several theoretical investigations of the
physics of attractive local interactions have been performed
[3–7]. The first ones have been focused on studying the
phase diagram of the Hubbard model on lattices having
different dimensions, hopping integrals, and band fillings [3].
A variety of complementary theoretical approaches have been
used including weak and strong coupling methods and Monte
Carlo simulations. In particular, the formation and stability
of charge-density waves (CDWs) and superconducting states
induced by local attractive interactions has been quantified [3].
Other works have addressed the accuracy of the mean-field
BCS approximation for the attractive Hubbard model by
comparing it with exact numerical calculation on finite and
extended one- and two-dimensional (1D and 2D) lattices at
different interaction regimes [4–6]. While the BCS approach
has been shown to be an excellent approximation for the
ground-state energy in general, it is less accurate for the energy
gap. These studies have also revealed remarkable even-odd and
super-even oscillations of the pairing energy as a function of
the number of electrons in finite structures [5]. More recently,
it has been shown that in highly disordered InO thin films,
close to the superconductor-insulator transition, the Cooper
pairs are spatially localized [8]. This effect is the result of the
competition between single-particle disorder, which tends to
localize the electronic states, and the formation of the spatially
extended Cooper pairs responsible for the superconducting
state [9]. The interplay between the static CDWs induced
by random single-particle potentials and the dynamic paring
correlations resulting from attractive local interactions is there-
fore of considerable interest [10]. The competition between
single-particle localization and many-body correlations can be
simulated by introducing site-dependent local energy levels in
many-body lattice models.
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MATTHIEU SAUBANÉRE AND G. M. PASTOR PHYSICAL REVIEW B 90, 125128 (2014)

The purpose of this paper is to investigate the inhomoge-
neous attractive Hubbard Hamiltonian in the framework of
lattice density-functional theory (LDFT). This approach to
the quantum many-body problem considers the single-particle
density matrix γij with respect to the lattice sites i and j as the
central variable [11–14]. Based on a Hohenberg-Kohn–type
theorem [15] for general lattice models [16], formal expres-
sions have been obtained for the kinetic-energy functional
T [γ ] and for the interaction-energy functional W [γ ] following
Levy’s constrained-search minimization [17]. In this way,
the ground-state energy is regarded as a functional E[γ ] =
T [γ ] + W [γ ] of the density matrix γ [11]. A variational
scheme allows one to determine the ground state Egs and γgs

from the minimization of E[γ ]. In contrast to the Hohenberg-
Kohn-Sham density-functional theory (DFT) [15,18], which
incorporates the correlation contributions to the kinetic and
Coulomb energies through the so-called exchange and cor-
relation functional EXC[ρ(�r)], LDFT uses a simple exact
expression for the kinetic energy T [γ ] of the electrons in
the lattice. However, as in the continuum, a closed explicit
expression for the Coulomb-energy functional W [γ ] remains
unknown. Approximations to W have been derived for the
repulsive Hubbard model (U > 0) by using exact dimer results
and by taking advantage of the scaling properties of W [γ ]
within its domain of representability [12,14]. This ansatz
has been subsequently extended to systems showing inho-
mogeneous charge distributions [19,20]. Applications of the
method show very encouraging results in a variety of physical
situations including finite and extended repulsive Hubbard
models in one, two, and three dimensions [12], dimerized
chains [13,14], and bipartite lattices with alternating onsite
potentials [20,21].

The existing density-functional approaches to lattice mod-
els may be divided essentially in two groups. The first one
uses the local site occupations ni as basic variables of the
many-body problem. This perspective has been originally
proposed in order to investigate the band-gap problem in
semiconductors [22]. The second group considers both the
diagonal elements γii = ni and the off-diagonal elements
γij of the single-particle density matrix as formulated in
Ref. [23]. These two approaches have been contrasted by
showing that different basic variables and different energy
functionals may be considered depending on the type of
model under study [24]. More recently, following these ideas,
Lima et al. proposed a local approximation in terms of
site occupations ni = γii alone, which is based on exact
Bethe-ansatz results for the one-dimensional (1D) Hubbard
model [25,26]. This approach has been applied to describe
strongly correlated systems far from equilibrium [27], the
transport through an Anderson junction [28,29], and the band
gap of the inhomogeneous Hubbard model [30]. However,
the problem of electron delocalization throughout the lattice
cannot be addressed by using these functionals since the
basic variables are the local site occupations γii alone.
Moreover, it can be shown that these formulations are not
universal in the sense that the corresponding functionals are
not independent of the lattice structure. These restrictions
do not apply to functionals which take into account the
off-diagonal components γij of the density matrix. Among
the latter density-matrix approaches one should mention

the developments of Carlsson and co-workers [31,32]. These
authors proposed a performant exchange-correlation func-
tional for the Hubbard model by interpolating between well-
established limits, as well as an implicit energy functional for
the Anderson model based on a rigorous inequality for the
interaction energy. A further approach to the Anderson model
has been developed in the context of lattice density-functional
theory [16].

In order to apply LDFT to the attractive Hubbard model,
it is necessary to find an explicit approximation to the
interaction-energy functional W [γ ], which correctly describes
the correlations leading to electronic pairing. This is a most
interesting issue from both methodological and practical per-
spectives. On the one side, from the point of view of the many-
body problem, it is important to understand the functional
dependence of W [γ ] for attractive couplings and to compare its
behavior with the far more intensively studied repulsive case.
Coulomb repulsion stabilizes uniform charge distributions and
tends to block local charge fluctuations associated to the
interatomic hoppings, delocalization, and band formation. It
favors the development of local magnetic moments 〈S2

i 〉, which
adopt low-spin antiferromagnetic arrangements or high-spin
ferromagnetic order depending on band filling and interaction
strength [33–37]. In contrast, attractive interactions favor
electronic pairing and vanishing local moments at all lattice
sites. The kinetic energy operator (i.e., electronic hopping)
tends here to break pair formation thereby enhancing 〈S2

i 〉.
For U > 0, small values of the off-diagonal density-matrix
elements γij correspond to small W (i.e., weak charge fluctu-
ations) while for U < 0, small γij correspond to the strongest
pairing and the largest |W |. On the other side, from a physical
perspective, it is challenging to elucidate the properties of
correlated attracting fermions. LDFT provides us with an
alternative viewpoint to this interesting problem. Moreover,
taking into account the very good accuracy of the method in
studies of the repulsive model [12–14,20], it is reasonable to
expect that it should also be effective for U < 0, and that
it should give a new insight into the attractive many-body
problem.

