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Critical excitation-rate enhancement of a dipolar scatterer close to a plasmonic nanosphere
and importance of multipolar self-coupling
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We develop an electrodynamic model based on dyadic Green’s functions for analyzing the near-field
interactions between a dipolar scatterer (DS) and a plasmonic nanosphere (PN) under external excitation,
accounting for multipolar contributions in the evaluation of the scattered fields. In particular, we include all
the radiative and nonradiative field interactions between the DS and the PN, particularly the physical mechanism
of DS’s self-coupling through the PN, which is either neglected or approximated in previous work. Our objective
is to show under which conditions self-coupling is important for strong excitation-rate enhancement of the DS
and provide a description of the system’s properties. We analytically investigate the conditions under which the
excitation rate of a DS, such as an organic dye or a quantum dot, is enhanced when located in close proximity
to a PN. We show the existence of critical conditions in terms of polarizabilities and distances that lead to large
enhancement based on self-coupling and how to predict it.
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I. INTRODUCTION

Nanoscatterers such as molecular dyes and quantum dots
(QDs) have recently been of great interest in view of their
ample range of applicability, including spectroscopy, imaging,
single-molecule resolution, quantum cryptography, metrology,
and solar cells [1–4]. Such nanoscatterers are, in general,
well described by dipolar-like scattering processes at optical
frequencies. Accordingly, using a single-dipole approximation
(SDA) [5,6], the induced electric dipole moment of such
(molecular dye or QD) scatterers is given by p = αDS · Eloc,
where Eloc is the local electric field at the dipole scatterer (DS)
location, and αDS is its electric polarizability tensor. From
this description one may infer that the strength of the dipolar
response ultimately depends on both the electric polarizability
αDS and the strength of the local electric field Eloc acting on
the DS. Since these DSs generally have a small polarizability
associated with their small size, one needs to largely increase
the local electric field, Eloc, in order to induce significant dipole
moment strength.

One way to greatly increase the local electric field involves
the use of plasmonic nanospheres (PNs) close to their reso-
nance frequency (whose value is dictated by shape, material,
and size). Systems comprising PNs and DSs have been under
fervent studies in recent years. Beside the advantage in terms of
field-enhancement applications, PNs-DSs combinations have
been suggested also for loss compensation in metamaterials
[7–11], because losses would otherwise hinder several of the
promising features of metamaterials, such as subwavelength
resolution and cloaking. This fact puts in evidence the
importance of studying the interaction between DSs and
PNs. Many articles have been devoted to the investiga-
tion of radiative and nonradiative decay rates and to the
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emission enhancement of molecules beside metallic nanopar-
ticles numerically, theoretically, or experimentally [12–21].
Also, studies have reported on the near-field effect of
molecules on metallic structures [22–24].

These contributions notwithstanding, we believe that cur-
rently there is a need to better understand the near-field
interactions between a DS and a PN to compute the DS’s
excitation rate, introduced in the next section. From a physical
point of view, the coupling between DS and PN through the
scattering process introduces a feedback loop (consisting of
the back-and-forth scattering between DS and PN) that can
build up a strong field at the DS location under proper or
critical conditions, as we will call them in later sections. This
feedback mechanism, which we refer to as the self-coupling
of the DS, is summarized as follows: the DS scatters waves
toward the PN that are rescattered by the PN local plasmon,
building up even a stronger field at the DS location as a result of
constructive superposition. In classical terms, the intensity of
the electric field increases in this scenario. Critical conditions
are defined such that this feedback mechanism is strong enough
to lead to strong local fields at the DS location. In the feedback
mechanism, the DS polarizability plays a key role together with
the distance between DS and PN. That is why we introduce
the concepts of critical distance and critical polarizability. We
rely on an analytical method based on Green’s functions (GFs)
to perform an accurate analysis of this setup. In particular, we
account for the multipolar effects in the GF representing the
scattering from the PN for calculating the DS self-coupling.
In other words, the contribution of the DS’s scattering to
its own local field, through the interaction with the PN, is
here represented using GF theory. To the authors’ knowledge,
this has been neglected in most of the previous work dealing
with systems as described in this paper, or accounted for by
using some approximations. For example, in Ref. [17] the
authors investigated Raman scattering of molecules located
very close to a nanosphere, and since the latter is much larger
than a molecule, it was locally approximated as a planar
surface for self-coupling calculations. As we show in this
paper, a more accurate analysis is necessary to observe further
enhancement of the local electric field due to self-coupling
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(which boosts the DS’s excitation rate) that cannot be observed
under the planar approximation mentioned above. In particular,
we show in this paper the existence of critical conditions in
terms of polarizabilities and distances that lead to large DS’s
excitation-rate enhancement, based on self-coupling taking
into account multipolar contributions. It follows that in certain
cases neglecting the self-coupling may lead to inaccurate
results, and thus cannot predict the critical enhancements. We
will also briefly show that Rabi-like splitting [25–29] may
appear close to the critical conditions when looking at the
frequency response of the system.

As a strong motivation and rationale for our analysis,
the development of smaller PNs, the ability to place DSs
at nanometer distances from PNs, and stronger DSs (e.g.,
quantum dots) devised in recent articles [30,31] suggests that
both scattering processes associated to DS and PN will become
comparable, and all the interactions should be included for
accurate estimations.

