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Role of electron-phonon interaction in a magnetically driven mechanism for superconductivity
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We use the renormalization group method to examine the effect of phonon-mediated interaction on d-wave
superconductivity, as driven by spin fluctuations in a quasi-one-dimensional electron system. The influence of a
tight-binding electron-phonon interaction on the spin-density-wave and d-wave superconducting instability lines
is calculated for arbitrary temperature, phonon frequency, and antinesting of the Fermi surface. The domain of
electron-phonon coupling strength where spin-density-wave order becomes unstable against the formation of a
bond-order wave or Peierls state is determined at weak antinesting. We show the existence of a positive isotope
effect for spin-density-wave and d-wave superconducting critical temperatures which scales with the antinesting
distance from quantum critical point where the two instabilities merge. We single out a low phonon frequency
zone where the bond-order-wave ordering gives rise to triplet f -wave superconductivity under nesting alteration,
with both orderings displaying a negative isotope effect. We also study the electron-phonon strengthening of
spin fluctuations at the origin of extended quantum criticality in the metallic phase above superconductivity.
The impact of our results on quasi-one-dimensional organic conductors like the Bechgaard salts where a Peierls
distortion is absent and superconductivity emerges near a spin-density-wave state under pressure is emphasized.
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I. INTRODUCTION

The role of electron-phonon coupling in strongly correlated
electron systems is an issue of growing importance in
materials where unconventional superconductivity is found
to compete with various forms of electronic states [1–3]. A
point at issue in the quest of understanding the origin of
superconductivity is the extend to which the electron-phonon
interaction can influence and even modify the nature of Cooper
pairing when electrons are strongly correlated, especially
through magnetism. In this work we shall focus on this
issue in quasi-one-dimensional molecular superconductors
where superconductivity takes place in the close proximity
of antiferromagnetism, as best exemplified in the Bechgaard
salts series of organic superconductors [4].

Since the discovery of superconductivity (SC) in the
Bechgaard salts [(TMTSF)2X] series [5], much of the attention
paid to the mechanism of Cooper pairing has mostly focused
on models of electrons with purely repulsive interactions
[4,6–16]. On empirical grounds, this has been amply supported
by the ubiquity of spin-density-wave (SDW) correlations near
the superconducting state when pressure [17–20], temperature
[21,22], or even magnetic field is varied [23,24]. As one
moves along the temperature axis, for example, and enters
the metallic state, important SDW fluctuations are found to
govern properties of the normal phase, giving rise, for instance,
to a huge enhancement of the NMR spin relaxation rate and to
linear-T resistivity term over a wide temperature interval above
the critical temperature Tc for superconductivity [20,22,25].

Besides the nesting of the Fermi surface, repulsive in-
teractions are an essential component of SDW correlations
[6,26–28]. They have become inescapable ingredients of the
model description of superconductivity in these materials. In
this regard, the quasi-one-dimensional electron gas model
with the aid of the renormalization group (RG) method
have played an important part in the description of these
low-dimensional electron systems. In the repulsive sector,
it proved particularly generic of the SDW-to-d-wave SC

(SC-d) sequence of instabilities when the amplitude of the
next-to-nearest neighbor interchain hopping, t ′⊥, called the
antinesting parameter, is tuned to simulate pressure effects
on spin fluctuations responsible for superconducting pairing
interaction [29,30]. The approach has also shown how the
constructive interference between spin fluctuations and Cooper
pairing can explain the existence of a Curie-Weiss temperature
dependence of the SDW correlation length, which is a key
factor in the enhancement of the NMR relaxation rate and
the linear-T component in resistivity over the whole pressure
interval where superconductivity is present [20,31–33].

However, in view of the complex molecular structure of
systems like the Bechgaard salts, the repulsive electron gas
model must be regarded as an idealization. It ignores primarily
the interaction of electrons with low-energy phonon modes
of the lattice. Early x-ray diffuse scattering experiments in
(TMTSF)2PF6 and (TMTSF)2ClO4 compounds did reveal
the existence of such a coupling, under the guise of lattice
fluctuations at the one-dimensional (1D) wave vector 2kF of
the electron gas (kF being the longitudinal Fermi wave vector)
[34,35]. The lattice fluctuations remain regular in temperature
for the Bechgaard salts, in contrast to so many molecular chain
systems where it terminates in a Peierls [bond-order-wave
(BOW)] distorted state. Although the reason for this remains
largely unexplained [35,36], the presence of 2kF lattice fluc-
tuations is direct evidence of a finite (momentum-dependent)
coupling between electrons and phonons, a consequence of
the modulation of tight-binding electron band parameters by
lattice vibrations.

This points at the impact a retarded [phonon-mediated
(Ph-M)] interaction of that kind can have on the properties
of the electron gas when the mechanism for Cooper pairing
is magnetically driven. Whether it is detrimental to SDW
and SC-d correlations, as one would naturally expect if the
electron-phonon interaction was taken in isolation [37], or, on
the contrary, if it becomes a factor of reinforcement when it is
subordinate to repulsive interactions is an open question. The
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latter possibility can provide new insight as to the conditions
prevailing in weakly dimerized systems like the Bechgaard
salts that make SDW predominate over the Peierls phenomena.

More generically, it can clarify how a momentum-
dependent electron-phonon interaction can be actively in-
volved in the occurrence of superconductivity near mag-
netism. It can also shed light on the possibility of a posi-
tive isotope effect for the temperature scale of instabilities
against SDW and SC-d orderings as a function of phonon
frequency. Reinforcement could also extend relatively far
in the metallic phase by enhancing spin fluctuations as
quantum critical effects due to interfering SC-d and SDW
instabilities [32].

These possibilities are important in the context of other un-
conventional superconductors, in particular high-Tc cuprates
[38–41], where they framed a significant part of the de-
bate surrounding the relative importance of Coulomb and
electron-phonon interactions when superconductivity takes
place in the proximity of antiferromagnetism [1,42–50] and
charge-density-wave ordering [51,52]. Its transposition in
quasi-one-dimensional superconductors like the Bechgaard
salts close to a SDW instability has remained essentially
unexplored since the very first attempts to reconcile electron-
electron and electron-phonon interactions in the frame-
work of mean-field theory of competing magnetism and
superconductivity [27].

In this work we shall address this problem in the weak-
coupling framework of the RG approach to the quasi-1D
electron gas model. The model is extended to include both
direct and momentum-dependent Ph-M electron-electron in-
teractions in the the study of interfering (electron-electron)
Cooper and (electron-hole) density-wave pairings at arbitrary
phonon frequency ωD . The RG calculations will be carried out
at finite temperature T , which brings additional difficulties
in the presence of retarded interactions. This turns out to
be required when antinesting is present. Actually, a finite t ′⊥
breaks the usual correspondence between T and the scaled
cut-off energy �(�) from the Fermi surface that generates the
RG flow. The flow will be then conducted at arbitrary tem-
perature for interactions with momentum dependence along
the Fermi surface and a finite set of Matsubara frequencies.
This finite-T RG procedure with momentum and frequency
variables has been worked out recently for systems where
Ph-M interactions are predominant, a situation relevant to
competing charge-density-wave and s-wave SC instabilities
away from half-filling [37]. It is extended here to weakly
dimerized chains systems like the Bechgaard salts where
repulsive interactions are dominant and half-filling Umklapp
scattering is finite [6,31,32].