The reminder of the paper is organized as follows. In Sec. II,
the basic background on LDFT is recalled, giving emphasis to
the details concerning the U < 0 case. The properties of the
exact interaction-energy functional W [γ ] are investigated in
Sec. III. First, we analyze exact results for W [γ ], which were
obtained by performing Levy-Lieb’s constrained minimization
numerically on 1D and 2D clusters with periodic boundary
conditions. The scaling properties of W within the domain of
representability of γ are thereby demonstrated. As a result, we
derive a simple explicit approximation to W , which is based
on the exact solution of the two-site problem and a scaling
hypothesis. In Sec. IV, the theory is applied to the attractive
Hubbard model on 1D and 2D bipartite lattices. The ground-
state properties and pairing energies are discussed as a function
of the model parameters. Quantitative comparisons are made
between LDFT and other available methods, such as Lanc-
zos [38], density-matrix renormalization group (DMRG) [39],
and BCS approximation [4,5], in order to assess goals and
limitations of our approach. Finally, Sec. V summarizes our
conclusions.
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II. THEORETICAL METHOD

The general formulation of LDFT is for the most part
independent of the nature of the interactions [11–14,19,20].
However, the properties of the central interaction-energy
functionals are model specific. It is therefore worth to discuss
the method from the perspective of the attractive Hubbard
model. We consider the Hamiltonian [2]

Ĥ =
∑
i,σ

εi n̂iσ +
∑
〈i,j〉σ

tij ĉ
†
iσ ĉjσ + U

∑
i

n̂i↓n̂i↑, (1)

where εi denotes the site-dependent energy levels, tij the
nearest-neighbor (NN) hopping integrals, and U the onsite
interaction. As usual, ĉ

†
iσ (ĉiσ ) stands for the creation (an-

nihilation) operator for an electron with spin σ at site i

(n̂iσ = ĉ
†
iσ ĉiσ ). The hopping elements tij define the structure

and dimensionality of the lattice, as well as the range of
the single-particle hybridizations. The energy levels εi de-
scribe the arrangement of different elements in the lattice or
the effects of external fields. The parameters εi and tij specify
the system under study, and thus play the role of the external
potential vext(�r) in conventional DFT. Consequently, the basic
variable in a density-functional theory of lattice models is the
single-particle density matrix γij with respect to the sites i

and j . Notice that this involves not only the diagonal elements
γii , which describe merely the charge distribution, but also the
off-diagonal elements or bond orders γij , which give a measure
of the degree of electron delocalization.

The ground-state energy Egs and density matrix γ
gs
ij are

determined by minimizing the energy functional

E[γ ] = T [γ ] + W [γ ] (2)

with respect to γij . E[γ ] is defined for all density matrices that
derive from a physical state, i.e., that are given by

γij =
∑

σ

γijσ =
∑

σ

〈�|ĉ†iσ ĉjσ |�〉, (3)

where |�〉 is an N -fermion state. Density matrices satisfying
the previous equation are said to be pure-state N -representable
since they derive from well-defined N -electron states [40].
In this context it is useful to distinguish the more restrictive
set of pure-state interacting v-representable γij , sometimes
simply denoted as v-representable γij . This is given by the
density matrices that derive from a ground state of Eq. (1).
In other words, a v-representable γij is equal to γ

gs
ij for some

values of the model parameters εi , tij , and U . Obviously, all
v-representable γ are N -representable. However, the converse
is not always true [11].

The single-particle contributions to the energy are given by

T [γ ] =
∑

i

εiγii +
∑
i �=j

tij γij . (4)

The first term in Eq. (4) is the charge-distribution (CD) energy
ECD[γii], which depends only on the diagonal elements of γ .
The second one is the kinetic energy EK[γij ] associated with
the delocalization of the electrons in the lattice, which depends
on the off-diagonal elements of γ for which tij �= 0, typically
the NN ij . Notice that no approximation is involved in the
functional dependencies of ECD and EK. Thus, the effects of

correlations on the single-particle energy T [γ ] are taken into
account exactly.

The interaction-energy functional can be written as

W [γ ] = min
�→γ

[
U

∑
i

〈�[γ ]|n̂i↑n̂i↓|�[γ ]〉
]

, (5)

where the minimization runs over all N -particle states |�〉
yielding the given γ [11]. The N -representability condition (3)
ensures that the minimization domain is not empty. This
approach, known as constrained-search minimization, was first
proposed for the continuum [17]. The condition that |�〉 yields
γ (i.e., 〈�|ĉ†iσ ĉjσ |�〉 = γijσ ) separates the ensemble of all
physical states in disjoint equivalence classes or representing
sets, one for each γ . It is important to observe that the internal
structure and composition of these classes, although crucial for
the functional dependence of W [γ ], is completely independent
of the nature of the many-body interactions. As the Hilbert
space containing all |�〉, the representing sets depend only
on the number of electrons Ne and the number of atoms or
sites Na . A universal relation between γ and the states that
represent it also holds between ensemble-representable γ and
mixed states. It is of course the minimum value attained by the
interaction energy within each representing set what depends
on the type of coupling. The notion of v-representability is,
however, model and even system dependent.

For attractive interactions (U < 0), the functional W [γ ]
represents the maximum value of the average number of double
occupations that is compatible with a given density matrix
γ , the latter fixing the charge distribution and the degree of
electron delocalization. W is universal in the sense that it is
independent of the system under study, which is defined by
the external parameters εi and tij . However, W depends on the
internal structure of the many-body Hilbert space, as defined
by the number of electrons Ne = ∑

i γii and the number of
atoms or sites Na . It is also depends, of course, on the operator
describing the interactions, in the present case the attractive
onsite model.