The structure of the paper is as follows. We introduce
in Sec. II the formalism used for modeling the local-field
enhancement for a system comprising a PN-DS pair under
plane-wave incidence. In Sec. III, we investigate the special
case where the incident electric field is polarized along the
axis on which DS and PN lay. Having introduced the concepts
of critical polarizability and critical distance in Sec. III, in
Sec. IV we then discuss practical DSs (a Rhodamine 6G dye
molecule and a CdSe QD) and observe the effect of self-
coupling on their excitation-rate enhancements, emphasizing
the importance of multipolar contributions in field evaluation.
Finally, in Sec. V we discuss the physical conditions (in terms
of DS polarizability and geometrical parameters) required to
achieve strong critical enhancements through self-coupling.
Final remarks are then provided in Sec. VI.

II. EXCITATION-RATE ENHANCEMENT
AND THEORETICAL MODEL EMPLOYING

DYADIC GREEN’S FUNCTIONS

It is our aim to understand how the self-coupling mechanism
impacts the DS’s excitation rate. The excitation rate γexc of a
DS, like an organic dye or a QD, is proportional to the power
absorbed by the DS itself as γexc ∝ |n̂p · Eloc|2 [1], where the
unit vector n̂p represents the dipolar direction of the DS and
Eloc is the local field acting on it. This formula shows that γexc

is proportional to the intensity of the component of the local
electric field at the DS location aligned with the DS absorption
dipole moment [14,32–34]. Furthermore, the enhancement of
the excitation rate γ n

exc is defined as

γ n
exc = γexc

γ 0
exc

=
∣∣∣∣ n̂p · Eloc(r)

n̂p · Einc(r)

∣∣∣∣
2

, (1)

where γ 0
exc ∝ |n̂p · Einc|2 is the excitation rate of the DS in free

space (i.e., in absence of the PN), when the DS is excited by
the incident field Einc. Therefore, to estimate the enhancement,
γ n

exc, which is the fundamental parameter studied in this paper,
we need to evaluate the local electric field Eloc(r) at the DS
location in presence of the PN.

Consider the setup in Fig. 1, where a DS is located at
position r in proximity of a PN centered at the origin 0 of the

x
y

z

r

pDS
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Einc

2rPN
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FIG. 1. (Color online) An arbitrarily polarized dipolar scatterer
(DS, with the induced dipole moment pDS) beside a plasmonic
nanosphere (PN) under plane wave incidence. Different scattering
mechanisms contributing to the local electric field at the DS location
are illustrated.

chosen reference system. The local field

Eloc(r) = Einc(r) + G0(r,0) · pPN + Gsc(r,r) · pDS (2)

at the DS location is given by three contributions, namely
(i) the incident plane wave Einc(r) acting directly on the DS
(depicted in black in Fig. 1); (ii) the field scattered by the PN
upon plane-wave incidence (depicted in blue in Fig. 1), and
(iii) the scattering of the PN when illuminated by the near field
of the DS, i.e., the self-coupling (depicted in red in Fig. 1).

To evaluate the second contribution in Eq. (2), induced by
the incident plane wave, we model the PN located at the origin
as an electric dipole with dipole moment pPN = αPNEinc(0),
where αPN is the PN dipolar Mie polarizability [5,7]. The PN
scattered field evaluated at the DS location r is calculated
as G0(r,0) · pPN, where G0(r,0) is the free-space dyadic GF
(see the Appendix for more details). The PN dipolar model
is sufficiently accurate as long as the PN is of subwavelength
dimensions, as in our case. The third contribution in Eq. (2)
is due to the self-coupling and is evaluated as Gsc(r,r) · pDS,
where pDS = αDS · Eloc(r) is the DS electric dipole at r and
αDS is the DS polarizability tensor, and Gsc(r,r) is the PN-
scattering dyadic GF [35] (see the Appendix for more details),
used for evaluating the scattered electric field at r produced by a
dipole at the same location. The evaluation of the self-coupling
term demands the evaluation of the scattering GF, Gsc(r,r),
now assuming both source and observation in the very near
zone of the PN, hence it needs to account for several multipolar
terms. These multipolar terms are responsible for radiative
and nonradiative (i.e., evanescent) coupling to the DS. In the
simulations that follow, we will denote with N the number of
multipolar terms chosen to guarantee convergence of the GF
summations (see Sec. IV B for more details).

By combining Eq. (2) with pPN = αPNEinc(0) and pDS =
αDS · Eloc(r), one obtains the closed-form expression for the
local field

Eloc(r) = [I − Gsc(r,r) · αDS]−1E1(r) (3)
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FIG. 2. (Color online) Setup under analysis: A z-polarized DS
beside PN illuminated by a plane wave traveling along y with electric
field polarized along z. The DS is at a distance d from the PN surface.

where, importantly,

E1(r) = G0(r,0) · pPN + Einc(r) (4)

is the local field at the DS location that one would
have if self-coupling were neglected. Therefore, the term
[I − Gsc(r,r) · αDS]−1 in Eq. (3) represents the factor due to
self-coupling. In general, if the product Gsc(r,r) · αDSis negli-
gible, it follows that [I − Gsc(r,r) · αDS]−1 ≈ I and Eloc(r) ≈
E1(r) as assumed in previous work, for instance in Ref. [14].

