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Effects of strain on the band structure of group-III nitrides
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We present a systematic study of strain effects on the electronic band structure of the group-III-nitrides (AlN,
GaN and InN) in the wurtzite phase. The calculations are based on density functional theory with band-gap-
corrected approaches including the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) and quasiparticle G0W0

methods. We study strain effects under realistic strain conditions, hydrostatic pressure, and biaxial stress. The
strain-induced modification of the band structures is found to be nonlinear; transition energies and crystal-field
splittings show a strong nonlinear behavior under biaxial stress. For the linear regime around the experimental
lattice parameters, we present a complete set of deformation potentials (acz, act, D1, D2, D3, D4, D5, D6) that
allows us to predict the band positions of group-III nitrides and their alloys (InGaN and AlGaN) under realistic
strain conditions. The benchmarking G0W0 results for GaN agree well with the HSE data and indicate that
HSE provides an appropriate description for the band structures of nitrides. We present a systematic study of
strain effects on the electronic band structure of the group-III nitrides (AlN, GaN, and InN). We quantify the
nonlinearity of strain effects by introducing a set of bowing parameters. We apply the calculated deformation
potentials to the prediction of strain effects on transition energies and valence-band structures of InGaN alloys
and quantum wells (QWs) grown on GaN, in various orientations (including c-plane, m-plane, and semipolar).
The calculated band gap bowing parameters, including the strain effect for c-plane InGaN, agree well with the
results obtained by hybrid functional alloy calculations. For semipolar InGaN QWs grown in (2021), (3031), and
(3031) orientations, our calculated deformation potentials have provided results for polarization ratios in good
agreement with the experimental observations, providing further confidence in the accuracy of our values.
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I. INTRODUCTION

The group-III nitride semiconductors AlN, GaN, InN, and
their alloys are already extensively used in light-emitting
diodes [1] and laser diodes [2] from the visible spectrum to
the deep ultraviolet (UV). The electronic structure of these
wide-band-gap semiconductors also enables high-power and
high-frequency devices [3]. However, the application of nitride
semiconductors is currently still limited by several factors.
For solid-state lighting, one of the most serious limitations
is the droop problem, which is believed to be related to the
Auger recombination process [4–6]. In addition, in traditional
c-plane (polar) quantum wells (QWs), the electron and hole
wave functions are separated by polarization fields, which
lowers the radiative recombination rate. To overcome this
problem, and to allow wider QWs that would also mitigate
Auger losses, semipolar and nonpolar InGaN/GaN QWs have
been proposed, where the polarization fields can be greatly
reduced or even eliminated [7]. Several experimental groups
have reported nitride-based light-emitting devices grown on
these nonpolar and semipolar planes [8–12].

One effect of forming an interface between dissimilar
nitride materials is the development of strain. The active
regions in nitride-based light-emitting devices consist of het-
erostructures such as InGaN/GaN (in light-emitting devices) or
AlGaN/GaN (in power electronic devices) multiple-quantum-
well (MQW) structures. Due to the large lattice mismatch
(2.5% between AlN and GaN and 11.0% between InN and
GaN), strain is present in alloy layers that are pseudomor-
phically grown on thick GaN layers or substrates. Strain
affects the device properties in several ways: (a) It changes the

absolute positions of the valence-band maximum (VBM) and
the conduction-band minimum (CBM), and hence modifies the
QW depth and the confinement of electrons and holes in the
active region. (b) It induces piezoelectric polarization in InGaN
or AlGaN QWs [7,13,14], thus lowering the electron-hole
overlap and hence the radiative recombination rate. (c) It
may also modify the effective masses of carriers and the
density of states [15,16]. (d) In polar (c-plane) QWs, the
in-plane strain is isotropic [17–19]. In nonpolar and semipolar
QWs, on the other hand, the biaxial stress induces anisotropic
strain, which drastically modifies the subband structures and
wave-function character [20–22] and induces polarized light
emission [11,12,14].