In this context, it is interesting to analyze the dependence
of W [γ ] on the interaction parameter U since this reveals rig-
orous constraints to be satisfied by any explicit approximation.
Once the sign of U is defined, it is clear that the minimization
in Eq. (5) is independent of |U | since the representability
constraints are independent of U . Therefore, we may write

W [γ ] = −|U | max
�→γ

[∑
i

〈�[γ ]|n̂i↑n̂i↓|�[γ ]〉
]

(6)

for all U < 0. A strict linearity of W [γ ] as a function of U

follows. This important property is a consequence of the fact
that the density matrix γ univocally defines all single-particle
contributions. The situation is different in the DFT of the
continuum since the electronic density n(�r) is not enough
to define the kinetic energy unambiguously. In this case,
the Hohenberg-Kohn or Levy-Lieb functionals reflect the
compromise of minimizing the sum T + W of the kinetic and
interaction energies for a given n(�r).

Finally, the variational principle for the ground-state density
matrix γ

gs
ij follows from the relations [17]

Egs � E[γ ] = T [γ ] + W [γ ] (7)
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for all pure-state N -representable γ and

Egs = T [γ gs] + W [γ gs], (8)

where Egs = 〈�gs|Ĥ |�gs〉 is the ground-state energy. The
present formulation of LDFT can be generalized to arbitrary
forms of the two-body interaction Vijkl ĉ

†
i,σ ĉ

†
j,σ ′ ĉk,σ ′ ĉl,σ , for

example, to site-dependent Hubbard-type interactions or An-
derson impurity models [13,16].

III. INTERACTION-ENERGY FUNCTIONAL FOR
ATTRACTIVE INTERACTIONS

The purpose of this section is to explore the interaction
energy W of the attractive Hubbard model as a function
of the single-particle density matrix γ and to derive an
explicit approximation to W [γ ], which is suitable for general
applications. First, the domain of representability of γ is
analyzed. Second, exact results for W [γ ] are derived by
implementing Levy-Lieb’s constrained search numerically
using the Lanczos method [38]. Finally, the scaling properties
of W are demonstrated, on the basis of which a scaled dimer
approximation is proposed.

A. Representability domain of γ

Before discussing the properties of W for attractive inter-
actions, it is useful to examine the representability domain
of γ . Figure 1 shows the NN bond order γ12 as a function
of the sublattice occupation number γ11, in the ground
state of a 1D Hubbard chain having Na = 14 sites, band
filling n = 1, and alternating energy levels εi = ±ε/2. The
curves are symmetric with respect to the homogeneous case
(γ11 = γ22) since (γ11 + γ22)/2 = n = 1. The results display
the correlation between diagonal and off-diagonal elements

0.0 0.2 0.4 0.6 0.8 1.0
γ11

0.1
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0.6

0.7

0.8

γ 12
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 = 14   N
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8

FIG. 1. (Color online) Correlation between the NN bond order
γ12 and the average sublattice occupation γ11 in the ground state of
a 1D attractive Hubbard chain having alternating energy levels εi =
±ε/2, Na = 14 sites, and half-band filling n = 1. Different values of
the local interaction U < 0 are considered as indicated. The region
enclosed by the upper bound γ 0

12 (red curve, full circles, U = 0) and
the lower bound γ ∞

12 = 0 (open circles, U = −∞) defines the domain
of representability of γ .

of the density matrix, as derived from the ground state of the
model for different values of the energy-level difference ε, NN
hopping t , and interaction strength |U |. These v-representable
γ include all the ground state γ gs, which are in one-to-one
correspondence with a many-body ground state |�gs〉 [16].
Aside from γ gs, it is also important to investigate the properties
of the more general N -representable γ , which constitute the
domain of definition of Levy’s functional W [γ ].

For each γ11, or charge transfer �n = γ22 − γ11, the upper
bound γ 0

12 for the NN γ12 corresponds to the largest possible
value of the kinetic energy. This is achieved by the uncorrelated
ground state for the given �n. In most cases, the underlying
electronic state is a single Slater determinant and therefore
the interaction energy coincides with the Hartree-Fock energy
W 0 = W [γ 0] = UNa(γ 2

11 + γ 2
22)/8. This does not hold in

the presence of degeneracies at the Fermi energy of the
single-particle spectrum, in which case a multideterminant
ground state cannot be avoided even for U → 0 (e.g., for
Na = Ne = 4 and �n = 0). The uncorrelated γ 0

12 is largest for
a homogeneous density distribution (�n = 0) and decreases
monotonically as the charge transfer increases. It vanishes in
the limit where only one sublattice is occupied (see Fig. 1). This
can be understood by recalling that in an uncorrelated state, an
increase of �n corresponds to an increase of the energy-level
difference ε between the sublattices, which reduces the degree
of electron delocalization γ12. In the limit of complete charge
transfer (γ11 → 0), no charge fluctuations are possible at all.

The noninteracting curve in Fig. 1 encloses the v-
representable domain. For γ12 < γ 0

12, and a given �n, there
is a larger flexibility in the states representing γ . Therefore,
the electronic system can reduce the interaction energy W [γ ]
for the given γij by increasing the average number of double
occupations ω = W/UNa , as required by the Levy-Lieb
constrained minimization. Its largest possible value is ω∞ =
W∞/UNa = Ne/2Na for Ne even, and ω∞ = (Ne − 1)/2Na

for Ne odd. The largest and thus optimal value of γ12 yielding
the W = W∞ is denoted by γ ∞

12 . It defines the lower bound
of the v-representable domain of γ12 and corresponds to the
ground state of the model for U → −∞, where W (γ ∞

12 ) =
W∞ (see Fig. 1). For Ne even, all electrons can be paired
and therefore γ ∞

ij = 0. However, for Ne odd, an unpaired
electron remains, which yields a finite γ ∞

12 . This contribution
can be important for calculating properties of finite systems
which involve changes in the number of electrons (e.g., the
pairing energy). As expected, the N -representable domain,
being independent of the type of interaction, is the same as
in the repulsive case. However, the interacting v-representable
domains are different (see also Ref. [19]).