For simplicity, consider the setup in Fig. 2, where we
assume the DS located along the z axis at a distance d

from the surface of the PN, and we assume that the DS
has dipole moment along the r direction as the polarizability
is αDS = αDSr̂r̂. Assuming an exp(−iωt) time harmonic
convention, the DS-PN system is illuminated by a z-polarized
plane wave Einc(r) = E0ẑeiky traveling along the y direction
with wavenumber k = ω

√
ε0εhμ0, where εh is the host relative

permittivity, and E0 is the plane-wave amplitude, with electric
field polarized along the r direction at the location of the
DS. This is a configuration that leads to large excitation-
rate enhancement γ n

exc [14,16]. Under these assumptions,
and considering that in this case n̂p = r̂, the excitation-rate
enhancement γ n

exc in Eq. (1) takes the form

γ n
exc =

∣∣∣∣1 + αPNGrr
0 (r,0)

1 − αDSGrr
sc (r,r)

∣∣∣∣
2

, (5)

where the superscript rr refers to the r̂r̂ entry of the dyadic GFs
(as shown in the Appendix, a spherical representation of the
dyadic GF is convenient). We then express the excitation-rate
enhancement as

γ n
exc = χ γ̄ n

exc , (6)

where

γ̄ n
exc =

∣∣∣∣ n̂p · E1(r)

n̂p · Einc(r)

∣∣∣∣
2

= ∣∣1 + αPNGrr
0 (r,0)

∣∣2
(7)

is the excitation-rate enhancement neglecting self-coupling
and

χ = 1∣∣1 − αDSGrr
sc (r,r)

∣∣2 (8)

denotes the factor due to the self-coupling, which may lead
to even further enhancement. Note that if we assume that
self-coupling is negligible, one has χ ≈ 1, which implies
that Eloc(r) ≈ E1(r), and the excitation-rate enhancement is
approximated by γ n

exc ≈ γ̄ n
exc, which coincides with what is

reported in [1,14].
As it will be shown next, there are conditions (here called

critical conditions) that lead to strong enhancement exploiting
the self-coupling factor. Beside the DS polarizability, different
parameters of the plasmonic scatterer, such as material, shape,
and size, and also the distance between the DS and the scatterer
play a role via Grr

sc (r,r) in maximizing χ . In other words,
through Grr

sc (r,r) we provide a mathematical representation
of the feedback mechanism between DS and PN. In this
paper, we fix the shape (sphere) and the material of the
plasmonic nanoparticle (gold) and thus define the critical DS
polarizability and distance that lead to critical enhancement
of the excitation rate. The formalism adopted here can be
also applied to other shapes of nanoantennas, such as the
bowtie nanoantenna [36,37]. In these more general cases the
GF can be found numerically, via full-wave simulations, and
the same concepts developed here can be applied to maximize
the enhancement.

In all the results presented in the following sections we
assume the PN is made of gold with complex values of per-
mittivity taken from experimental data tabulated in Ref. [38].

III. CRITICAL POLARIZABILITY AND CRITICAL
DISTANCE

A. Dependence on geometrical parameters
at a constant frequency

We consider here the complex DS polarizability αDS =
α′

DS + iα′′
DS, assuming α′′

DS/α
′
DS = 10−2, at 568 THz (free

space wavelength of 528 nm), and d = 2 nm. The wavelength
of 528 nm is close to the PN resonance wavelength, the latter
rather insensitive to the particle size itself, as, for example,
described in Ref. [39]. We include N = 60 PN multipoles
in the calculation of Grr

sc (r,r) to guarantee convergence (see
Sec. IV B for more details). We thus report in Fig. 3(a) the
excitation-rate enhancement γ n

exc in logarithmic scale versus
the PN radius rPN and the magnitude of the DS polarizability
|αDS| (the distance d is kept constant). First, one should note
that thanks to the PN, excitation-rate enhancements of 10–30
folds are easily obtained. One should also note that γ n

exc is
largely enhanced (up to 1000 folds) for a certain range of
critical polarizabilities close to |αDS| ≈ 8.5 × 10−36 [Fm2],
and that this is almost independent of the PN radius rPN. At
least 30 folds of this total enhancement is due to self-coupling,
as verified by the graph in Fig. 3(b), where also χ in
Eq. (8) is plotted versus rPN and |αDS|. Therefore, we show
that self-coupling cannot be neglected in the evaluation of
γ n

exc for a critical DS polarizability range. We also report in
Fig. 3(c) a similar plot showing the term γ̄ n

exc in Eq. (7), which
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FIG. 3. (Color online) (a) Excitation-rate enhancement γ n
exc (log-

arithmic scale) versus rPN and |αDS|. As in (a), for (b) the self-coupling
term χ in Eq. (8) and for (c) the term γ̄ n

exc in Eq. (7). Simulation
parameters: εh = 1, d = 2 nm, and the frequency is 568 THz
(528 nm). Note also the different scales in (a)–(c) for clarity of
presentation of the results.