The effects of strain on the band structures of semiconduc-
tors can, to first order, be described by deformation potentials.
These are the linear coefficients in the response of the band
structure to a strain perturbation. The applicability of such a
description has been demonstrated in measurements of the
optical transition energies for GaN epilayers with residual
strain [23–25]. To quantify the strain effects for InGaN or
AlGaN alloys, accurate deformation potential parameters for
all three nitrides are needed.

So far, most of the experimental data on deformation
potentials of GaN [25–27,40] and InN [28] have been obtained
by a combination of x-ray and optical measurements from
the change of optical transition energies under the biaxial
stress induced by the c-plane substrate. However, the accurate
determination of deformation potentials by this experimental
approach is difficult. Indeed, as shown in Table I, the experi-
mental deformation potential data of GaN scatter over a very
large range. One of the main problems is that the uniaxial and
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TABLE I. Literature results for deformation potentials (eV) of
wurtzite GaN.

Method acz − D1 act − D2 D3 D4 D5 D6

Calc.a 2.99 −1.50 −2.04
Calc.b −4.78 −6.18 1.40 −0.70
Calc.c −3.10 −11.2 8.20 −4.10 −4.70
Calc.d 5.80 −3.25 −2.85
Calc.e −6.11 −9.62 5.76 −3.04
Calc.f −9.47 −7.17 6.26 −3.29
Calc.g −6.02 −8.98 5.45 −2.97 −2.87 −3.95
Expt.h 8.82 −4.41
Expt.i −6.50 −11.80 5.30 −2.70
Expt.j 6.80 −3.40 −3.30
Expt.k −5.32 −10.23 4.91 −2.45
Expt.l −3.60
Expt.m −9.60 −8.20 1.90 −1.00
Expt.n −6.50 −11.20 4.90 −5.00 −2.80 −3.10

aReference [32].
bReference [33].
cReference [34].
dReference [35].
eReference [36].
fReference [37].
gReferences [38,39].
hReference [27].
iReference [26].
jReference [40].
kReference [25].
lReference [41].
mReference [42].
nReference [30].

biaxial strain components cannot be applied separately, and the
measurement only provides results for a combination of several
deformation potentials. The quasicubic approximation [29] is
then needed to extract the deformation potentials from these
data—and as we will discuss in Sec. III D, this approximation
is not valid in the wurtzite nitrides. Uncertainties in the
results of the studies that use this approximation are thus
to be expected [25–27,40]. Another complication is that the
determination of the out-of-plane strain component depends
on the numerical values of the elastic stiffness constants. The
values of these constants also exhibit a lot of scatter.

A fairly unique approach was reported in Ref. [42], where
uniaxial strain along the c axis of GaN was applied by shock
compression. However, the acz − D1 value obtained using this
approach is larger in magnitude than any of the other results,
while the D3 and D4 values are much smaller in magnitude.
This might possibly be due to the biaxial strain components
not being exactly zero during the shock compression.

The most reliable experimental approach may be to carry
out optical measurements under various types of static uniaxial
stress. Such techniques have recently been used to obtain the
deformation potentials of GaN [30] and AlN [31]. The advan-
tage of this approach is that various strained environments
can be introduced in the system of interest, and therefore
deformation potentials are obtained without needing to rely
on the quasicubic approximation. Overall, as shown in Table I,

the experimental results measured using this approach show
better agreement with the most recent theoretical predictions.

Theoretical values are also available for GaN, but they
similarly are spread over a large range, as shown in Table I. The
large deviations in the band-gap-related deformation potentials
(acz − D1, act − D2) can be attributed to the band-gap problem
of density functional theory (DFT) in the local density ap-
proximation (LDA) or the generalized gradient approximation
(GGA). Although DFT with present-day exchange-correlation
functionals performs exceptionally well in predicting the
ground-state properties of materials, it was not intended to
describe properties that involve electronic excitations. One of
the most serious drawbacks of traditional DFT functionals, in
particular LDA and GGA, is that the band gaps of Kohn-Sham
band structures are severely underestimated (typically by
50%). For InN, this would be an even worse problem, since
LDA or GGA calculations give a negative band gap and hence
incorrect interactions between bands, prohibiting a determina-
tion of deformation potentials of InN with those techniques.
Recently, several schemes have been developed to address
this problem, including the incorporation of exact exchange
in hybrid functionals and applying many-body perturbation
theory on top of traditional DFT calculations. Deformation
potentials calculated with these advanced methods show better
agreement with experiment [38].