The results put forward below show that the modulation
of tight-binding electron band by acoustic lattice vibrations
introduces effective Ph-M interactions with a very charac-
teristic dependence on longitudinal electron momentum and
momentum transfer of scattered electrons. The dependence
affects the RG flow and produces a low-energy downward
screening of the repulsive backward scattering and an en-
hancement of both repulsive forward and Umklapp scattering
terms. These effects are ωD dependent, concurring to boost
antiferromagnetic exchange between itinerant electrons which
primarily reinforces the SDW instability line and in turn the

magnetically driven SC-d in the phase diagram. The impact of
retardation generates a positive isotope effect whose amplitude
peaks at the critical strength of antinesting where SDW and
SC-d instabilities lines meet and their constructive interference
is the strongest. Above a definite strength of electron-phonon
interaction, the SDW becomes unstable against the formation
of a BOW distorted state and triplet f -wave superconductivity
if antinesting and retardation are sufficiently high. The latter
states are both characterized by a negative isotope effect, as a
result of antiadiabaticity.

The boost of exchange by electron-phonon interaction is
not limited to the transition lines but is manifest in the
metallic phase where it feeds deviations to Fermi liquid
behavior at the origin of extended quantum criticality in
the normal phase [20,31,32]. The latter can be followed
through the reinforcement of the Curie-Weiss behavior of
the SDW susceptibility which is correlated to ωD and
antinesting t ′⊥ in the whole range where superconductivity
is present.

In Sec. II we introduce the quasi-1D electron gas model
which is extended to include the tight-binding electron-phonon
interaction term. In Sec. III the one-loop RG flow equations for
the different electron-electron vertices and relevant response
functions are given and integrated into the determination of the
phase diagram at arbitrary antinesting and phonon frequency.
Their integration is carried out in Sec. IV and leads to the
determination of the phase diagrams, isotope effects, and spin
fluctuations in the normal state. In Sec. V, we discuss the
implications of our results in the description of unconventional
superconductors like the Bechgaard salts and conclude
this work.

II. THE MODEL

For a linear array of N⊥ chains of length L, the Hamiltonian
of the quasi-1D electron gas with electron-phonon coupling is
given by

H = H 0
p + Hep +

∑
p,k,σ

Ep(k) c
†
p,k,σ cp,k,σ

+ πvF

LN⊥

∑
{k,σ }

[
g1 c

†
+,k4,σ1

c
†
−,k3,σ2

c+,k2,σ2c−,k1,σ1

+ g2 c
†
+,k4,σ1

c
†
−,k3,σ2

c−,k2,σ2c+,k1,σ1

+ 1

2
g3

(
c
†
+,k4,σ1

c
†
+,k3,σ2

c−,k2,σ2c−,k1,σ1

+ H.c.
)]

δk1+k2=k3+k4(±G), (1)

In the purely electronic part that has been made explicit, the
operator c

†
p,k,σ (cp,k,σ ) creates (destroys) a right- (p = +) and

left- (p = −) moving electron of wave vector k = (k,k⊥) and
spin σ . The free part is modeled by the anisotropic one-electron
energy spectrum in two dimensions,

Ep(k) = vF (pk − kF ) + ε(k⊥), (2)

where

ε(k⊥) = −2t⊥ cos k⊥ − 2t ′⊥ cos 2k⊥. (3)

125119-2



ROLE OF ELECTRON-PHONON INTERACTION IN A . . . PHYSICAL REVIEW B 90, 125119 (2014)

The longitudinal part has been linearized around the longitudi-
nal Fermi wave vector given by pkF = ±π/2 for a dimerized
chain with one electron per dimer. The longitudinal Fermi
velocity is vF = 2t , where t is the average nearest-neighbor
hopping. Here t⊥ is the nearest-neighbor hopping integral
in the perpendicular direction and t ′⊥ is a second-nearest-
neighbor hopping paramaterizing deviations to perfect nesting
at q0 = (2kF ,π ), which simulates the most important effect
of pressure in our model. The quasi-1D anisotropy of the
spectrum is EF � 15t⊥, where EF = vF kF � 3000 K is the
longitudinal Fermi energy congruent with the range found in
the Bechgaard salts [53–55]; EF is taken as half the bandwidth
cutoff E0 = 2EF in the model. In the framework of the electron
gas model [56,57], the interacting part of the Hamiltonian is
described by the bare backward, g1 ≡ g1(+kF , − kF ; +kF , −
kF ), and forward, g2 ≡ g2(+kF , − kF ; −kF , + kF ), scattering
amplitudes between right- and left-moving electrons defined
on the 1D Fermi surface. The half-filling character of
the band—a consequence of a small dimerization of the
chains—gives rise to Umklapp scattering of bare amplitude
g3 ≡ g3(±kF , ± kF ; ∓kF , ∓ kF ) and for which momentum
conservation involves the longitudinal reciprocal lattice vector
G = (4kF ,0). Within the electron gas model, the deviation
k ± kF of longitudinal momentum with respect to the Fermi
points in the scattering amplitudes are irrelevant in the
RG sense and can be neglected [56–58]. All couplings are
normalized by πvF and are initially independent of transverse
momenta k⊥i but acquire such a dependence along the RG flow.
This momentum dependence refers to the angular dependence
along the Fermi surface.

Regarding the values taken by the interaction parameters
throughout the present calculations, we shall take g1 = g2/2 �
0.32 and g3 � 0.025, which follows from the phenomenolog-
ical analysis of previous works that fixes their amplitude from
different experiments in the weakly dimerized systems like the
Bechgaard salts [31,32]. This pertains to a range of couplings
generic of the interplay between SDW and SC-d orders as a
function of antinesting.

The electron-phonon part of the Hamiltonian (1) follows
from the modulation of the longitudinal hopping integral by
acoustic phonons in the tight-binding approximation [59].

It reads

H 0
p + Hep =

∑
q,ν

ωq,ν

(
b†q,νbq,ν + 1

2

)
+ (LN⊥)−

1
2

∑
p,σ,ν

∑
k,q

× gν(k,q)c†p,k+q,σ c−p,k,σ (b†q,ν + b−q,ν), (4)

where ν is related to the different polarization of acoustic
phonons. For phonons of interest propagating parallel to the
chains axis, we have

ωq,ν = ων

∣∣∣∣ sin
q

2

∣∣∣∣ (5)

for the phonon spectrum and

gν(k,q) = i4
λν√

2Mων

sin
q

2
cos

(
k + q

2

)
(6)

for the electron-phonon matrix element, which depends on
both electron momentum k and momentum transfer q. The
coupling amplitude λν = ∇t · eν is expressed in terms of the
spatial variation of longitudinal hooping integral and the unit
vector eν of the lattice displacement; ων = 2

√
κν/M is the

Debye frequency for the acoustic branch ν, and M is the mass
of molecular unit. The bandwidth of acoustic branches in the
molecular systems like the Bechgaard salts does not exceed
ων ∼ 100 K [60–62]. We shall consider in the following the
interval normalized phonon frequency 0 < ωD/t⊥ � 0.5.