B. Scaling properties of W [γ ]

In Fig. 2(a), exact results for W are shown as a function
of γ12 for representative values of �n = γ22 − γ11. These
were obtained by solving Eq. (6) for a ring having Na =
14 sites and half-band filling n = Ne/Na = 1. The most
interesting correlation-energy functional Ec = W − EHF is
highlighted in Fig. 2(b). Despite the strong dependence of
W on �n, there are several important qualitative features,
which are shared by all the curves: (i) As already discussed,
the domain of N -representability of γ12 is delimited by
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FIG. 2. (Color online) (a) Interaction energy W and (b) correla-
tion energy Ec = W − EHF of the attractive (U < 0) and repulsive
(U > 0) Hubbard model as a function of the NN bond order γ12,
for representative charge transfers �n = γ22 − γ11. Exact results are
given for rings having Na = 14 sites and band filling n = 1. Repulsive
(attractive) interactions correspond to the shaded (nonshaded) area in
(a) and to negative (positive) values of Ec/U in (b). The red dashed
curves indicate the Hartree-Fock energy EHF corresponding to the
largest representable value of γ12 for the given �n. The dotted curves
refer to the strongly correlated repulsive limit, i.e., to the largest
representable γ12 allowing a minimal number of double occupations.

the bond order γ 0
12, which corresponds to an uncorrelated

state. γ 0
12 decreases monotonously as �n increases, vanishing

in the strongly ionic limit �n = 2. These changes in the
representability range of γ12 versus �n = γ11 − γ22 are an
important part of the functional dependence of W . They
reflect the interplay between charge transfer and electron
delocalization in the absence of interactions. (ii) For the
uncorrelated upper bound γ 0

12 of γ12, W coincides with
the Hartree-Fock energy EHF = UNa[1 + (�n/2)2]/4 since
the electronic state yielding the largest γ12 is a Slater
determinant: W [γ 0

12,�n] = W 0 = EHF for all �n. Moreover,
one observes that ∂W/∂γ12 → +∞ for γ12 → γ 0

12. This is
a necessary condition in order that the ground-state density
matrix satisfies γ

gs

12 < γ 0
12 for arbitrary small values of |U | >

0, as expected from perturbation theory. (iii) Starting from γ 0
12,

W decreases with decreasing γ12 reaching its lowest possible
value W∞ in the strongly correlated limit γ12 = γ ∞

12 , where
all available electrons form pairs (Ne even). The decrease
of W with decreasing γ12 means that the energy reduction
Ec = W − EHF associated to correlations is achieved at the
expense of electron delocalization. Notice that the decrease
of W is equivalent to an increase of the average number of
double occupations ω = W/UNa . (iv) The strongly correlated
limit is characterized by W∞ = UNe/2 and γ ∞

12 = 0, for finite
systems with Ne even or in the thermodynamic limit. For Ne

odd, we have W∞ = U (Ne − 1)/2 and a nonvanishing γ ∞
12 ,

which results from the delocalization of an unpaired electron
throughout the empty lattice sites. In this case, γ ∞

12 depends in a
non-trivial way on the lattice structure and on the band filling.
(v) As expected, the correlation energy Ec = W − EHF < 0
increases in absolute value as γ12 decreases [see Fig. 2(b)].
Except for very large �n, the contribution of correlations
to W is as important as the Hartree-Fock energy when γ12

is small. For example, for �n = 0 we have W∞ = 2EHF

and thus |Ec/EHF| = 1 for γ12 = γ ∞
12 . As �n increases, |Ec|

decreases in general since the fermions are more localized
on one sublattice and thus the average number of double
occupations is larger already for U = 0. Notice that Ec and W

are proportional to γ 2
12 for γ 2

12 → 0. It is easy to see that this
implies γgs ∝ t/U for |U |/t → ∞.

A number of fundamental differences and some similarities
between W [γ ] for attractive and repulsive interactions become
apparent from Fig. 2 (see also Fig. 2 of Ref. [19]). The
representability domains and thus γ 0

12 are the same in both
cases. Moreover, the corresponding noncorrelated interaction
energies have the same absolute value for all �n. However, as
γ12 decreases, and particularly in the strongly correlated limits,
the behaviors are quite different. For U < 0, W decreases
monotonously with decreasing γ12, reaching the minimum
value W∞ only for γ12 = 0 (Ne even). This is independent
of band filling n and charge transfer �n [see Fig. 2(a)]. In
contrast, for U > 0 one observes that W decreases faster with
decreasing γ12 reaching in most cases the minimum value
W∞ = 0 already at a finite γ12 (see Fig. 2 of Ref. [19]).
This holds as soon as n �= 1 or �n �= 0. Moreover, while
W∞ depends on �n if U > 0, we have the same W∞ for
all charge transfers if U < 0: W∞ = Ne/2 for Ne even and
W∞ = (Ne − 1)/2 for Ne odd. This is of course a conse-
quence of the different types of correlations. Strong attractive
interactions imply that all the electrons are localized in pairs
(maximal double occupations). Once formed, these pairs can
be distributed at will among the sublattices, according to the
actual value of �n. In the repulsive case, strong correlations
impose minimal average number of double occupations, which
depends on γii for γii > 1, and thus on �n (W∞ = 1 − �n/2).
In addition, for n �= 1 or �n �= 0, a significant degree of
electron delocalization (not simply proportional to 1/Na) is
still possible, even under the constraint of minimal double
occupations. Consequently, the minimal W∞ can be reached
at a nonvanishing γ12 if the interactions are repulsive [19].

In order to compare the functional dependence of W for
different Na and �n it is useful to scale the different domains
of representability γ ∞

12 � γ12 � γ 0
12 to a common range, and

to scale W with respect to its Hartree-Fock and strongly
correlated bounds EHF = W 0 and W∞. In Figs. 3 and 4, we
therefore show w = (W − W∞)/(W 0 − W∞) as a function
of g12 = (γ12 − γ ∞

12 )/(γ 0
12 − γ ∞

12 ) for a number of 1D rings
having different sizes and charge transfers. Once appropriately
scaled, the striking similarity of all the results is revealed (see
Figs. 3 and 4). One concludes that the largest part of the
dependence of W on γ12 and �n can be ascribed to the domain
of representability of γij , as defined by its limiting values for
weak and strong correlations. Hence, the relative change in
the interaction energy w associated with a given change in the
degree of delocalization g12 can be regarded as approximately
independent of the system under study. A similar behavior has
already been observed for repulsive interactions [11,19].