In addition, it has been shown that the relaxation of the
internal displacement parameter u is critical in determining
the crystal-field splitting and the related deformation potentials
(D3 and D4) [35]. Some earlier work that did not include this
internal relaxation is therefore not reliable [33]. Furthermore,
due to the sensitivity of the deformation potentials to u, the
results may not be accurate unless convergence is explicitly
verified. Finally, as we will demonstrate in Sec. III B, the
equilibrium lattice parameters around which the linear expan-
sion is constructed also has a large effect on the deformation
potentials, due to the pronounced nonlinear dependence of
some of the transition energies on strain. Different theoretical
approaches may yield different equilibrium lattice parameters.

In the present work, all of these shortcomings of previous
theoretical approaches have been addressed. We study the
strain effects on the band structure of wurtzite AlN, GaN,
and InN using band-gap-corrected first-principles approaches
including hybrid functionals [43] and the quasiparticle G0W0

method [44]. We show that the strain-induced modification
of the band structures is nonlinear, and we quantify this
nonlinearity by introducing a set of bowing parameters. By
applying different strains to wurtzite nitrides, we obtain a
complete set of deformation potentials for the linear regime
around the experimental lattice parameters. These results will
be reported in Sec. III.

In Sec. IV, we then use the semiempirical k·p method
to explore the strain effects in InGaN alloys by applying
our consistent set of deformation potentials. This allows us
to predict the band-structure modifications due to strain in
polar c-plane and nonpolar m-plane InGaN/GaN systems: (a)
the effect of biaxial stress on band gaps of InGaN alloys
grown on c-plane GaN substrates; (b) the relation between
anisotropic in-c-plane biaxial strain on valence-band structures
and the optical anisotropy of the light emitted from m-plane
InGaN/GaN devices [45]; and (c) the role of strain in the
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valence-band structure and polarization of semipolar InGaN
alloys.

II. MODEL AND COMPUTATIONAL DETAILS

A. k·p perturbation approach

We employ the k·p perturbation approach of Bir and Pikus
[29] to obtain the analytical solutions of strain-induced band-
structure modifications in the vicinity of the � point. These
solutions are then used to fit the first-principles band structures
to extract the deformation-potential parameters. The strained
Hamiltonian of the topmost three valence bands is given by
the following 6 × 6 matrix:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

F 0 −H ∗ 0 K∗ 0

0 G � −H ∗ 0 K∗

−H � λ 0 I ∗ 0

0 −H 0 λ � I ∗

K 0 I � G 0

0 K 0 I 0 F

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where

F = �1 + �2 + λ + θ,

G = �1 − �2 + λ + θ,

H = i(A6kzk+ + A7k+ + D6εz+),

I = i(A6kzk+ − A7k+ + D6εz+),

K = A5k
2
+ + D5ε+,

� =
√

2�2,

λ = A1k
2
z + A2k

2
⊥ + D1εzz + D2(εxx + εyy),

θ = A3k
2
z + A4k

2
⊥ + D3εzz + D4(εxx + εyy),

ε+ = εxx − εyy + 2iεxy, εz+ = εxz + iεyz,

k+ = kx + iky, k2
⊥ = k2

x + k2
y.

Here kx , ky , and kz are the electron wave vectors along the
x, y, and z directions. The x, y, and z directions are defined
as the [1010], [1100], and [0001] directions of the hexagonal
lattice, respectively. εxx , εyy , and εzz are the strain components
along the x, y, and z directions, respectively. εxz and εyz are
shear-strain components in the xz and yz planes. �1 is the
crystal-field interaction and �2 is the spin-orbit interaction.
Note that the element H in this Hamiltonian is different in
sign and by a factor i from that in the approach of Chuang and
Chang [33]. However, these differences do not produce any
observable physical effect; previous work has shown that the
same band structure is obtained from both approaches [46]. We
have also checked that such a difference in the Hamiltonian
does not affect the dependence of the band energies at the
� point on the strain components, which is used to extract
the deformation potentials. Therefore, the Chuang-Chang [33]
and Bir-Pikus [29] approaches are equivalent.