For the partition function Z, it is straightforward to proceed
to the partial trace of harmonic phonon degrees of freedom and
express the partition function, Z = ∫∫

Dψ∗Dψ∗eS0+SI , as a
functional integral over the fermion anticommuting fields ψ (∗).
The bare action in the Matsubara-Fourier space is given by

S0[ψ∗,ψ] =
∑

k̄,p,σ

[
G0

p(k̄)
]−1

ψ∗
p,σ (k̄)ψp,σ (k̄), (7)

where k̄ = (k,ωn = ±πT, ± 3πT, . . .) and

G0
p(k̄) = [iωn − Ep(k)]−1 (8)

is the bare fermion propagator. The interacting part of the
action is of the form

SI [ψ∗,ψ] = − T

LN⊥
πvF

∑
{k̄,σ }

{
g1(k̄1,k̄2,k̄3,k̄4)ψ∗

+,σ4
(k̄4)ψ∗

−,σ3
(k̄3)ψ+,σ2 (k̄2)ψ−,σ1 (k̄1) + g2(k̄1,k̄2,k̄3,k̄4)ψ∗

+,σ4
(k̄4)ψ∗

−,σ3
(k̄3)

×ψ−,σ2 (k̄2)ψ+,σ1 (k̄1) + 1

2
[g3(k̄1,k̄2,k̄3,k̄4)ψ∗

+,σ4
(k̄4)ψ∗

+,σ3
(k̄3)ψ−,σ2 (k̄2)ψ−,σ1 (k̄1) + c.c.]

}
δk̄1+k̄2,k̄3+k̄4(±Ḡ) (9)

where k̄i ≡ (k⊥i ,ωni) and G = (4kF ,0,0) for Umklapp scattering. The amplitude of the bare effective backscattering is given by

g1(k̄1,k̄2,k̄3,k̄4) = g1 −
∑

ν

2

πvF ων

gν(kF ,−2kF )gν(−kF ,2kF )

1 + (ωn3 − ωn1)2/ω2
ν

≡ g1 + gph

1 + (ωn3 − ωn1)2/ω2
D

, (10)

where in the electron gas model scheme the interactions are
defined on the 1D Fermi points with the electron-phonon
matrix element evaluated at k = ±kF and momentum transfer
q = ±2kF . Here we have defined the Debye frequency ωD =
〈ω2kF ,ν〉 as the average phonon frequency over the different

branches at the zone edge. We can define an attractive contri-
bution from all acoustic branches of normalized amplitude,

gph = −4
∑

ν

λ2
ν/(πvF κν). (11)
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Likewise, for the amplitude of the effective forward scattering,
we have

g2(k̄1,k̄2,k̄3,k̄4) = g2 − 2

πvF

∑
ν

ω0,ν

gν(kF ,0)gν(−kF ,0)

ω2
0,ν + (ωn3 − ωn1)2

= g2, (12)

which remains unaffected by phonons at vanishing momentum
transfer. Finally, for the bare Umklapp term in the presence of
phonons, we have

g3(k̄1,k̄2,k̄3,k̄4) = g3−
∑

ν

2

πvF ων

gν(kF ,2kF )gν(kF , − 2kF )

1 + (ωn3 − ωn1)2/ω2
ν

≡ g3 + η|gph|
1 + (ωn3 − ωn1)2/ω2

D

, (13)

which, in contrast to normal backscattering, gives rise to a
retarded repulsive contribution, as a result of the k depen-
dence of the electron-phonon tight binding matrix element
(6). Here η is a reduction factor that takes into account
the weak dimerization of the chains. For simplicity we
shall take η = g3/g1(= �D/EF 
 1) (see also Ref. [27]).

The dependence of the above bare retarded couplings on
both longitudinal k and momentum transfer q will play an
important role in their RG flow at low energy.

III. RENORMALIZATION GROUP EQUATIONS

We use the finite-temperature momentum-frequency RG
scheme introduced in Ref. [37]. In the partition function
we proceed to the successive integration of electron states
in the energy shell �(�)d� at energy distance ±�(�) =
±EF e−� from the Fermi surface, where � ∈ [0,∞). For the
k⊥-momentum dependence of the scattering amplitudes on
each Fermi sheet, a constant energy surface in the Brillouin
zone is separated into 12 patches, inside which the couplings
are considered constant in the loop integration [30]. The
number of patches is sufficient to take into account the
nonperturbative effect of warping of the Fermi surface and
the antinesting term t ′⊥. Regarding the frequency dependence,
we have considered a finite number of Nω = 14 Matsubara
frequencies ωn (−7 � n � 6), within a mean-field single patch
scheme for the loop frequency variable as described below. The
flow equations read

∂�g1(k̄1,k̄2,k̄3,k̄4) = 1

2π

∫
dk⊥IP (k⊥,q̄P )[εP 〈g1(k̄1,k̄,k̄P ,k̄4)g1(k̄P ,k̄2,k̄3,k̄)〉 + εP,v〈g2(k̄1,k̄,k̄4,k̄P )g1(k̄P ,k̄2,k̄3,k̄)〉

+ εP,v〈g1(k̄1,k̄,k̄P ,k̄4)g2(k̄P ,k̄2,k̄,k̄3)〉] + εP 〈g3(k̄1,k̄,k̄3,k̄
′
P )g3(k̄′

P ,k̄2,k̄,k̄4)〉
+ εP,v〈g3(k̄,k̄1,k̄3,k̄

′
P )g3(k̄′

P ,k̄2,k̄,k̄4)〉 + εP,v〈g3(k̄1,k̄,k̄′
P ,k̄3)g3(k̄′

P ,k̄2,k̄,k̄4)〉]

+ 1

2π

∫
dk⊥IC(k⊥,q̄C)[εC〈g1(k̄1,k̄2,k̄,k̄C)g2(k̄,k̄C,k̄4,k̄3)〉 + εC〈g2(k̄1,k̄2,k̄C,k̄)g1(k̄,k̄C,k̄3,k̄4)〉], (14)

∂�g2(k̄1,k̄2,k̄3,k̄4) = 1

2π

∫
dk⊥IP (k⊥,q̄ ′

P )[ εP,l〈g2(k̄1,k̄,k̄3,k̄
′
P )g2(k̄′

P ,k̄2,k̄,k̄4)〉 + εP,l〈g3(k̄1,k̄,k̄P ,k̄4)g3(k̄P ,k̄2,k̄3,k̄)〉]

+ 1

2π

∫
dk⊥IC(k⊥,q̄C)[ εC〈g1(k̄1,k̄2,k̄,k̄C)g1(k̄,k̄C,k̄4,k̄3)〉 + εC〈g2(k̄1,k̄2,k̄C,k̄)g2(k̄,k̄C,k̄3,k̄4)〉], (15)

and

∂�g3(k̄1,k̄2,k̄3,k̄4) = 1

2π

∫
dk⊥IP (k⊥,q̄P )2[ εP 〈g1(k̄1,k̄,k̄3,k̄

′
P )g3(k̄′

P ,k̄2,k̄,k̄4)〉 + εP,v〈g1(k̄1,k̄,k̄3,k̄
′
P )g3(k̄′

P ,k̄2,k̄4,k̄)〉

+ εP,v〈g2(k̄,k̄1,k̄3,k̄
′
P )g3(k̄′

P ,k̄2,k̄,k̄4)〉] + 1

2π

∫
dk⊥IP (k⊥,q̄ ′

P )2εP,l〈g2((k̄,k̄1,k̄3,k̄
′
P )g3(k̄′

P ,k̄4,k̄2,k̄)〉. (16)

These consist of closed-loop (εP = −2), vertex correc-
tions (εP,v = 1), and ladder (εP,l = 1) diagrams of the
qP electron-hole (Peierls) pairing, which combine with
the ladder diagrams (εC = −1) of the electron-electron
(Cooper) pairing. Here k̄P = k̄ + q̄P , k̄′

P = k̄ + q̄ ′
P , and k̄C =

−k̄ + q̄C , where q̄P,C = (q⊥P,C,ωP,C) corresponds to the
Peierls q̄P = k̄1 − k̄4, q̄ ′

P = k̄1 − k̄3, and Cooper q̄C = k̄2 + k̄1

variables.
In the above equations, each diagram singles out a discrete

frequency convolution of the form DP,C = ∑
ωn

gi ◦ gj ◦
LP,C between the coupling products and the electronic Peierls
(Cooper) loop derivative LP,C = T ∂�G

0
+(k̄ + q̄P,C)G0

−(±k̄).
The exact infinite frequency summation at arbitrary T is com-

putationally out of reach. It will be approximated, however,
according to the following decoupling scheme in which the
frequency summation in electronic loops is decoupled from the
interactions, the latter having a frequency dependence mainly
concentrated below ωD , as shown by the phonon propagators
of Eqs. (10)–(13).