In Fig. 4, results for different �n are compared by taking
rings with Na = 14 sites as representative examples. Again,
the dependence of the scaled w on g12 are quantitatively
very similar for all �n. Notice in particular the results for
weak and strong correlations and the overall shape in the
crossover region. This is quite remarkable since the nature of
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FIG. 3. (Color online) Scaled interaction energy w = (W −
W∞)/(W 0 − W∞) of the attractive Hubbard model as a function of
the degree of electron delocalization g12 = (γ12 − γ ∞

12 )/(γ 0
12 − γ ∞

12 ).
W 0 = EHF and γ 0

12 refer to the uncorrelated limit, while W∞

and γ ∞
12 to the strongly correlated limit. The symbols correspond

to exact numerical results Wex for rings having an even number
of sites Na = 4–14, half-band filling n = 1, and different charge
transfers �n = γ11 − γ22. The curves are obtained using the dimer
approximation Wsc [see Eq. (11)]. The inset figures highlight the
relative errors �W = (Wsc − Wex)/(W 0 − W∞).

the electronic correlations changes significantly, from metallic
to strongly ionic, as �n is varied. A scaling hypothesis can
be therefore applied to the interaction energy of the attractive
Hubbard model, with good prospects of accuracy. In this way, it
should be possible to transfer the functional dependence of W

from simple to complex many-body problems, a strategy which
has been most successful in DFT in the continuum [18,41].
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g

12

0.2

0.4

0.6

0.8

1.0

w

Δn = 0.0
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N
a
 = 14   N

e
 = 14   U < 0

FIG. 4. (Color online) Charge-transfer dependence of the scaled
interaction energy w = (W − W∞)/(W 0 − W∞) of the attractive
Hubbard model as a function of g12 = (γ12 − γ ∞

12 )/(γ 0
12 − γ ∞

12 ). Exact
results are given for rings having Na = 14 sites, band filling n = 1,
and representative charge transfers �n = γ11 − γ22.

C. Dimer approximation to W [γ ]

The numerical results of the previous subsection show that
the interaction energy W of the attractive Hubbard model has
very interesting scaling properties, as already observed in the
repulsive model [11,12,19,20]. It is therefore useful to regard

w = W − W∞

W 0 − W∞ (9)

as a function of the degree of electron delocalization

g12 = γ12 − γ ∞
12

γ 0
12 − γ ∞

12

. (10)

Notice that the relation between w and g12 depends on γii , and
in particular on the charge transfer �n = γ22 − γ11 between
sites. However, as shown in Fig. 4, this dependence is not
very strong. A sound general approximation to W can then
be obtained by scaling the known functional dependence of
W corresponding to some model system. In order that the
approach is practicable, the reference system must be simple
enough to allow an analytic or numerically accurate calculation
of W [γ ]. In addition, it should be able to describe the fun-
damental physical interplay between electron delocalization,
charge redistributions, and local interactions.

The Hubbard dimer is probably the simplest model that
fulfills these conditions, as already demonstrated for the
repulsive case [12,20]. We therefore propose the scaled dimer
approximation

Wsc = W∞ + (W 0 − W∞)
W2 − W∞

2

W 0
2 − W∞

2

, (11)

where

W2 = UNa

2

⎛
⎝1 − 1

2

g2
12[1 − (�n/2)2]

{
1 −

√
[1 − (�n/2)2]

(
1 − g2

12

)}
(�n/2)2 + g2

12[1 − (�n/2)2]

⎞
⎠ (12)
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stands for the exact interaction-energy functional of the
attractive Hubbard dimer (U < 0) with Ne = 2 electrons. In
this case, γ 0

12 =
√

1 − (�n/2)2 and γ ∞
12 = 0. It is easy to verify

that Eqs. (11) and (12) reproduce the above-mentioned exact
properties of W [γ ], which are common to all systems.

In order to quantify the validity of this approximation,
we show in Fig. 3 results for Wsc as a function of g12 for
various representative values of �n and compare them with the
corresponding exact calculations for rings having Na = 4–10
(n = 1). One observes that Wsc follows quite closely the exact
functional Wex all along the crossover from weak to strong
correlations for all charge transfers. This is quite remarkable
taking into account the nontrivial dependence of the boundary
values W 0, W∞, γ 0

12, and γ ∞
12 on �n and Na . The quantitative

discrepancies are in general small, as highlighted in the insets:
|Wsc − Wex|/(W 0 − W∞) < 0.06. They occur for relatively
large values of γ12, not very far from the weakly correlated
regime, where the kinetic energy dominates. Consequently, a
good performance of the dimer functional can be expected in
the applications.

IV. RESULTS AND DISCUSSION

In this section, we apply the scaled dimer approximation
to W in order to investigate the ground-state properties of
the attractive Hubbard model in the framework of LDFT.
We consider the Hamiltonian (1) with U < 0 on bipartite
lattices having εi = ε/2 for sites i on sublattice S1 and
εi = −ε/2 on sublattice S2. Finite rings having Na � 14 sites
are investigated together with the periodic 1D chain and 2D
square lattice.

A. Ground-state properties

In Figs. 5–7, results are given for the ground-state prop-
erties of finite 1D rings, the 1D infinite chain, and the
2D square lattice as a function of the interaction strength
|U |/t . Different values of the energy-level difference ε/t

between the sublattices are considered at half-band filling.
A number of general trends common to all these systems
should be pointed out. The ground-state energy decreases with
increasing |U |/t , approaching the limit Egs/Na = (U − ε)n/2
for |U |/t → ∞ and Ne even. This corresponds to Ne/2
pairs of electrons occupying the most stable sublattice. In
this case, all off-diagonal γij vanish since the electrons are
localized, and the average number of double occupations per
site is maximal (ω = ω∞ = n/2). The NN bond order γ12

and the associated kinetic energy decrease monotonously with
increasing |U |/t . This contrasts with the behavior observed
for repulsive interactions. In this case, γ12 shows a maximum
as a function of U/t , when the value of U matches the
difference between the sublattice levels (i.e., U 
 ε) [20].
The charge transfer �n and the average double occupations
ω = W/UNa increase with |U |/t . Notice, however, that there
is no symmetry breaking in the homogeneous case (ε = 0) so
that �n = 0 for all U . Since this holds for both LDFT and exact
results, the results for ε = 0 are omitted in part (b) of Figs. 5–7.
For not too small ε, the system undergoes a qualitative change
from a CDW (�n 
 0.9–1.6 and γ12 
 0.3–0.6) to a fully
localized CDW (�n = 2 and γ12 = 0) along the crossover
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W
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(b)
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FIG. 5. (Color online) Ground-state properties of bipartite Hub-
bard rings having U < 0, Na = 14, sites and half-band filling
n = 1, as a function of the attractive interaction strength |U |/t .
Different values of the energy-level shift ε between the sublattices are
considered as indicated in (c). Results are given for (a) ground-state
energy Egs, (b) charge transfer �n = γ22 − γ11, (c) NN bond order
γ12, and (d) average number of double occupations per site W/UNa .
The symbols correspond to exact Lanczos diagonalizations and
the solid curves to LDFT using the dimer approximation Wsc [see
Eq. (11)].

from weak to strong correlations. One observes that �n grows
with increasing |U |/t as the fermion pairs accommodate to the
sublattice having the lowest single-particle energy [see parts
(c) and (d) of Figs. 5–7].