For an unstrained wurtzite system, the top three valence
bands correspond to the heavy hole (HH), light hole (LH), and
crystal-field split-off band (CH). The transition energies from
the CBM to these three bands are denoted EA, EB , and EC ,
respectively. Here we do not consider the spin-orbit interaction

(�2 = 0), which is very small in the nitrides [47]. In this case,
the HH and LH bands become doubly degenerate (�6) in the
absence of strain, and the CH band (�1) is split off by the
crystal-field splitting.

We first focus on those strain components that do not break
the wurtzite symmetry, including biaxial strain in the c plane
(εxx = εyy) and uniaxial strain along the c axis (εzz). Such
strain perturbations to the 6 × 6 k·p Hamiltonian do not split
HH and LH bands, although they induce an energy shift of the
conduction and the three valence bands at the � point:

�ECB = aczεzz + actε⊥,

�EHH/LH = (D1 + D3)εzz + (D2 + D4)ε⊥,

�ECH = D1εzz + D2ε⊥, (2)

yielding the following transition energies:

EA/B = EA/B(0) + (acz − D1)εzz + (act − D2)ε⊥
−(D3εzz + D4ε⊥),

EC = EC(0) + (acz − D1)εzz + (act − D2)ε⊥. (3)

Here ε⊥ (defined as εxx + εyy) and εzz are the strain
components in and out of the c plane. EA/B(0) and EC(0)
are the corresponding transition energies at equilibrium lattice
constants. From the slopes of the transition energies under
biaxial strain in the c plane (εxx = εyy �= 0,εzz = 0), we obtain
the deformation potentials act − D2 and D4, while acz − D1

and D3 can be obtained from the slope of transition energies
under uniaxial strain along the c axis (εxx = εyy = 0,εzz �= 0).

The strain components mentioned above preserve the
symmetry of the wurtzite crystal. The hexagonal symmetry
can be broken by anisotropic strain in the c plane, which is
present in nonpolar and semipolar nitride alloys. For example,
uniaxial strain in the c plane (εyy = εzz = 0, εxx �= 0) changes
the crystal symmetry from C6v to C2v . Without spin-orbit
splitting, the original 6 × 6 Hamiltonian reduces to a 3 × 3
matrix. Anisotropic strain in the c plane lifts the degeneracy
of the �6 states and yields the three eigenenergies:

E1 = EA/B(0) + (D2 + D4)εxx + D5εxx,

E2 = EA/B(0) + (D2 + D4)εxx − D5εxx, (4)

E3 = EC(0) + D2εxx.

Correspondingly, the three eigenstates are
⎛
⎜⎝

1

1

0

⎞
⎟⎠ ,

⎛
⎜⎝

−1

1

0

⎞
⎟⎠ ,

⎛
⎜⎝

0

0

1

⎞
⎟⎠ . (5)

The basis of the eigenvectors is

|1〉 = |X + iY 〉,
|2〉 = |X − iY 〉, (6)

|3〉 = |Z〉,
where the characters X/Y/Z indicate that the corresponding
wave function has px/py/pz character. The first eigenvector
in Eq. (5) has px character, while the second eigenvector has
py character. We obtain the magnitude of the deformation
potential D5 from the slope of the energy splitting between the
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x

y z

(a) (b)

FIG. 1. (Color online) Partial charge density of (a) the highest
and (b) the second highest valence band of wurtzite GaN under
compressive uniaxial strain in the c plane.

top two valence bands under anisotropic strain:

�E = |EX − EY | = 2|D5εxx |. (7)

To determine the sign of D5, we need to explore the
symmetry character of the valence bands. Figure 1 shows
the partial charge density of the topmost two valence bands
of wurtzite GaN under uniaxial compressive strain along the
x direction. The highest valence state exhibits px character,
while the second highest state exhibits py character. This
implies that D5 is negative in GaN, in agreement with
experimental observations [40]. Based on the calculated partial
charge densities of AlN and InN (not shown here), we find that
the D5 values in AlN and InN are also negative.