represents the excitation-rate enhancement when self-coupling
is neglected, i.e., when assuming that Eloc(r) ≈ E1(r) in
Eq. (3); the result shows that γ̄ n

exccannot recover γ n
exc correctly

in the critical DS polarizability range. Indeed, note how in
Fig. 3(c) γ̄ n

exc increases for increasing radius rPN, and it does
not depend on the DS polarizability αDS. The result in Fig. 3
makes us infer that, at a fixed distance, there exists a range
of critical polarizabilities for which self-coupling is a major
contribution in excitation-rate enhancement (especially for
small radius rPN) and here it can provide with an additional
30-fold enhancement. However, Fig. 3(b) also shows that
self-coupling can be detrimental to the excitation rate when the
DS polarizability assumes very large values, i.e., γ n

exc < γ̄ n
exc

because χ < 1.
In practical scenarios, we deal with given DS properties,

while the critical polarizability concept depends on the
plasmonic system as a whole. Therefore, for any given DS, the
system at hand (PN geometry, material, and distance d) should
be designed such that the DS polarizability is within the range
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FIG. 4. (Color online) As described in the caption of Fig. 3,
versus d and |αDS|. Simulation parameters: rPN = 30 nm; all other
parameters are as described in the caption of Fig. 3. Note also the
different scales in (a)–(c) for clarity of presentation of the results.

of critical polarizabilities of the system. Next, considering
the DS located at a distance |r| = rPN + d from the origin
on +z axis, we investigate the excitation-rate enhancement
dependence on the distance d and the DS polarizability, keep-
ing rPN fixed. Figure 4 shows the excitation-rate enhancement
γ n

exc, the self-coupling term χ , and γ̄ n
exc versus distance d and

polarizability |αDS|, assuming a plasmonic nanosphere with
rPN = 30 nm (all other parameters are as in Fig. 3). We note
now the presence of interrelated critical distance and critical
polarizability for which γ n

exc assumes the largest values. A
considerable amount of this enhancement is again attributed
to the self-coupling term χ as observed in Fig. 4(b). Note also
that when the DS is far from the PN, with larger and larger d,
the contribution of self-coupling χ to γ n

exc becomes negligible.
Figure 4(c) shows that, when neglecting the self-coupling term,
the excitation-rate enhancement γ̄ n

exc increases as long as the
DS gets closer to the PN, in agreement with the observations
in Refs. [14,16,40]. Instead, when considering self-coupling
whose impact is reported in Fig. 4(b), χ is responsible of
even 30 folds of enhancement at the maximum obtained in

125127-4



CRITICAL EXCITATION-RATE ENHANCEMENT OF A . . . PHYSICAL REVIEW B 90, 125127 (2014)

correspondence of a critical distance. However, self-coupling
can also be detrimental to the excitation rate. Indeed, when
assuming large DS polarizability values, Fig. 4(b) also shows
that very short distances lead to less enhancement (i.e.,
γ n

exc < γ̄ n
exc ) because there χ < 1.

We want to emphasize that the values of critical polariz-
ability, though large in general, are still rather small when
compared to the PN polarizability as |αDS/αPN| ≈ 10−3; for
such values, we have found the critical distance to be about 2 to
3 nm, which is a promising result paving the way for realizable
applications employing fluorescent molecules or QDs.

B. Dependence on DS polarizability frequency dispersion

We consider here the DS polarizability having a Lorentzian
frequency dependence given by

αDS = α′
DS + iα′′

DS = α0ω
2
0

ω2
0 − ω2 − iγ ω

+ α∞, (9)

where ω0 is the transition angular frequency, γ is the linewidth
(or damping factor), α∞ is the high frequency limit of the
polarizability, and α0 + α∞ is the static polarizability.

The parameters used for DS polarizability here are cho-
sen as α0 = 7.31 × 10−38 [Fm2], α∞ = 5.37 × 10−36 [Fm2],
ω0 = 2π (616) × 1012 [rad/s], and γ = 12.14 × 1013 [rad/s],
leading to the real and imaginary parts of the DS polarizability
reported in Fig. 5. The parameters of the DS polarizability
reported above are chosen to match the polarizability of a
realistic QD around its resonance frequency at 616 THz [8].
The real part α′

DS ≈ 5 × 10−36 [Fm2] is rather constant with
frequency but in the vicinity of the Lorentzian transition
angular frequency ω0 (where, however, its value does not vary
much) and it is close in value to the critical polarizability
introduced in Sec. III A (Fig. 3), thus we expect to find large
enhancements for d close to 2 nm. On the other hand, the
imaginary part α′′

DS peaks at 616 THz exhibiting values in
the same order of α′

DS around the resonance, otherwise being
negligible. Note also that considering a gold PN with radius
rPN = 30 nm the PN Mie polarizability has a resonance peak
at 579 THz with |αPN| = 5.76 × 10−33 [Fm2].
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FIG. 5. (Color online) Real and imaginary parts of αDS versus
frequency assuming a Lorentzian shape as in Eq. (9) with the
parameters given in the text.
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FIG. 6. (Color online) (a) Excitation-rate enhancement γ n
exc (log-

arithmic scale) versus d and frequency. (b) As in (a), for the term χ

in Eq. (8) and (c) for γ̄ n
exc in Eq. (7). Note also the different scales in

(a)–(c) for clarity of presentation of the results.