We therefore use a mean-field scheme in which DP,C →
〈gi ◦ gj 〉

∑
ωn
LP,C , where 〈· · · 〉 = Nω

−1 ∑
n · · · , stands as

an average of the coupling part over a finite set of ωn.
As for the electronic part, corresponding to the � derivative
of the Cooper and Peierls loops, IP,C = ∑+∞

n=−∞ LP,C , the
summation over all frequencies can be computed exactly
giving an explicit dependence on temperature T and external
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electronic frequencies ωP,C . This yields

IP,C(k⊥,q̄P,C) =
∑
ν=±1

θ [|E0(�)/2 + νAP,C | − E0(�)/2]

× 1

4

[
tanh

E0(�) + 2νAP,C

4T
+ tanh

E0(�)

4T

]

× (E0(�) + νAP,C)E0(�)

(E0(�) + νAP,C)2 + ω2
P,C

, (17)

where ωP = ωn3 − ωn1, and

AP = −ε(k⊥) − ε(k⊥ + q⊥P ) (18)

for the Peierls channel; ωC = ωn1 + ωn2 and

AC = −ε(k⊥) + ε(k⊥ + q⊥C) (19)

for the Cooper channel. Here θ [x] is the step function (θ [0] ≡
1
2 ). At finite temperature, the above decoupling scheme with
the number of frequencies (=14) and momentum patches (=
12) retained corresponds to the solution of (14 × 12)3 ∼ 1.2 ×
106 coupled RG flow equations governed by Eqs. (14)–(16),
a number that has been reduced by various symmetries of the
coupling constants with respect to frequencies and transverse
momenta.

The approximation can reasonably well take into account
retardation effects for a ratio ωD/πT that is not too large. It
represents a good compromise between exacting computing
time and reproducing the results known for either the nonre-
tarded case in quasi-1D [30–32] or the quantum corrections to
the BOW ordering in a pure electron-phonon problem in one
dimension [37,63].

The nature of instabilities of the electron gas and their
critical temperatures, Tμ, are best studied from the suscep-
tibilities χμ. For the coupled electron-phonon model under
consideration, only superconducting and staggered density-
wave susceptibilities present a singularity as a function of
antinesting and electron-phonon interaction strength. In the
static limit, these are defined by

πvF χμ

(
q̄0

μ

)= 1

2π

∫
dk⊥

∫
�

〈
z2
μ

(
k̄+q̄0

μ

)〉
IP,C

(
k⊥+q̄0

μ

)
d�,

(20)

where the vertex parts zμ are governed by one-loop flow
equations. In the density-wave channel, we shall consider

∂�zSDW
(
k̄ + q̄0

P

) = 1

2π

∫
dk′

⊥IP

(
k′
⊥,q̄0

P

)
zSDW

(
k̄′ + q̄0

P

)

× 〈[
εP,lg3

(
k̄,k̄′ + q̄0

P ,k̄′,k̄ + q̄0
P

)
+ εP,lg2

(
k̄′ + q̄0

P ,k̄,k̄′,k̄ + q̄0
P

)]〉
(21)

and

∂�zBOW
(
k̄ + q̄0

P

) = 1

2π

∫
dk′

⊥IP

(
k′
⊥,q̄0

P

)
zBOW

(
k̄′ + q̄0

P

)

× 〈[
εP g1

(
k̄′ + q̄0

P ,k̄,k̄′,k̄ + q̄0
P

)
+ εP,lg2

(
k̄′ + q̄0

P ,k̄,k̄′,k̄ + q̄0
P

)
− εP g3

(
k̄′,k̄ + q̄0

P ,k̄′ + q̄0
P ,k̄

)
− εP,lg3

(
k̄,k̄′ + q̄0

P ,k̄′,k̄ + q̄0
P

)]〉
(22)

for the static μ = SDW and BOW susceptibilities, respec-
tively, at q̄0

P = (π,0). In the superconducting channel, we shall
examine

∂�zμ

(−k̄ + q̄0
C

)

= 1

2π

∫
dk′

⊥IC

(
k′
⊥,q̄0

C

)
zμ

(−k̄′ + q̄0
C

)

×�μ(k⊥)
〈
εC

[
g1

( − k̄′ + q̄0
C,k̄′, − k̄ + q̄0

C,k̄
)

+g2
(−k̄′ + q̄0

C,k̄′,k̄, − k̄ + q̄0
C

)]〉
, (23)

for the static SC susceptibility at q̄0
C = 0, where �μ(k⊥) is the

form factor for the SC order parameter. For SC-d and triplet-f
wave (SC-f ) correlations, we have �SC−d (k⊥) = √

2 cos k⊥
and �SC−f (k⊥) = (sgn k)

√
2 cos k⊥, whereas for conventional

singlet pairing (SC-s) we have �SC−s(k⊥) = 1.
Before embarking on the solution of the above equations,

it is instructive at this stage to examine their basic features
as a function of the different energy scales of the model.
At high temperature where T � ωD and the phonons are
classical, the contribution of the Ph-M interaction to all open
diagrams—ladder and vertex corrections—becomes strongly
dampened for all �(�), as a result of retardation that re-
duces the summations over intermediate frequency transfer
in such diagrams. In this temperature range, the Ph-M part
contributes more appreciably to the closed-loop diagram of
the Peierls channel which does not have an intermediate
sum over transfer frequencies, and this is on equal footing
with the direct Coulomb part in Eqs. (14)–(16). On the other
hand, when entering the low-temperature domain at T < ωD ,
retardation effects are reduced which progressively strengthen
the contribution of the electron-phonon interaction to open
diagrams. This increases mixing or interference between all
diagrams of the Peierls and Cooper scattering channels.

For the range of parameters considered in the model, the
temperature scale Tμ of instabilities of the electron gas that are
considered below all fall in the temperature range Tμ 
 t⊥.
This is where the transverse electron motion and the warping
of the Fermi surface are coherent, making the electron gas
effectively two-dimensional, albeit strongly anisotropic in this
temperature domain. This is known to affect the interference
in a particular way depending on the energy distance �(�)
from the Fermi surface in the RG flow. At high energy, when
�(�) � t⊥, the flow essentially coincides with the 1D limit
where the interference is maximum, although subjected to
the above conditions between T and ωD . When �(�) 
 t⊥,
the interference between the Peierls and Cooper channels is
affected by the coherent warping of the Fermi surface and
ultimately nesting alterations at �(�) < t ′⊥. Both generate a
momentum dependence of the coupling constants (14)–(16)
which reflects in the end the nature of the electron gas
instability at Tμ.