Another strain component that is present in semipolar ni-
tride materials is shear strain (εxz and εyz). The corresponding
deformation potential is D6. By applying only the shear strain
εxz in the wurtzite system, neglecting the spin-orbit interaction,
the topmost three valence-band eigenenergies at the � point are

E1 = �cr,

E2 = �cr

2
+

√
�2

cr + 8D2
6ε

2
xz

2
, (8)

E3 = �cr

2
−

√
�2

cr + 8D2
6ε

2
xz

2
.

We obtain the valence-band structures of the shear-strained
wurtzite GaN system from first-principles calculations. The
energy separation between E2 and E3 is defined as �E23 =√

�2
cr + 8D2

6ε
2
xz. The energy of one of the doubly degenerate

valence bands (E1, with py character) stays constant, while the
other one (E2, with px character) goes up. Correspondingly,
the crystal-field split-off band (E3, with pz character) goes
down with the same magnitude.

Above, we have presented the definitions of all deformation
potentials that are needed to describe the modification of
the band structure with strain at the � point. To determine
these deformation potentials from first-principles calculations,
we apply different strain components in the wurtzite nitride
systems and then fully relax the structure including the
internal structural parameter u (which sensitively affects
the magnitude of the crystal-field splitting). By fitting the
analytical expressions for the k·p eigenenergies at the �

point to the calculated band structures with different strain
components, the deformation potentials are obtained.

B. First-principles calculations

The DFT calculations are carried out using the plane-wave
projector augmented-wave (PAW) [48] method as imple-
mented in the VASP code [49]. We use the Heyd-Scuseria-
Ernzerhof (HSE) [43,50] hybrid functional to carry out the
structural optimization as well as band-structure calculations,
which gives band gaps and equilibrium lattice parameters in
better agreement with experiment for nitrides than LDA and
GGA, as shown in our previous work [38]. The screening
parameter μ in HSE is fixed at a value of 0.2. With the
default mixing parameter (25%), the obtained band gap of
InN (0.68 eV) agrees pretty well with experiment(0.7 eV). For
AlN and GaN, the mixing parameter α is modified (34% for
AlN, 30% for GaN) to reproduce the experimental band gaps
(6.13 eV for AlN, 3.48 eV for GaN). We treat the semicore
d electrons of Ga and In as valence electrons (also in the
G0W0 calculations). We use a plane-wave energy cutoff of
600 eV, which is necessary for the accurate determination of
the internal displacement parameter u, and a 6 × 6 × 4�-point
centered k-point mesh. Our quasiparticle G0W0 calculations
were based on exact exchange in the optimized effective
potential approach (G0W0@OEPx) [44].

III. COMPUTATIONAL RESULTS

A. Equilibrium lattice parameters and band gaps

The lattice parameters of the wurtzite crystal structure for
AlN, GaN, and InN are shown in Table II. LDA underestimates
the equilibrium lattice parameters of AlN, GaN, and InN,
while GGA overestimates these parameters compared with

TABLE II. Equilibrium lattice parameters (a and c) and band
gaps (Eg) obtained with LDA, GGA, HSE (with different mixing
parameter α), and the G0W0 quasiparticle approach. For the cases
with modified mixing parameter α, the band gaps are obtained at
experimental lattice parameters. The experimental lattice parameters
at which the G0W0 band gaps are obtained are listed in the G0W0

rows. Experimental lattice parameters at T = 300 K are taken from
Ref. [51], and band gaps at low temperature are taken from Refs. [52]
and [53].