Under these conditions, we show in Fig. 6 the excitation-
rate enhancement γ n

exc in Eq. (6), χ in Eq. (8), and γ̄ n
exc in

Eq. (7) versus d and frequency. It can be seen that for DS in
close proximity of the PN (d about 2.5 nm), self-coupling has
the dominant effect, yielding γ n

exc ≈ 5000 in contrast to γ̄ n
exc ≈

12, showing that almost a 400-fold increase is due to self-
coupling χ , hence indicating its importance in understanding
the electrodynamic interactions of a PN-DS system. However,
the impact of self-coupling decreases dramatically when the
imaginary part of αDS peaks around 616 THz, as shown by
the dark blue area in Figs. 6(a) and 6(b) insets. This resonance
splitting in the spectrum is a signature of Rabi-like splitting,
indicating strong coupling regime between the DS and the PN.
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Further discussion on optimal values is provided in Sec. V.
Looking at Fig. 6(c) one can also infer that when self-coupling
is neglected, the excitation-rate enhancement γ̄ n

exc is only
due to the plasmonic resonance of the PN, which occurs
at 579 THz. In summary, the spectral description of a dye
excitation rate can be wrongly estimated when neglecting the
self-coupling physical mechanism, as one infers by comparing
the values and the frequency descriptions in Figs. 6(a) and 6(b).

IV. DYE MOLECULE AND QUANTUM DOT
AS DIPOLAR SCATTERERS

A. Examples of DS polarizabilities

Having established that both distance and DS polarizability
dramatically affect the excitation-rate enhancement γ n

exc, we
turn our analysis to two cases of DS, namely we consider a
fluorescent dye molecule Rhodamine 6G (R6G) and a CdSe
QD in order to assess the necessity of the self-coupling
term for practical systems. The polarizability of the R6G
is evaluated via a Lorentzian oscillator model given in
Eq. (9) [41,42], with the following parameters based on the
data from Ref. [42] pp. 525–526 as, α0 = 3.9 × 10−39 [Fm2],
α∞ = 2.2 × 10−39 [Fm2], ω0 = 2π (569.94) × 1012 [rad/s],
and γ = 235.4 × 1012 [rad/s]. R6G dye polarizability has
the value αDS = (0.89 + i5.87) × 10−38 [Fm2] at 568 THz
(528 nm), corresponding to an absorption cross section of
0.08 nm2. The polarizability of the chosen CdSe QD is instead
modeled via Mie theory assuming a given permittivity, as done
in Refs. [8,43–45], and has the value αDS = (5.8 + i0.087) ×
10−36 [Fm2] associated to 0.1 nm2 absorption cross section
at 568 THz (528 nm). We have chosen this frequency of
operation because it is close to the PN plasmonic resonance
and because the higher imaginary part of the polarizability at
higher frequency, e.g., 616 THz, may cause a sudden drop in
excitation-rate enhancement as shown in Fig. 6(a).

We then show in Fig. 7 the excitation-rate enhancement
γ n

exc versus d for both R6G and CdSe QD for three cases:
(i) we consider N = 60 multipolar terms in the computation of
Grr

sc (solid blue curve), leading to a relative error on |Grr
sc | less

than 1.5%; (ii) we consider only the dipolar term (i.e., N = 1) in
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n ex
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N=1
No Self-coupling
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c

N=60
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No Self-coupling

R6G CdSe

(a) (b)

FIG. 7. (Color online) Excitation-rate enhancement γ n
exc versus d

for two realistic implementations of dipolar scatterers: (a) R6G and
(b) CdSe QD. Simulation parameters: εh = 1, rPN = 30 nm, and the
frequency is 568 THz (528 nm). The variable N in the legend indicates
the number of multipoles included in the calculation of Grr

sc .

Grr
sc (dashed red curve); (iii) we neglect the self-coupling term

[dotted green curve, that therefore represents γ̄ n
exc in Eq. (7)].

Since we considered a QD with a radius of 4 nm, the plot in
Fig. 7(b) starts at d = 4 nm, i.e., the closest allowable distance
of QD to the PN due to physical constraints. Similarly, in
Fig. 7(a), the x axis starts at d = 2 nm, assuming that from such
distance R6G dyes close to nanospheres can be still modeled
as point dipoles as in Sec. II. We note that although in the case
of R6G dye, the self-coupling term is negligible and does not
contribute to γ n

exc, in the QD case for very small distances we
observe a value of about twice with respect to the case where
self-coupling is neglected. We also note that the account of
multipolar terms in the evaluation of Grr

sc is found to be of vital
importance, because such enhancement is not observed when
only the dipolar term is accounted for (N = 1). This result
shows that in certain practical cases self-coupling is important
as it can induce a considerable variation in the excitation-rate
enhancement γ n

exc. Indeed, we infer from Figs. 3 and 4 that the
value of the QD polarizability is within the range of critical
polarizabilities, whereas the polarizability of R6G molecule
is too small to generate enough scattering and hence χ ≈ 1.
Since the QD’s polarizability is larger than the R6G molecule’s
one, the QD sustains a stronger feedback mechanism with the
PN than the R6G molecule does. The development of DS
exhibiting critical polarizabilities with small volumes might
open up to other scenarios where self-coupling is contributing,
and even becomes the dominant process, for the excitation-rate
enhancement γ n

exc.