IV. RESULTS

A. Instabilities for weak phonon-mediated interaction

The integration of the RG equations up to � → ∞ for the
couplings (14)–(16) and pair vertices (21)–(23) leads to the
temperature dependence of the selected susceptibilities as a
function of antinesting, t ′⊥/t⊥, phonon frequency, ωD/t⊥, both
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FIG. 1. (Color online) Typical temperature variations of the
SDW, BOW, and SC-d-wave susceptibilities at ωD/t⊥ = 0.4 for (a)
weak and (b) intermediate antinesting t ′

⊥ at zero (open symbols) and
a nonzero (solid symbols, |g̃ph| = 0.1) phonon-mediated interaction.
The comparison of susceptibilities for the same |g̃ph| for weak (c) and
intermediate (d) antinesting values at lower phonon frequencies.

normalized by the interchain hopping t⊥; as for the weak Ph-M
interaction, it is parameterized by the ratio

|g̃ph| ≡ |gph|/g1, (24)

here normalized by the strength of nonretarded repulsive
interaction g1. The main features the influence of weak Ph-M
coupling has on the temperature dependence of relevant sus-
ceptibilities are summarized in Fig. 1 at small and intermediate
antinesting parameter t ′⊥, and different ωD . In Fig. 1(a), t ′⊥ is
taken sufficiently small so nesting promotes a singularity in
χSDW, indicating an instability against the onset of SDW order
at TSDW. As for the correlations in the BOW and SC-d channels,
the related susceptibilities are nonsingular and remain small.
According to Fig. 1(a), the presence of an even small |g̃ph| at
sizable ωD is sufficient to cause a noticeable increase of TSDW

compared to the purely electronic limit.
At the outset, the strengthening of SDW instability takes

its origin in the k and q momentum dependence of Ph-M
interaction in Eqs. (10)–(13) at � = 0, resulting in a reduction
of the backscattering and an increase of the Umklapp term. As
discussed in more detail in Sec. IV C 1, when Ph-M terms are
small compared to unretarded interactions, both concur to an
increase of antiferromagnetic spin exchange between itinerant
electrons of opposite spins and located on separated sheets of
the Fermi surface near ±kF . The above effects on scattering
amplitudes are magnified by the RG flow, mainly due to

nesting in one-loop ladder and vertex corrections. Moreover,
the reinforcement of SDW becomes the most efficient in the
temperature range T < ωD due to the reduction of retardation.
This is where the Ph-M part acts progressively as nonretarded
contributions in all open diagrams such as the ladder and
vertex corrections of (14)–(16) and (21), namely, those mainly
involved in the exchange mechanism. The influence of Ph-M
coupling on SDW correlations will then naturally depend on
the value of phonon frequency ωD . Figure 1(c) shows indeed
that lowering ωD reduces the enhancement of TSDW at low
antinesting, an indication of a positive isotope effect on SDW
(see Sec. IV C 1).

At large-enough t ′⊥, nesting turns out to be sufficiently
poor to prevent the occurrence of SDW. The instability of the
metallic state no longer takes place in the density-wave channel
but rather shows up by interference in the Cooper channel
with the onset of SC-d order at Tc. As shown in Fig. 1(b), the
presence of a small Ph-M coupling at the same ωD gives rise to
a substantial increase of the critical temperature Tc compared
to the purely electronic case. The SC-d strengthening is the
mere consequence of the boost of SDW spin fluctuations
responsible for the Cooper pairing in the metallic state. This is
shown in Fig. 1(b) where at nonzero |g̃ph| a more pronounced,
though nonsingular, enhancement of χSDW is found above Tc.
This feature signals that the reinforcement of spin fluctuations
persists relatively deep in the normal state.

In Fig. 1(d) the effect of ωD on both Tc and normal state
spin fluctuations is singled out. The growth of Tc with ωD is
correlated with the increase of spin correlations above Tc.
In this part of the figure, we note that the onset of spin
fluctuation reinforcement takes place at T < ωD , where χSDW

clearly separates from the static ωD → 0 limit; it signals the
growth of ladder and vertex corrections following a reduction
of retardation. The enhancement of spin fluctuations in the
normal phase will be analyzed in Sec. IV D, where it is found
to follow a Curie-Weiss temperature dependence, which is
comparatively more pronounced than the one occurring in the
purely electronic limit [31,32].

Concerning BOW correlations, Fig. 1 shows that for weak
|g̃ph|, these remain weakly enhanced. However, as will be
shown next, the situation qualitatively changes when |g̃ph|,
though still small, reaches some critical value.

B. Phase diagrams

1. Spin-density-wave versus d-wave superconductivity

We now consider the sequence of instabilities of the metallic
state as a function of t ′⊥ in order to construct the phase diagrams
at weak Ph-M couplings. This is shown in Fig. 2(a). At small
|g̃ph| and for a sizable ωD , the system remains unstable to
the formation of a SDW state with a TSDW that displays the
characteristic monotonic decrease with increasing t ′⊥ [26,29–
32,64,65]. At the approach of a well-defined antinesting
threshold t ′∗⊥ , however, TSDW undergoes a critical drop that
terminates at t ′∗⊥ , where SC-d begins at its peak value denoted
by T ∗

c . Above, Tc shows a continuous decrease with t ′⊥ that
correlates with the reduction of SDW fluctuations as the source
of Cooper pairing.

As stressed above, Fig. 2(a) confirms that the Ph-M
coupling, albeit small, reinforces both TSDW and Tc for all
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FIG. 2. (Color online) Phase diagrams of the repulsive quasi-1D
electron gas model as a function of the antinesting parameter t ′

⊥
and |g̃ph| for (a) the SDW–SC-d and (b) BOW–SC-d sequences of
instabilities at ωD/t⊥ = 0.4. In (a), the continuous lines correspond
to the instability lines in the adiabatic ωD → 0 limit and the dashed
lines show the variation of the Curie-Weiss scale � of χSDW [Eq. (26)]
as a function of t ′

⊥ in the superconducting region.

t ′⊥, including the critical value t ′∗⊥ at which superconductivity
emerges. We also note from Fig. 2(a) that this reinforcement
reduces the sharpness of its critical drop at the approach of t ′∗⊥ ,
an effect that carries over in the superconducting sector where
the reduction of Tc with t ′⊥ turns to be less rapid.

Also shown in the figure are the instability lines in the
static ωD → 0 limit [continuous lines of Fig. 2(a)]. Retardation
effects are found to be very important at the approach of
the critical value t ′∗⊥ |ωD→0 and beyond, an indication that
the isotope effect is clearly nonuniform as a function of t ′⊥
(see Sec. IV C 1). It is also worth noticing from the figure that
in the presence of dominant nonretarded repulsive interactions,
the influence of Ph-M terms on both SDW and SC-d instabil-
ities remains finite in the static limit. This contrasts with the
situation when only Ph-M interactions are present, and where
Tc → 0 as ωD → 0 for s-wave SC [37].

2. Bond-order wave versus superconductivity

By increasing further the strength of Ph-M coupling for
the same ωD , Fig. 2(b) shows that the SDW–SC-d sequence
of instabilities as a function of t ′⊥ is maintained only up to
a critical |g̃c

ph| (≈0.52 for the parameters used), above which

SDW turns out to be no longer stable and replaced by the onset
of a nonmagnetic BOW state at TBOW. The typical variations
of relevant susceptibilities in the BOW sector of the phase
diagram are given in Fig. 3(a). The BOW instability that takes
place from the metallic state corresponds to the onset of a
Peierls, though correlated, lattice distorted state [63,66].