Method a (Å) c (Å) u Eg (eV)

AlN LDA 3.092 4.950 0.3818 4.40
GGA 3.127 5.021 0.3812 4.10

HSE (α = 0.25) 3.102 4.971 0.3819 5.64
HSE (α = 0.34) 3.096 4.957 0.3820 6.13

G0W0 3.112 4.982 0.382 6.47
Expt. 3.112 4.982 0.382 6.15

GaN LDA 3.155 5.145 0.3764 2.12
GGA 3.215 5.240 0.3766 1.74

HSE (α = 0.25) 3.182 5.173 0.3772 3.27
HSE (α = 0.30) 3.174 5.162 0.3773 3.48

G0W0 3.190 5.189 0.377 3.24
Expt. 3.190 5.189 0.377 3.51

InN LDA 3.504 5.670 0.3784 <0
GGA 3.573 5.762 0.3792 <0

HSE (α = 0.25) 3.548 5.751 0.3796 0.68
G0W0 3.540 5.706 0.380 0.69
Expt. 3.540 5.706 0.380 0.7
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(a)

(b)

(  )c

FIG. 2. Band structures of (a) AlN, (b) GaN, and (c) InN at the
experimental lattice parameters, calculated using DFT and the HSE
hybrid functional with mixing parameters α adjusted to reproduce the
experimental band gap (see text).

experimental data. The deviations are on the order of 1%,
which is typical of these functionals. The HSE results for
structural properties with the default mixing parameter are
typically closer to experiment. The HSE band structures
obtained in Ref. [38] were obtained with the default mix-
ing parameter α = 25%. Although better agreement with
experiment compared with LDA or GGA was achieved, the
calculated band gaps for the three nitrides were still smaller
than experiment. Better agreement with experimental band
gaps can be achieved by modifying the mixing parameter. The
mixing parameters needed to reproduce the experimental band
gaps of group-III nitrides at the experimental lattice parameters
are 34% for AlN and 30% for GaN. As shown in Table II, the
modified mixing parameter also provides good agreement with
experiment for the structural properties.

The band structures of group-III nitride semiconductors
AlN, GaN, and InN obtained with the hybrid functional
approach with modified mixing parameters are shown in Fig. 2.
These band structures show good agreement with results

obtained with the quasiparticle G0W0@OEPx method [51],
which serves as a validation of the use of HSE as a reliable
method to obtain accurate band structures.

B. Transition energies in GaN under realistic strain

Optical transitions from the lowest conduction band to the
topmost three valence bands are dominant for optical emission
processes in nitride materials. In GaN, these transitions have
also been used as a characterization tool to evaluate the effects
of strain on the electronic properties. In this section, we will
analyze the strain dependence of these transition energies in
c-plane GaN by computing the band structures of GaN for
two types of realistic strain conditions: biaxial stress and
hydrostatic pressure.

Wurtzite c-plane GaN thin films grown on sapphire or SiC
experience biaxial stress induced by the substrate. Under such
stress, the wurtzite system exhibits biaxial strain in the c plane
accompanied by out-of-plane strain along the c axis:

εzz = −2
C13

C33
εxx, εxx = εyy �= 0. (9)

Here we use the elastic constants C13 and C33 obtained by DFT
calculations performed within the LDA [54] to determine the
strain components and lattice parameters under biaxial stress.

Figure 3(a) shows the transition energies between the lowest
conduction band and the topmost three valence bands (HH,
LH, and CH) of GaN under biaxial stress in the c plane for the
strain range ±3%. Interestingly, the transitions between the CB
and HH or LH bands show a strong nonlinear behavior. Such
nonlinearity is also evident in the crystal-field splitting (�cr) in
Fig. 3(b), which can be described by a quadratic dependence
as demonstrated by the fitted curve. This implies that the slope
(which defines the deformation potentials) differs for different
lattice parameters.