B. Importance of multipolar field contributions

As Fig. 7 shows, the self-coupling contribution manifests
itself through multipolar scattering terms, whereas the dipolar
term alone (i.e., N = 1) cannot represent the impact of self-
coupling. We demonstrate the effect of the multipolar terms,
providing a deeper insight into the physics of self-coupling
in Fig. 8. The convergence of Grr

sc (r,r), the r̂r̂ entry of the
scattering dyadic GF, with respect to the number of considered
multipoles plays a significant role. Recalling Eq. (8), we
know that χ has an inverse dependence on 1 − αDSG

rr
sc (r,r).

Intuitively, one would correctly expect a large γ n
exc when

Re{αDSG
rr
sc (r,r)} ≈ 1 and Im{αDSG

rr
sc (r,r)} � 1 (10)

Figures 8(a) and 8(b) show the real and imaginary parts
of αDSG

rr
sc (r,r) versus number of multipoles N , for several

radii of the PN. Distance is kept constant as d = 2.5 nm
and αDS = 6.8(1 + i0.01) × 10−36 [Fm2] to be within the
range of critical polarizabilities and distances as seen in
Fig. 4(b). The first thing to be noted is that a larger number
of multipoles is required for convergence when larger PNs are
considered. For example, only about N = 10 multipoles are
sufficient when rPN = 5 nm, whereas about N = 60 multipoles
are needed when rPN = 30 nm. Remarkably, note how for
the chosen distance (close in value to the critical distance
for the adopted DS polarizability) Re{αDSG

rr
sc (r,r)} ≈ 1 and

Im{αDSG
rr
sc (r,r)} ≈ 0.2, leading to the enhanced results in

Fig. 4(b). [Note that the much smaller condition in Eq. (10) can
be relaxed for achieving large enhancements, e.g., 30 folds, as
it will be explained in Sec. V.] We want to stress that the
achieved convergence of the scattering GF is a crucial concept
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FIG. 8. (Color online) Convergence of Grr
sc for d = 2.5 nm and

various values of the PN radius rPN.

in evaluating the self-coupling contribution: for example, in
certain cases, a nonconverged summation may lead to the
impression that the condition Re{αDSG

rr
sc (r,r)} = 1 seems

satisfied, leading to false estimation of large enhancement
factors. For example, for the green curve in Fig. 8, relative to
a PN with rPN = 40 nm, calculations with only 40 multipoles
seem to lead to such a critical condition, which is not correct
since the converged value is achieved with about 70 multipoles.

As one would expect from previous analyses, convergence
is also sensitive to d. We then plot in Figs. 9(a) and 9(b)
the real and imaginary parts of αDSG

rr
sc (r,r) versus number of

multipoles N , for several values of d. We clearly see that
a slight variation in distance induces a major variation in
the value assumed by Re{αDSG

rr
sc(r,r)} and Im{αDSG

rr
sc (r,r′)},

showing the criticality of d. Also note that more multipoles
are needed as d decreases. We stress that N = 60 leads to an
error on |Grr

sc | less than 1.5% for the smallest distance d = 2
nm analyzed in this paper.

V. DISCUSSION: IMPACT OF SCATTERING
FOR SELF-COUPLING

We now turn our focus on the analysis of the complex-
valued parameters in Eq. (5) to better understand critical
polarizability and critical distance defined in Sec. III. We
express the PN and DS polarizabilities as αPN = α′

PN + iα′′
PN

and αDS = α′
DS + iα′′

DS, where a prime and a double prime
denote the real and the imaginary parts of the polarizabilities.
Also, we separate the real and imaginary parts in the GFs as

Grr
sc (r,r) = G′

sc + iG′′
sc (11)
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FIG. 9. (Color online) Convergence of Grr
sc for rPN = 30 nm and

various values d of the distance between PN and the DS.

and

Grr
0 (r,0) = G′

0 + iG′′
0. (12)

For very subwavelength rPN and d, PN-DS distance,
r = rPN + d is subwavelength, and approximately one has
G′′

0/G
′
0 of the order of (kr)3 � 1, hence G′′

0 is negligible
and the approximation Grr

0 (r,0) ≈ G′
0 holds. However, trends

in the near field of G′′
sc/G

′
sc are not straightforward because

of the sum of several PN multipoles whose impact varies
based on the physical parameters. To better illustrate these
concepts, Figs. 10(a) and 10(b) show G′′

0/G
′
0 and G′′

sc/G
′
sc,

respectively, versus DS distance d and PN radius rPN. As
expected G′′

0/G
′
0 is very small and can be easily neglected

for the whole range of rPN and d shown. However, G′′
sc/G

′
sc

(using a gold PN) ranges between 0.16 and 0.24, and hence
it is not much smaller than unity and it should be taken into
account; in other words, both the real and imaginary parts of
Grr

sc (r,r) play a role in the excitation-rate enhancement. We
want to stress that the behavior of G′′

sc/G
′
sc is highly dependent

on the PN physical parameters and constituents, thus it needs
to be analyzed on a case-to-case basis. Based on the real and
imaginary parts introduced above, Eqs. (7) and (8) can be
rewritten as

γ̄ n
exc = |1 + α′

PNG′
0 + iα′′

PNG′′
0|2 (13)

χ = 1

|1 + α′′
DSG

′′
sc − α′

DSG
′
sc − i(α′

DSG
′′
sc + α′′

DSG
′
sc)|2 . (14)

125127-7



TORK LADANI, CAMPIONE, GUCLU, AND CAPOLINO PHYSICAL REVIEW B 90, 125127 (2014)

r PN
 [

nm
]