The comparison between LDFT and exact numerical results
obtained with the Lanczos and DMRG methods is most
satisfactory (see Figs. 5 and 6). The considered ground-state
properties are very well reproduced by the scaled dimer
ansatz for all values of ε/t , not only close to the weakly and
strongly correlated limits but also for intermediate interaction
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FIG. 6. (Color online) Ground-state properties of the one-
dimensional attractive Hubbard model at half-band filling as a
function of the interaction strength |U |/t . Different values of the
alternating energy-level shift ε between the sublattices are considered
as indicated in (c). Results are given for (a) ground-state energy
Egs, (b) charge transfer �n = γ22 − γ11, (c) NN bond order γ12, and
(d) average number of double occupations per site W/UNa . The solid
curves correspond to LDFT using the scaling approximation Wsc [see
Eq. (11)], the symbols to accurate numerical results obtained using
the density-matrix renormalization-group method, and the red dashed
curves with asterisks to the BCS approximation for ε/t = 0.

strength. Moreover, the fact that γ12, �n, and W are all
obtained with high precision shows that the LDFT results
for Egs are not the consequence of a strong compensation
of errors. It is also interesting to note that the accuracy of
the dimer ansatz actually improves as the charge distribution
becomes more inhomogeneous, i.e., as ε/t and the CDW
are stronger. This seems reasonable since larger values of ε

enhance the importance of single-particle contributions to the
energy, whose functional dependence is exactly known, and
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FIG. 7. (Color online) Ground-state properties of the two-
dimensional attractive Hubbard model at half-band filling (square
lattice) as a function of the interaction strength |U |/t . Results are
given for (a) ground-state energy Egs, (b) charge transfer �n =
γ22 − γ11, (c) NN bond order γ12, and (d) average number of double
occupations per site W/UNa , as obtained by using LDFT and
the scaling approximation Wsc [see Eq. (11)]. Different values of
the energy-level shift ε between the sublattices are considered as
indicated in (c).

since large ε somehow tends to decouple the 1D chain in
dimers, a limit for which correlations are taken into account
exactly.

In Fig. 6, results are also given for the BCS approxima-
tion [4,5]. These were obtained for ε/t = 0 by solving the
self-consistent equations in large finite rings and extrapolating
to the infinite-chain limit. As shown in Fig. 6(a), the BCS
approximation gives very accurate ground-state energies.
Except for very minor overestimations for intermediate |U |/t ,
the BCS and exact results for Egs are very difficult to tell apart.
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FIG. 8. (Color online) Ground-state energy of attractive Hubbard
rings having Na = 14 sites as a function of the number of electrons
Ne. Different bipartite potentials ε and interaction strengths |U | are
considered. The symbols correspond to exact diagonalizations, while
the solid lines connecting discrete points refer to LDFT with the
scaled dimer functional Wsc.

However, looking in more detail into the kinetic and interaction
contributions, one finds that this good performance is the result
of a significant compensation of errors [see Figs. 6(c) and 6(d)].
The average number of fermion pairs ω = W/UNa is strongly
underestimated for small |U |/t and slightly overestimated for
strong correlations. The bond order γ12 is correctly reproduced
for small |U |/t but it turns out to be too small for intermediate
and strong coupling. The resulting underestimation of EK

for large |U |/t is probably a consequence of the symmetry
breaking involved in the mean-field BCS approach. Notice
that the symmetry between the sublattices is not artificially
broken in LDFT (ε = 0) and that the inaccuracies in EK and
W are much smaller than in the BCS approximation. As we
shall see, this is important for the band-filling dependence of
Egs and for predicting the charge gap or pairing energy.

In Fig. 8, the band-filling dependence of the ground-state
energy Egs of rings having Na = 14 sites and two different
bipartite potentials ε/t is shown. For small |U |/t , one
observes that Egs decreases approximately linearly with Ne

as the band is filled up (n � 1). The attractive interaction
stabilizes the system through pair correlations. The same holds
for the alternating potential ±ε/2 since the pairs tend to occupy
the lowest-energy sublattice. Moreover, the interaction leads to
even-odd–like oscillations of Egs, whose amplitude increases
with |U |/t . This is a finite-size effect reflecting the changes in
the number of fermion pairs as a function of Ne.

In Fig. 9, the binding energy per site EB/Na = (U −
ε/2)n − Egs/Na of the 1D chain and of the 2D square
lattice are shown as a function of band filling n. The results
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FIG. 9. (Color online) Binding energy per atom EB/Na of the
(a) one-dimensional and (b) two-dimensional attractive Hubbard
model as a function of band filling n. The curves are obtained by
using LDFT with the scaled dimer functional Wsc for representative
values of the interaction strength |U |/t . The symbols in (a) are the
corresponding exact Bethe-ansatz results.

were obtained by using LDFT for representative values of
|U |/t . In the 1D case, the exact Bethe-ansatz results are
also given for the sake of comparison [33,34]. Notice that
electron-hole symmetry implies EB(n) = EB(2 − n), from
which the results for n > 1 can be inferred. One observes
that EB increases monotonously with the number of carriers
reaching its maximum at n = 1 for all |U |/t . Notice that
∂EB/∂n is thus continuous for all n. The larger the attractive
interaction is, the stronger is the localization of the fermions
in pairs. Therefore, the binding decreases monotonously as
|U |/t increases, vanishing for all n in the strongly correlated
limit. This behavior is qualitatively very different from what
is observed in the repulsive model [34]. In this case, EB

shows a nonmonotonous band-filling dependence reaching its
maximum at an intermediate n (0 < n < 1). Moreover, EB

remains finite even in the strongly correlated limit. Only for
n = 1 and U → +∞ one finds EB = 0.