Another realistic strain condition can be induced by
hydrostatic pressure, where the stress components along three
directions are the same (σxx = σyy = σzz). The in-c-plane
strain and out-of-c-plane strain now have the same sign, but
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FIG. 3. (Color online) (a) Transition energies EA (=EB ) and
EC of GaN under biaxial stress. (b) Crystal-field splitting of GaN
under biaxial stress calculated with the HSE approach. Symbols
correspond to calculated values, and solid lines represent second-
order polynomial fits. The dashed line is a linear fit around the
equilibrium lattice parameter.
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FIG. 4. (Color online) (a) Transition energies EA (=EB ) and EC

of GaN under hydrostatic pressure. (b) Crystal-field splitting of GaN
under hydrostatic pressure. The data are calculated using DFT and the
HSE hybrid functional. Data points correspond to calculated values,
and solid lines represent second-order polynomial fits. The dashed
line is a linear fit around the equilibrium lattice parameter.

these strain components are not isotropic:

εzz = C11 + C12 − 2C13

C33 − C13
εxx,

(10)
εxx = εyy = C33 − C13

C33(C11 + C12) − 2C2
13

σzz.

Under hydrostatic pressure, as shown in Fig. 4, both the
transition energies and the crystal-field splitting change almost
linearly in the strain range ±3%.

C. Results for deformation potentials

We have seen that the dependence of the band energies on
strain in general is nonlinear. However, over a small range of
strains around a given lattice parameter, the variation can be
regarded as linear. It is therefore still possible to define a single
set of deformation potentials, choosing the experimental lattice
parameters as the point of reference. By constraining the strain
range to realistic strain conditions in the linear regime around
the experimental lattice parameters, we derive a consistent and
complete set of deformation potentials for all three nitrides.
The resulting values are listed in Table III. The recommended
values are those obtained with DFT-HSE, with the mixing
parameter α adjusted to obtain a band gap that matches
experiment. For comparison, for GaN and AlN, we also list
results obtained with other exchange-correlation functionals
and with HSE using the standard (α = 0.25) mixing parameter.
For InN, LDA and GGA results are not available since these
functionals produce a negative band gap.

Table III shows that the calculated deformation potentials
are sensitive to the choice of exchange-correlation functional.
LDA and GGA-PBE data agree well with each other, but both
of them show appreciable deviations from HSE results. The
band-gap-related deformation potentials acz − D1 and act −
D2 obtained by HSE calculations are considerably larger in
magnitude than those from LDA and GGA-PBE results. The
HSE calculations with modified mixing parameters, which
yield both very good structural properties and band structures,

are expected to also provide a reliable description of the change
of band gaps under strain. The deformation potentials D3, D4,
D5, and D6, which relate to the splitting of valence bands, are
less sensitive to the choice of exchange-correlation functional.
With the exception of acz − D1, the deformation potentials
decrease in absolute value from AlN to GaN to InN.

D. Deformation potentials: Validity, reliability, and comparison
with experiment

We checked the validity of the HSE hybrid functional results
by performing quasiparticle G0W0 calculations based on OEPx
[44]. The comparison (included in Table III) shows that
the deformation potentials of GaN obtained with DFT-HSE
calculations are in good agreement with those obtained from
G0W0 calculations (within 0.5 eV). Among these deformation
potentials, acz − D1 and act − D2 are more sensitive to the
gap and hence present the most important test. The agreement
with G0W0 data for these two deformation potentials validates
the reliability of the HSE method in determining deformation
potentials of nitrides and oxides [55]. Although both HSE and
G0W0 calculations properly address the band-gap problem,
here we recommend HSE, since the HSE calculations can
self-consistently provide accurate results for both structural
properties and band structures. Table III also shows that
results obtained from HSE with modified mixing parameters
are generally very close (within 0.3 eV) to the HSE results
obtained with the default mixing parameter (25%). For GaN
and AlN, we recommend HSE data obtained with the modified
mixing parameters, since this approach provides more accurate
atomic and electronic structures. Table III also lists the range
of experimental data for deformation potentials of GaN, as
reported in Ref. [52]; we note that our HSE results all fall
within this (very wide) range.

Our deformation potential data also allow us to assess the
accuracy of the quasicubic approximation. This approximation
assumes a correlation of the physical properties of the wurtzite
structure with those of the zinc-blende structure along the
〈111〉 direction due to the similarity of the local atomic bonding
environment between wurtzite and zinc-blende structures. In
the quasicubic approximation, the deformation potentials are
related as follows: D3 = −2D4, D1 + D3 = D2, and D3 +
4D5 = √

2D6. As a test, we checked the value of D3 + 2D4

(which should be zero in the quasicubic approximation),
finding 1.43 eV for AlN, −0.52 for GaN, and −0.88 eV for
InN. Clearly, neglecting the anisotropy of the wurtzite phase by
applying the quasicubic approximation introduces significant
inaccuracies in the determination of deformation potentials.