Distance [nm]
2 3 4 5 6

5

10

15

20

25

30

0.005

0.01

0.015

0.02

0.024

0
0 0G G (a)

r PN
 [

nm
]

Distance [nm]
2 3 4 5 6

5

10

15

20

25

30

0.16

0.18

0.2

0.22

0.24

0.25

sc scG G (b)

r PN
 [

nm
]

Distance [nm]
2 3 4 5 6

5

10

15

20

25

30

34

34.5

35

35.5
35.6

33.8

2
10 sclog [Fm ]G

(c)

FIG. 10. (Color online) Plots of (a) G′′
0/G

′
0, (b) G′′

sc/G
′
sc, and

(c) G′
sc in logarithmic scale, versus the PN radius rPN and d, at the

frequency of 568 THz (528 nm).

Let us now investigate criteria for which we are able to
achieve excitation-rate enhancement, associated to χ � 1.
Ideally, the strongest enhancement (χ → ∞) of the excitation
rate is achieved when both

Condition 1: A = 1 + α′′
DSG

′′
sc − α′

DSG
′
sc ≈ 0

Condition 2: B = α′
DSG

′′
sc + α′′

DSG
′
sc ≈ 0 (15)

are simultaneously satisfied. Using the above definitions, it is
convenient to write

χ = 1

A2 + B2
. (16)

To maximize χ we need to minimize A2 + B2. Considering
a gold PN, G′′

sc > 0 and G′
sc > 0 as shown in Figs. 10(b)

and 10(c). Also, we only consider the excitation regime of
DSs, which implies α′′

DS > 0, i.e., passive, absorptive systems,
though active dipolar scatterers can also be treated with

this theory. In general, α′
DS may assume both negative and

positive values, especially when DSs exhibit a Lorentzian-like
polarizability.

If we now consider the case with α′
DS < 0, it follows that

A is always positive and larger than 1 for gold PN. Therefore,
A2 + B2 > 1 regardless of the value of B. That means χ

is always less than 1 and self-coupling does not lead to
enhancement. Therefore, α′

DS < 0 is not a case of interest.
Instead, if we consider the case with α′

DS > 0 (as in the
structures analyzed in the previous sections), we note that
both terms α′

DSG
′′
sc and α′′

DSG
′
sc in Condition 2 in Eq. (15) are

positive in near field. It then follows that B is always positive,
whereas A can vanish, which in turn would lead to χ = 1/B2.
Therefore, a set of α′

DS and α′′
DS here referred to as critical

polarizabilities for a given distance d (or critical distances for
a given polarizability αDS), can lead to χ � 1 by minimizing
B and having A = 0, as discussed next.

Imposing Condition 1 (in the case of interest with α′
DS > 0)

is equivalent to

α′
DS ≈ 1 + α′′

DSG
′′
sc

G′
sc

, (17)

which, when substituted in Condition 2, leads to

B ≈ (1 + α′′
DSG

′′
sc)

G′′
sc

G′
sc

+ α′′
DSG

′
sc. (18)

We want to remark that in Eq. (18) three parameters
(α′′

DS, G′
sc, and G′′

sc), which determine the value of α′
DS in

Eq. (17), play an important role in the enhancement definition.
Figures 10(b) and 10(c) show that G′

sc is of the order of
1035 [F−1m−2] and that G′′

sc/G
′
scis around 0.2. Also for the

cases studied in previous sections, typical values of the
imaginary part of the DS polarizability, α′′

DS, are smaller
than 10−36 [F−1m−2]. Thus, in our cases, typically, α′′

DSG
′′
sc <

0.02 � 1; therefore, Eqs. (17) and (18) lead to

α′
DS ≈ 1

G′
sc

and B ≈ G′′
sc

G′
sc

+ α′′
DSG

′
sc � 1. (19)

In Eq. (19), the parameter B cannot be zero for the discussed
setup (i.e., absorptive DS very close to a gold PN), and such
an exact condition (B = 0) would require an emitting dye (i.e.,
α′′

DS < 0), not analyzed in this paper. Therefore, we interpret
the value of B � 1 in Eq. (19) as a “penalty condition” rather
than an optimum condition, which, however, still leads to
(relatively) large enhancement factor χ . In the expression
of B in Eq. (19), even if α′′

DSG
′
sc � G′′

sc/G
′
sc, the value of

G′′
sc/G

′
sc is finite and nonzero, independent of DS polarizability,

and imposed by only geometrical and material parameters.
Therefore, the minimum value of B (and thus the maximum
value of χ = 1/B2) for our specific setup is fixed and cannot
be further optimized when using absorptive DSs. We recall
from the setup pertaining to Fig. 3 that the polarizability
αDS ≈ 9 × 10−36(1 + i0.01) [Fm2] satisfies α′

DS ≈ 1/G′
sc and

α′′
DSG

′′
sc � 1. When using this value in Eq. (18) indeed one

obtains small B ≈ G′′
sc/G′

sc = 0.2, through which we confirm
a large enhancement of χ ≈ 30, as observed in Sec. III and
shown in Fig. 3. Notice that the value of G′

sc [shown in
Fig. 10(c)] is almost independent from the PN radius and
the fact that α′

DS ≈ 1/G′
sc explains why χ and the critical
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FIG. 11. (Color online) Plots of (a) G′′
sc/G′

sc, (b) α′
DSG

′
sc, and

(c) χ , the latter in logarithmic scale, versus frequency for two values
of the distance d . The orange oval indicates the region where Eq. (19)
is satisfied and leads to further enhancement.

polarizability exhibit the same independence (from PN radius)
in Figs. 3(a) and 3(b), assuming constant d. On the other
hand, when increasing the distance d in Fig. 4, the critical
polarizability leading to strong enhancement also increases.
This is justified by this analysis observing the decrease of G′

sc
versus increasing d as shown in Fig. 10(c), as dictated by
Eq. (19), which states α′

DS ≈ 1/G′
sc.