A number of qualitative differences between attractive and
repulsive interactions deserve to be discussed. In the repulsive
case, one finds that EB is essentially independent of U/t for
small band fillings (n � 0.2) [34]. This implies that electron
correlations can reduce most effectively the number of double
occupation and the effects of the repulsive interactions if the
carrier density is low. In contrast, in the attractive case ∂EB/∂n
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depends significantly on |U |/t for small n since pairs are
formed even for very small n. In order that the binding can
be effective, the electrons need to delocalize and pairs need to
be broken. Therefore, EB decreases strongly with increasing
|U |/t , even at very low carrier densities. A further important
difference is the nonmonotonous band-filling dependence of
EB for U > 0, which shows a maximum at an intermediate n

(0 < n < 1) and a discontinuous ∂EB/∂n for n = 1 [34]. In
addition, we know that EB remains finite in the limit of U/t →
+∞, except if n = 1, while EB = 0 for all n when U/t →
−∞. This implies that some degree of electron delocalization
can always be achieved, even under the constraint of vanishing
number of double occupations (n �= 1). In contrast, for U < 0
binding implies breaking pairs and overcoming an energy gap
of the order of |U |, which becomes impossible in the strongly
correlated limit.

The results obtained for 1D and 2D lattices are qualitatively
similar. The comparison between LDFT and the exact solution
of the 1D model is quite satisfactory in all regimes. The scaled
dimer approximation is extremely good for weak and strong
correlations for all n. In the crossover region, the results are
also quite accurate, except for the largest carrier densities (see
Fig. 9). The deviations found mainly at half-band filling for
intermediate |U |/t are relatively small. We therefore expect
that the results obtained for the 2D square lattice are reliable.

B. Pairing energy

In order to quantify the stability of electron pair formation
as a function of the model parameters, we consider the pairing
energy

�Ep(Ne) = E(Ne + 2) + E(Ne) − 2E(Ne + 1) , (13)

which measures the energy change involved in transferring an
electron from a (Ne + 1)-fermion system to another (Ne + 1)
system on Na sites. Negative (positive) values of �Ep indicate
that the (Ne + 1) system is unstable (stable) with respect
to such a fermion transfer. The charge gap �Ec(Ne) =
E(Ne + 1) + E(Ne − 1) − 2E(Ne), usually considered in the
context of repulsive interactions, and �Ep are simply related
by �Ec(Ne) = �Ep(Ne − 1).

In Fig. 10, the pairing energy in a 1D Hubbard ring
having Na = 14 sites is given as a function of the number
of electrons Ne, for representative values of |U |/t and ε/t .
One observes important even-odd oscillations of �Ep as a
function of Ne, which amplitude increases with increasing
interaction strength. These systems are stable for Ne even
(�Ep < 0) whereas they are unstable, roughly by about the
same absolute energy difference if |U |/t is not too small,
for Ne odd. The even-odd oscillations can be qualitatively
explained by counting the total number of fermion pairs. For
Ne even, the number of pairs that can be formed with Ne + 2
and Ne fermions is one more than twice the number of pairs
in a (Ne + 1) system. The former is Ne + 1 and the latter is
Ne. The value of �Ep < 0 gives a measure of the energy
gained in the formation of this extra pair, which justifies
denoting �Ep as pairing energy. In contrast, for Ne odd,
one actually breaks a pair by transferring a fermion from one
Ne + 1 system to the other. Ne + 1 (Ne) pairs can be formed
before (after) transferring the fermion. Therefore, the changes
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FIG. 10. (Color online) Pairing energy �Ep as a function of the
number of electrons Ne in 1D attractive Hubbard rings having Na =
14 sites. The symbols refer to exact Lanczos diagonalizations and
the solid lines connecting small dots to LDFT with the scaled dimer
functional. Representative values of the interaction strength |U | and
bipartite potential ε are considered.

of sign of �Ep do not correspond to any fundamental change
in physical behavior but rather confirm the stability of pair
formation for all band fillings, as one certainly expects at least
in the limit of large ring sizes. It is thus more appropriate
to regard −�Ep as the energy change associated to forming
an extra pair for Ne odd. Notice that |�Ep| is systematically
smaller than |U |, the limit of |�Ep| for t = 0. This difference
measures the contribution of the kinetic energy to the pairing
energy, which always tends to destabilize pair formation.
Adding an alternating single-particle potential, for example
ε/t = 4, enhances the value of |�Ep| and the amplitude of
the even-odd oscillations since it singles out a more stable
sublattice where the pairs are preferentially formed [compare
Figs. 10(a) and 10(b)].

As already observed in Ref. [5], more subtle, so-called
super-odd effects are found when |U |/t is small. For example,
for |U |/t = 1, one observes that �Ep is much larger at Ne = 5
and Ne = 9 than at the other odd numbers of electrons (see
Fig. 10). This behavior, which is also present in the repulsive
case [20], disappears for |U |/t > 4. It is a consequence of the
specific single-particle spectrum of the rings [5]. Increasing
ε/t tends to reduce the super-odd effects without suppressing
them completely.

LDFT with the dimer ansatz for W reproduces very
accurately the above-described behavior in good quantitative
agreement with the exact results. The largest discrepancies
are found for Ne = 4m + 1 with m integer and |U |/t � 4,
where the LDFT results for �Ep are sometimes about 30%
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FIG. 11. (Color online) Pairing energy �Ep as a function of the interaction strength |U |/t for the attractive Hubbard model on (a) rings
having Na = 14 sites and (b) the 1D chain, 2D square lattice, and 3D simple-cubic lattice. The solid curves correspond to LDFT with the scaled
dimer functional. In (a) the symbols are exact numerical results. In (b) the crosses refer to the exact Bethe-ansatz solution and the open circles
to the BCS approximation (1D). In the insets, small values of |U |/t are highlighted.

too large. One also observes that LDFT tends to overestimate
the super-odd effect for large |U |/t . As in the case of the
ground-state properties, the accuracy of the dimer ansatz
improves with increasing bipartite potential ε.