A remarkable feature of the phase diagrams of Fig. 2(b)
is that above |g̃c

ph| and at ωD that is not too small, the BOW
instability continues to be followed by SC-d superconductivity
at t ′⊥ � t ′∗⊥ . In these conditions, however, Tc becomes a
decreasing function of |g̃ph|. This is depicted in Fig. 4, where it
behaves so after having reached its maximum at the boundary
|g̃c

ph| where SDW and BOW are found to be essentially
degenerate and at their maximum strength. It is worth noticing
that at the boundary, Tc has increased by a factor 4 or so
compared to the purely electronic case. Despite the presence
of a Peierls lattice distorted state, the essential role played by
spin fluctuations in the emergence of SC-d at t ′⊥ � t ′∗⊥ remains.
This is confirmed in Fig. 3(b), where χSDW > χBOW over a
large temperature interval at the approach of Tc in the normal
state. In this sector we find no sign of increase for the s-wave
superconducting correlations, as shown by the temperature
profile of χSC−s that displays no enhancement in Fig. 3(b). It
is only when |g̃ph| � 1 that SC-d becomes in turn unstable and
BOW ordering gives rise to s-wave superconductivity under
nesting alteration. The latter case has been analyzed in detail
by the same technique in Ref. [37].

Another surprising feature of the phase diagram in |g̃ph| >

|g̃c
ph| is found at low phonon frequency. Figure 5 shows that in

the small-ωD range, the BOW ordering at t ′⊥ � t ′∗⊥ is followed
by a triplet SC-f instability instead of a SC-d one. Since
small phonon frequency increases retardation, it reinforces
most exclusively closed-loop diagrams in the RG flow, related
to density or charge fluctuations. Bond charge correlations
are then increased with respect to their spin counterpart,
and for dominant repulsive interactions, this leads to SC-f -
type superconductivity. The triplet-singlet competition is in a
way reminiscent of the one found when a weak, repulsive
(nonretarded) interchain interaction is added to the purely
repulsive quasi-1D electron gas model [30]. The latter coupling
is also known to boost exclusively charge fluctuations [67],
similar to the way electron-phonon interaction does for closed
loops when strong retardation is present; the same interchain
coupling is also known to promote a SDW-to-BOW crossover
in the density-wave instabilities at low antinesting [30].
Cranking up ωD results in the progressive enhancement of
open diagrams which are responsible for spin fluctuations and
d-wave superconductivity. Although, from Fig. 5, the BOW
ordering is weakly affected, a SC-f → SC-d crossover is
indeed found to occur at small ωD/t⊥ (∼0.1 for the parameters
used).

C. Isotope effects

1. Spin-density-wave and d-wave superconductivity

In the preceding paragraphs we mentioned on several
occasions the positive influence of raising ωD on the strength
of SDW and SC-d instabilities. This result, obtained by
varying the molecular mass M at fixed elastic constant κ [gph,
which remained constant according to Eq. (11)], corresponds
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FIG. 3. (Color online) Temperature variation of the SDW, BOW, and SC-d susceptibilities for |g̃ph| above the threshold |g̃c
ph| for the

occurrence of BOW instability at (a) t ′
⊥ < t ′∗

⊥ and in the superconducting sector at t ′
⊥ > t ′∗

⊥ for the (b) SC-d (ωD/t⊥ = 0.4) and (c) triplet SC-f
(ωD/t⊥ = 10−3) instabilities.

to a positive isotopic effect. As touched on previously, the
mechanism of reinforcement of SDW correlation can be
understood as a modification of the effective antiferromagnetic
exchange mechanism, itself affected by retardation. Actually,
for itinerant electrons, the total scattering amplitudes g2 and
g3 of the action SI in (9) contribute at T an exchange term of
the form

Sex
I = πvF

T

LN⊥

∑
{k̄},q̄P

1

2
(g2 + g3) ◦ �Sk̄1,q̄P

· �Sk̄2,−q̄P
, (25)

where �Sk̄,q̄P
= 1

2ψ∗
+,α(k̄ + q̄P )�σαβψ−,β (k̄) + c.c. is the

Fourier-Matsubara component of the SDW spin density. Thus
in weak coupling, the combination 1

2 (g2 + g3) corresponds
to a momentum- and frequency-dependent antiferromagnetic
exchange interaction generated by the scattering of oppositely

FIG. 4. (Color online) SDW-BOW critical temperatures at t ′
⊥ =

t ′∗
⊥ /2 below the threshold antinesting (right) and the maximum

SC-d critical temperature (left) [T ∗
c = Tc(t ′∗

⊥ )] versus the normalized
strength of phonon-mediated interaction |g̃ph| at ωD/t⊥ = 0.4.

moving carriers at ±kF with antiparallel spins. It is the
same exchange term that governs the enhancement of the
vertex part zSDW for the SDW susceptibility [see Eq. (21)].
Its growth with decreasing �(�) results from the multiple
exchange scattering of virtual qP electron-hole pairs carried
by ladder and vertex corrections in the flow equations (15)
and (16). As to the backscattering term, g1, its role is indirect
since in the repulsive sector, g1 tends to align spins of ±kF

carriers. This dampens the amplitude of both g2 and g3 and
then SDW correlations. Therefore, by lowering �(�), the
combined influence of a g1 reduction and a g3 increase by Ph-M
interactions in (10) and (13) will boost g2 and, in turn, g3 and
antiferromagnetic exchange. As mentioned earlier, however,
this additional and positive input of Ph-M interaction reaches

FIG. 5. (Color online) Phase diagram above the threshold |g̃c
ph|

for the BOW-to-SC sequence of instabilities as a function of
antinesting. The figure shows the crossover between triplet f -wave
and singlet d-wave superconductivity in the small phonon frequency
region.
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its maximum impact in the temperature domain T < ωD ,
namely where retardation effects on virtual electron-hole pair
scattering processes become small, hence the isotope effect on
SDW.

The increase of TSDW with ωD is illustrated in Fig. 6(a) for
|g̃ph| = 0.1 and different values of t ′⊥ in the SDW part of the
phase diagram. At relatively small t ′⊥ that is, well into the SDW
sector, TSDW undergoes a monotonic but weak increase over
all the frequency range of phonons, a consequence of ladder
and vertex corrections to the antiferromagnetic exchange that
grow in importance by increasing ωD . It is worth noticing
that in the adiabatic limit, TSDW|ωD→0 is found to be slightly
larger than the TSDW|gph=0 obtained in the absence of Ph-M
interaction [see Fig. 2(a)]. This indicates that static phonons
still have a positive influence on the exchange interaction
(25) and the strength of SDW correlations. This adiabatic
effect finds a certain echo in the strong coupling—Hubbard
interaction—case where dynamical mean-field theory cal-
culations do predict an enhancement of antiferromagnetic
exchange between localized spins by zero-frequency phonons
[45]. Here the static enhancement essentially results from the
mixing of Ph-M interaction to the nonretarded Coulomb terms
gi in the RG flow; the enhancement vanishes by taking gi → 0
in Eqs. (10), (12), and (13), a result found in the limit of pure
electron-phonon coupling [37].

When t ′⊥ increases and approaches the critical domain
where the drop in TSDW becomes, according to Fig. 2(a),
essentially vertical, the isotope effect becomes huge as traced
in Fig. 6(a). Close to t ′∗⊥ , the reinforcement of SDW correlations
by an even small increase in ωD gives rise a large increase of
TSDW. This is not the consequence of nesting improvement
but rather the result of stronger nesting deviations needed to
counteract the reinforcement of SDW instability by Ph-M
interactions. For t ′⊥ slightly above t ′∗⊥ , Fig. 6(a) features
the interesting possibility of a SC-d-to-SDW transition as a
function of ωD .