For the sake of providing the significance of critical
distance, we now resort again to a DS Lorentzian polarizability
as in Fig. 5. In Fig. 11 we show the variation of the parameters
G′′

sc/G′
sc, α′

DSG
′
sc, and χ versus frequency, for two values of

the DS-PN distance d. One can see that for both values of
d, G′′

sc/G′
sc � 1 and α′′

DS/α′DS � 1 in the frequency band
400–550 THz, as required to obtain large χ . However, while
for d = 3 nm the value of α′

DSG
′
sc is not close to unity,

it is remarkable that for d = 2.5 nm α′
DSG

′
sc is close to

unity in a certain frequency range (400–550 THz), leading
to enhancements as large as 400 folds, shown in Fig. 11(c),
remarking the importance of the concept of critical distance.

VI. CONCLUSION

Self-coupling has been neglected in almost all previous
literature for the determination of the excitation rate and its
enhancement. Here we have shown that this assumption leads
to wrong estimates for certain critical physical parameters,
off even by orders of magnitude in some special conditions.
Indeed, we have shown that in some cases self-coupling is
important and it is one of the major factors leading to large
excitation-rate enhancements. The approach introduced here
can be further extended to determine radiative and nonradiative
decay rates as well as the emission-rate enhancement of a
PN-DS system, and will be the subject of future investigation.
The results shown in this paper may pave the way for the
improvement of sensors based on local-field enhancement.
Note that the concept of self-coupling as introduced here is
very general and can be applied to nanostructures of any shape,
used to enhance the local field. Strong enhancement due to
self-coupling can be exploited only in very close proximity of
the plasmonic nanoparticle.

ACKNOWLEDGMENTS

The authors acknowledge fruitful discussions with Prof.
Eric Potma, Department of Chemistry, University of Califor-
nia, Irvine. Faezeh Tork Ladani acknowledges the support from
the Broadcom Foundation.

APPENDIX: FREE SPACE AND SCATTERING DYADIC
GREEN’S FUNCTIONS

The electric field at the observation r from a dipolar
scatterer located at r′ is expressed as

E(r) = Gi(r,r
′) · p, (A1)

where i = {“0”, “sc”} refers to free space and scattering GF,
respectively. The free space dyadic GF, G0(r,r′) is given as

G0(r,r′) = eikR

4πεhε0

[(
k2

R
+ ik

R2
− 1

R3

)
I

−
(

k2

R
+ 3ik

R2
− 3

R3

)
R̂R̂

]
, (A2)

where R = RR̂ = r − r′ and I is the identity dyad [6]. The
scattering GF Gsc(r,r′) for a spherical scatterer at the origin
of the coordinate system, is expressed based on the free space
multipole expansion and Mie theory, which reads

Gsc(r,r′) = −ik3

4πεhε0

+∞∑
n=1

n∑
m=0

Cmn

× [
AnM(1)

e
mno

(kr)M′(1)
e
mno

(kr′)

+BnN(1)
e
mno

(kr)N′(1)
e
mno

(kr′)
]
, (A3)

where An and Bn are the Mie coefficients for TE and TM
modes, with respect to the radial direction, and M and N
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are the corresponding spherical vector wave functions [35].
All the parameters in Eq. (A3) are defined in Ref. [35]. In
particular,

An = jn(ρ2)[ρ1jn(ρ1)]′ − jn(ρ1)[ρ2jn(ρ2)]′

jn(ρ2)
[
ρ1h

(1)
n (ρ1)

]′ − h
(1)
n (ρ1)[ρ2jn(ρ2)]′

, (A4)

and

Bn = k2
2jn(ρ2)[ρ1jn(ρ1)]′ − k2

1jn(ρ1)[ρ2jn(ρ2)]′

k2
2jn(ρ2)

[
ρ1h

(1)
n (ρ1)

]′ − k2
1h

(1)
n (ρ1)[ρ2jn(ρ2)]′

, (A5)

where jn(ρ) and h(1)
n (ρ) are the spherical Bessel and Hankel

functions, respectively [46], and a prime here refers to
the first derivative with respect to the argument. Moreover,
ρ2 = kmrrPN and ρ1 = krPN, with mr = √

εPN/εh the relative
refractive index contrast between the PN and the host medium,
with εPN denoting the relative permittivity of the PN, and εh

the one of the host medium. Here we assumed that the relative
permeability is unitary. More general expressions of Eqs. (A4)
and (A5) are in Ref. [5]. For calculation purposes, we limit the
infinite n summation in Eq. (A3) to N multipolar terms that
guarantee convergence, as discussed in Sec. IV.
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