In Fig. 11, the pairing energies �Ep of half-filled 1D, 2D,
and 3D lattices are shown as a function of the interaction
strength |U |/t . The LDFT calculations are compared with ex-
act numerical results for finite rings (Lanczos diagonalization
for Na = 14) and with the Bethe-ansatz solution and the BCS
approximation of the homogeneous 1D chain. One observes
that LDFT reproduces qualitatively very well the increase
of �Ep as a function of |U |/t , as well as the value in the
uncorrelated limit. In the presence of a finite bipartite potential
(e.g., ε/t = 4), the results are remarkably accurate for all U/t .
Nevertheless, LDFT overestimates �Ep systematically for ho-
mogeneous lattices (i.e., ε/t = 0). In particular, for the weakly
correlated limit the predicted |U |/t dependence is qualitatively
different from the exact behavior. In the 1D chain, we obtain
�ELDFT

p ∝ (U/t)2 for |U |/t � 1, while the Bethe-ansatz so-
lution yields �EBA

p = (4/π )
√|U |t exp(2πt/U ) [4,34]. This

is most probably a consequence of the local character of
the dimer ansatz, which does take into account long-range
correlation effects. These contributions, which are expected to
be important for weak interactions, are best described from a k-
space perspective. Indeed, the mean-field BCS approximation
yields [4] �EBCS

p = 8t exp(2πt/U ), and is therefore much
more accurate than LDFT for small |U |/t [see the inset of
Fig. 11(b)]. However, as |U |/t increases, the formation of
strongly correlated local pairs dominates. The BCS approach
fails and the scaled dimer approximation becomes remarkably
accurate [see Fig. 11(b) for |U |/t � 2]. The limitations of
the BCS approach can be traced back to the already observed
inaccuracies in the BCS kinetic and correlation energies (see
Fig. 5).

The comparison between LDFT and exact results for the 1D
chain allows us to estimate the reliability of our predictions
on �Ep for the 2D square lattice and the 3D simple cubic
lattice, which are shown in Fig. 11(b). One observes that in
2D and 3D the pairing energy increases monotonously with

|U |/t in a qualitatively similar way as in the 1D case. For
small |U |/t , we find �Ep ∝ (U/t)2. This is most probably
an overestimation since the dimer ansatz is known to have
difficulties in describing long-range correlations in the weakly
correlated limit. However, for strong interactions (large |U |/t),
a high accuracy can be expected, at least as good as in 1D.

In order to investigate the role of the dimensionality of the
lattice on the pairing energy, we determine �Ep on the Bethe
lattice as a function of the coordination number z. In Fig. 12,
the LDFT results obtained using the scaled dimer ansatz are
shown for band filling n = 1 and representative values of
|U |/t . One observes that �Ep decreases with increasing z

as the bandwidth W = 4t
√

z − 1 increases. In fact, if one
would scale the NN hopping integral t keeping W constant,
the calculated �Ep would be nearly independent of z in the
scaled dimer approximation since the parameters defining the
interaction-energy functional would not be affected by changes

FIG. 12. (Color online) Pairing energy �Ep of the half-filled
attractive Hubbard model on a Bethe lattice as a function of 1/(z − 1),
where z is the local coordination number (see inset).

125128-11
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in z. Concerning the dependence on |U |/t , we find a monotonic
increase of �Ep with increasing interaction strength, which
is very similar to the one observed in 1D, 2D, and 3D lattices
(see also Fig. 11).

V. CONCLUSION

The attractive Hubbard model has been investigated in the
framework of lattice density-functional theory by using the
single-particle density matrix γ as the basic variable of the
many-body problem. Once the transferability and scalability of
the interaction-energy functional W [γ ] have been appraised,
a simple approximation to W has been proposed, which is
based on exact analytical solution of the attractive Hubbard
dimer. In this way, a unified description of the interplay
between electronic correlations, delocalization, and charge
redistributions has been achieved, which covers the complete
model-parameter range from weak to strong coupling and for
all band fillings. Several important ground-state properties of
the attractive Hubbard model on finite and infinite 1D, 2D, and
3D lattices have been determined by using this approximation.
The limit of infinite dimensions has also been explored in the
framework of the Bethe lattice. This includes the ground-state
kinetic, Coulomb, and total energies, density distribution,
nearest-neighbor bond orders, as well as the energy involved in
pair formation. Comparisons with available exact results show
that the present density-matrix functional approach yields
in general a good qualitative and quantitative description of
strongly correlated locally attracting fermions. Nevertheless,
some quantitative limitations have been observed concerning
the pairing energy �Ep in the limit of weak correlations. In
this case, the present theory fails to reproduce the observed
exponential dependence of �Ep on t/U and is outperformed
by the mean-field BCS approximation. It has been argued
that this is a consequence of the approximation to W [γ ]
which, being based on a two-site problem, fails to incorporate
long-range (small-k) correlation effects. All the same, it
is important to observe that the dimer functional always
remains qualitatively correct. In particular, it yields very

accurate results for intermediate and large interaction strengths
(|U |/t � 2) regimes where mean-field breaks down.

This study extends the domain of applicability of LDFT to
attractive local interactions. An alternative perspective to the
interesting physics of attracting fermions has been provided,
which demonstrates once again the power of the concepts
of density-functional theory as a general approach to the
quantum many-body problem. Strong local interactions cannot
be accurately described by simple mean-field approaches. Still,
the proposed approximation appears to be quite successful in
this challenging regime. This has been achieved by taking
advantage of the universality of the exact W [γ ], as stated by
the formulations of Hohenberg-Kohn or Levy-Lieb [15–17].
In this way, it is possible to incorporate valuable information
on the physics of attractive interactions into the crucial energy
functionals, particularly concerning the limits of weak and
strong correlations and the functional dependence derived
from simpler reference systems.

As in the original DFT of the inhomogeneous electron gas,
the universality and flexibility of LDFT should be exploited to
derive other approximations to the elusive interaction-energy
functional. The limitations found in this work concerning the
pairing energy indicate that a much better job could be done in
the weakly correlated limit. This is likely to require a change of
perspective, from the present local approach (so appealing in
view of strong correlations and applications to low-symmetry
systems) to a reciprocal space approach. Another route to
further developments would be to incorporate information on
the functional dependence of W for γ close to γ 0, which can
be derived by using perturbation theory or by considering other
reference systems.
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[12] R. López-Sandoval and G. M. Pastor, Phys. Rev. B 66, 155118
(2002).
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