The positive isotope effect carries over into the SC-d
side of the phase diagram where Tc is found to increase

FIG. 6. (Color online) Isotope effect at |g̃ph| = 0.1 for (a) TSDW

at different antinesting t ′
⊥ < t ′∗

⊥ and (b) Tc of the SC-d channel
for different t ′

⊥ > t ′∗
⊥ . Insert: Variation of the isotope exponent as

a function of phonon-mediated coupling amplitude at t ′∗
⊥ .

with ωD at different t ′⊥, as shown in Fig. 6(b). This is
directly associated with the ωD-dependent reinforcement of
spin correlations in the normal state as already pointed out
in Fig. 1(d), which strengthens the pairing interaction in the
SC-d channel. Although the isotope effect is slightly larger in
amplitude near the critical t ′∗⊥ , it remains of comparable size
at an arbitrary value of antinesting with a power law Tc ∼ ωα

D

that takes place at an intermediate frequency with an exponent
α � 0.24(≡ d ln Tc/d ln ωD), a value virtually independent of
t ′⊥ [see Fig. 6(b)] and |g̃ph|, as shown in the insert of Fig. 6(b).
At high phonon frequency where the ratio ωD/Tc becomes
very large, retardation effects become negligible and Tc tends
to level off with frequency. This saturation probably reflects the
limitation of using a finite number of Matsubara frequencies
in the mean-field approximation of the loop convolution over
frequency.

2. Bond-order wave versus superconductivity

In the BOW regime above |g̃c
ph|, the isotope effect on

TBOW has the opposite sign. At low t ′⊥, for instance, Fig. 7(a)
shows that TBOW decreases monotonically with ωD and the
reduction becomes increasingly large with t ′⊥ which also
softens the lattice distortion through nesting alteration. A
reduction of TBOW with ωD is a consequence of the growth of
nonadiabaticity of the phonon field, a well-known factor to be
at play in the reduction of the Peierls distortion gap in purely
electron-phonon models in one dimension [63,66,68]. From
a diagrammatic point of view, nonadiabaticity is a quantum
effect again tied to the unlocking of Ph-M interaction to
open diagrams and thus to quantum interference between
electron-hole and Cooper pairing at the one-loop level. In
contrast to the SC–d/SDW mixing, however, the interference
is, in the present, case destructive: Cooper and Peierls
diagrammatic contributions have opposite sign and this reduce
the temperature scale of BOW ordering [66]. The onset of a
quantum to classical crossover for the BOW state is perceptible
at ωD/2T 0

BOW|ωD→0 ∼ 1, as is found to occur in the pure
electron-phonon limit [37,63].

FIG. 7. (Color online) Isotope effect at |g̃ph| > |g̃c
ph| for (a) TBOW

at different antinesting t ′
⊥ < t ′∗

⊥ and on (b) Tc in the SC-f and SC-d
channels for different t ′

⊥ > t ′∗
⊥ . The straight lines correspond to the

power-law dependence Tc ∼ ωα
D , where α � 0.25.
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Above t ′∗⊥ , but for small ωD , we still observe an inverse
isotope effect for the Tc of triplet, SC-f superconductivity, as
shown in Fig. 7(b). This confirms the role of BOW fluctuations
in the existence of SC-f ordering at repulsive coupling. This
is further supported when ωD increases and crosses the critical
value at which SC-d reappears in Fig. 5. Then the isotope effect
becomes once again positive as a consequence of the growth of
antiferromagnetic exchange and spin fluctuations that govern
the d-wave Cooper pairing. In the SC-d regime, one can extract
at intermediate frequencies a power-law dependence Tc ∼ ωα

D

for the isotope effect with a value of α � 0.25 similar to the
one found below |g̃c

ph| [Fig. 6(b)].

D. Normal state

Now that the positive influence of electron-phonon in-
teractions on the temperature scales for ordering has been
examined, one can turn our attention on the influence of a
weak Ph-M interaction on spin correlations of the normal
phase above Tc. This is done for the SDW–SC-d sequence of
instabilities. In Fig. 8(a), we show the temperature dependence
of the inverse SDW susceptibility at small |g̃ph| and various
strengths of antinesting. At sufficiently high t ′⊥ > t ′∗⊥ , χ−1

SDW
decays essentially linearly from the high-temperature region
and extrapolates towards a critical point at a finite TSDW.
However, as the temperature is lowered at T < t ′⊥, nesting
deviations becomes coherent and the susceptibility undergoes
a change of regime and ceases to be critical. Nevertheless,
according to Fig. 8(a), χ−1

SDW keeps decreasing and extrapolates
to a nonzero intercept at T = 0 and a finite slope at the end
point Tc.

This nonsingular growth of spin correlations in the metallic
state, which persist down to Tc, can be well described by a
Curie-Weiss form (continuous lines in Fig. 8),

χSDW = C

T + �
, (26)

extending up to the temperature TCW for the onset of the
Curie-Weiss regime, which is about 10 times Tc in temperature

FIG. 8. The temperature dependence of the normal phase inverse
SDW susceptibility at different antinesting (a) and electron-phonon
interaction strengths (b). The straight lines correspond to the Curie-
Weiss fit [Eq. (26)].

at the frequency used in the figure {TCW decreases when ωD

is lowered [see Fig. 1(d)]} . Here the Curie-Weiss scale �

stands as a characteristic energy for SDW fluctuations, which
is defined as positive when t ′⊥ > t ′∗⊥ . The Curie-Weiss behavior
has been already found in the purely electronic case [31,32].
It results from the positive feedback of SC-d pairing on
SDW correlations, a consequence of constructive interference
between these channels of correlations. The presence of Ph-M
interactions clearly reinforces this behavior. As shown in
Fig. 8(b), cranking up |g̃ph| leads to the decrease of the
Curie-Weiss scale � and an increase of the constant C. This
is consistent with an increase of the SDW correlation length
ξ ∼ (T + �)−1/2, in tune with the increase of Tc discussed
above. The softening of � in Fig. 8 carries on until t ′⊥ reaches
t ′∗⊥ where � → 0. There the system would then become
quantum critical with χSDW ∼ 1/T and TSDW → 0, if not for
the presence of superconductivity at a finite Tc that prevents
the SDW quantum critical point from being reached. Below
t ′∗⊥ , � < 0 and the system enters the SDW sector with a finite
TSDW(≡ −�) > Tc.

At the approach of t ′∗⊥ , � is well fitted by the quantum
scaling form

� ≈ A(t ′⊥ − t ′∗⊥ )η, (27)

with an exponent η � 1, consistently with the product η = νz

of the correlation length (ν = 1/2) and the dynamical (z = 2)
exponents for SDW at the one-loop level. The linear profile
of � near t ′∗⊥ is illustrated in Fig. 2(a). From the Fig. 2(a) and
Fig. 8(b), the coefficient A decreases relatively quickly with
|g̃ph|.

V. DISCUSSION AND CONCLUSION

In this work we used a weak-coupling RG approach to
examine the influence of the tight-binding electron-phonon
interaction on the interplay between magnetism and su-
perconductivity in quasi-one-dimensional correlated electron
systems. When the phonon-mediated interaction remains weak
and subordinate to the direct Coulomb terms of the electron
gas, the RG flow of scattering amplitudes is found to be
distorted for particular longitudinal electron momentum and
momentum transfers. This reinforces the antiferromagnetic
exchange mechanism between itinerant spins and yields an
increase of the temperature scale of SDW ordering. By intro-
ducing enough nesting deviations into the electron kinetics,
SDW ordering is inhibited, but magnetic reinforcement by the
electron-phonon interaction persists and shifts by interference
in the superconducting channel. d-Wave Cooper pairing and
Tc then become enhanced compared to the purely electronic
situation. These properties were found to be affected by retar-
dation effects linked to the exchange of low-energy acoustic
phonons that modulate the strength of virtual electron-hole
scattering entering into the antiferromagnetic exchange term
of the electron gas. This gives rise to a positive isotope effect
on the SDW ordering temperature, which carries over beyond
the critical antinesting t ′∗⊥ where d-wave superconductivity is
found.

Our results also revealed that such an increase for Tc

is preceded by the strengthening of spin fluctuations in the
normal phase. This is manifest in a more pronounced Curie-
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Weiss SDW susceptibility compared to the purely electronic
situation, a consequence of self-consistency between d-wave
Cooper pairing and spin fluctuations, a positive interference
effect whose amplitude scales with Tc.

We have also established the range of electron-phonon
interaction beyond which SDW ordering is no longer stable
against the BOW or Peierls distorted state. In these conditions,
the Peierls ordering was found to be followed above critical
antinesting by either d-wave or, amazingly, triplet f -wave
superconductivity depending if the retardation effects are weak
or strong, respectively. The isotope effect which is negative in
the triplet SC-f sector and positive in SC-d reflects the origin
of the pairing interaction in both situations, namely BOW
fluctuations in the former case and SDW ones in the latter.

The relevance of the above results for concrete materials
showing the emergence of superconductivity on the verge
of antiferromagnetism is of interest. In Bechgaard salts, for
instance, superconductivity manifests itself where SDW state
ends under pressure. Their normal state is characterized by
important spin fluctuations over a large temperature interval
above Tc whose amplitude scales with the one of spin
correlations under pressure, as made abundantly clear by NMR
experiments [22,25,69,70].

Our findings show that intrachain repulsive interactions
are dominant in these materials. While repulsive interactions
are known to be able to generate on their own the sequence
of SDW-SC-d instabilities as a function t ′⊥ in the quasi-1D
electron gas model [29–32], the present results show, however,
that the addition of a relatively small tight-binding electron-
phonon interaction, which would be compatible with diffuse
x-ray scattering experiments [34,35], are far from being an
obstacle for superconductivity. When subordinate to the purely
electronic repulsion, the phonon-mediated interaction can
indeed play a very active part in assisting antiferromagnetism
in the emergence of d-wave superconductivity with a stronger
Tc.

Although the typical range of values taken by the electron-
phonon matrix element has not been determined with great
accuracy in materials like the Bechgaard salts (see, for
example, Ref. [71]), the results of the present paper suggest that
it should be small in amplitude compared to direct interactions.
This is supported by the stability of the SDW state against the
Peierls distortion, which, from the above results, is found to be
assured only within a finite interval of weak phonon-mediated
interaction at essentially arbitrary retardation. Therefore the
absence of the Peierls phenomena in the Bechgaard salts may
be viewed as a mere consequence of the weakness of the
electron-phonon coupling constant in these materials. This
view would be consistent with previous estimations made
from optics [71] and also from the fact that the only few
materials showing a lattice distorted phase belong to the more
correlated isostructural compounds of the (TMTTF)2X series,
the so-called Fabre salts. A compound like (TMTTF)2PF6, for
instance, is well known to undergo a spin-Peierls transition
within a strongly correlated Mott state [34,35,72]. Less than
10 kbars of pressure is sufficient to weaken the coupling of
phonons to electrons and transform this state into one with
antiferromagnetic Néel order [73,74]; 30 kbars separate the
latter from the sequence of SDW-SC instabilities found in
the prototype compound (TMTSF)2PF6 of the Bechgaard salts

[75–77], in line with a coupling to phonons that remains in the
background of direct Coulomb terms.

As to the possible experiments able to disentangle the
part played by phonon-mediated interaction on the SDW-SC
sequence of instabilities seen in molecular materials like
the Bechgaard salts, isotope effect measurements would be
certainly of interest, especially near the quantum critical point
where the present results show that it becomes huge at the
approach of t ′∗⊥ on the SDW side of the phase diagram. While
the isotope effect in molecular materials proves to be difficult
to realize in practice due to the complications of controlling
all other parameters following a change in the mass M of
molecular units (volume of the unit cell, disorder, etc.), the 13C
enrichment of the TMTSF molecular units stands probably as
the best way to limit these side effects and to test some of the
results obtained here. According to Fig. 2(a), for instance, a
finite reduction in ωD would induce a decrease in the critical
t ′∗⊥ at which superconductivity occurs. Practically, one should
therefore expect a downward shift of the critical pressure for
the emergence of superconductivity and a decrease in the
maximum T ∗

c at that point and beyond on the pressure axis.
Another possible signature of the reinforcement of antifer-

romagnetism by electron-phonon interaction in the Bechgaard
salts may be found in its influence on the Curie-Weiss behavior
of SDW susceptibility which governs the enhancement of
the NMR spin-lattice relaxation rate observed down to Tc

[22,25,69,78,79]. While the quasi-1D electron gas model with
purely electronic interactions does predict a critical linear
suppression of the Curie-Weiss scale � for spin fluctuations as
t ′⊥ → t ′∗⊥ [31,32], its slope [coefficient A of Eq. (27)] proves
to be significantly larger than the one seen in experiments
[80]. In this regard, we have found that adding a small
|g̃ph| is sufficient to reduce the downslope of � to values
congruent with experiments [80], and this over a large range of
retardation. This supports the view of an active role played by
the electron-phonon interaction in the properties of the metal-
lic state, especially those associated to quantum criticality
at t ′∗⊥ .

In this paper, we have dealt exclusively with the cou-
pling of correlated electrons to low-energy acoustic phonons
within the tight-binding scheme for the electronic structure,
a coupling well known to be responsible for electronically
driven structural instabilities in low-dimensional molecular
materials [35,59]. We did not consider intramolecular (Hol-
stein) phonon modes, also well known to be present. Their
classification alongside their (small) coupling to electrons
in (TMTSF)2X have been obtained from infrared optical
studies [71]. These molecular phonons are characterized by
relatively large energies and weak retardation effects compared
to acoustic branches considered above. In first approximation,
their influence can be incorporated through a redefinition of the
nonretarded terms, amounting to a small and similar downward
shift of the couplings gi of the electron gas model. Since the
latter couplings were taken as phenomenological constants
whose range was fixed by experiments, the values taken in the
present work should embody to some extent the influence of
intramolecular phonons.

The interplay between electron-phonon and electron-
electron interactions in the framework of the Holstein-Hubbard
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model has been the subject of considerable attention in the past
few years, especially in one dimension where, in the absence
of interchain hopping and nesting alteration, SDW order is
found to compete exclusively with a charge-density-wave state
and, to a lesser degree, s-wave superconductivity when the
phonon-mediated interaction strength is of the order of the
direct Coulomb term [81–84].

In conclusion, we have performed a finite-temperature
renormalization group analysis of the quasi-1D electron
electron gas model with nonretarded electron-electron cou-
plings and phonon-mediated interactions of the tight-binding
electronic structure. For a phonon-mediated interaction that
is weak compared to nonretarded terms, we found a rein-
forcement of antiferromagnetism and its transition toward
superconductivity under bad nesting conditions of the electron

spectrum. The weakness of phonon-mediated interactions acts
as a decisive factor for the stability of antiferromagnetism
against the Peierls phenomena in low-dimensional conductors.
It is likely that these retarded interactions also have a built-in
positive impact in the observation of organic superconductivity
on the verge of antiferromagnetism in the Bechgaard salts.
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