In Table III we also list the deformation potentials suggested
for GaN by Vurgaftman and Meyer [52], which are obtained by
averaging available data. Our HSE calculations for GaN yield
systematically smaller absolute values than the Vurgaftman
and Meyer numbers, with the exception of acz − D1. For
InN, Vurgaftman and Meyer recommended using the same
deformation potentials as for GaN due to the lack of data. Our
HSE values show that the deformation potentials of InN are
much smaller than those of GaN, with differences in magnitude
as large as several eV; use of the GaN values would therefore
lead to significant errors.
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TABLE III. Deformation potentials (eV) of wurtzite AlN, GaN, and InN obtained from DFT with LDA, GGA, and HSE functionals, and
from the G0W0 quasiparticle approach. The calculated quantities are obtained at the experimental equilibrium lattice parameters. For GaN, the
range of experimentally determined deformation potentials and the values recommended by Vurgaftman and Meyer (Ref. [52]) are also listed.

Method acz − D1 act − D2 D3 D4 D5 D6

AlN LDA −3.44 −11.39 8.97 −3.95 −3.36
GGA −3.39 −11.38 9.12 −4.01 −3.37

HSE (α = 0.25) −4.21 −12.07 9.22 −3.74 −3.30 −4.49
HSE (α = 0.34) (recommended) −4.36 −12.35 9.17 −3.72 −2.93 −4.58

GaN LDA −4.56 −8.03 5.61 −3.03 −2.94
GGA −4.46 −8.08 5.83 −2.98 −3.13

HSE (α = 0.25) −6.02 −8.98 5.45 −2.97 −2.87 −3.95
HSE (α = 0.30) (recommended) −6.07 −8.88 5.38 −2.69 −2.56 −3.88

G0W0@OEPx −5.49 −8.84 5.80 −3.10
Expt. range −9.6 · · · −3.1 −11.8 · · · −8.1 1.4 · · · 8.2 −4.1 · · · −0.7 −4.7 · · · −2.4

Vurgaftman and Meyera −4.90 −11.30 8.20 −4.10 −4.60
InN HSE (α = 0.25) (recommended) −3.64 −4.58 2.68 −1.78 −2.07 −3.02

aReference [52].

E. Nonlinear effects on transition energies

To quantify the nonlinearities in the effect of strain on
transition energies, we introduce a set of bowing parameters,
b1 to b4. Assuming that the bowing parameters for the strain
components along the x and y directions are equal to each
other, the dependence of the transition energies (EA/B and
EC) on strain can be expressed as

EA/B = EA/B(0) + (acz − D1)εzz + (act − D2)ε⊥

−(D3εzz + D4ε⊥) + (b1 + b3)ε2
zz + (b2 + b4)ε2

⊥,

EC = EC(0) + (acz − D1)εzz + (act − D2)ε⊥
+b1ε

2
zz + b2ε

2
⊥. (11)

EA/B(0) and EC(0) denote the transition energies at exper-
imental equilibrium lattice parameters, while EA/B and EC

are the transition energies when strain is applied. We obtain
the bowing parameters for GaN by performing a quadratic fit
of our transition-energy-strain data shown in Figs. 3 and 4.
Similar calculations were performed for AlN and InN, and the
resulting bowing parameters are listed in Table IV. This set of
bowing parameters is an essential input to model the optical
transitions in highly strained nitride heterostructures.

TABLE IV. Bowing parameters (eV) for strain effects on transi-
tion energies of wurtzite AlN, GaN, and InN obtained from DFT-HSE
calculations. These bowing parameters should be used in conjunction
with the recommended deformation potentials given in Table III.
All quantities are obtained at the experimental equilibrium lattice
parameters.

b1 b2 b3 b4

AlN −35.21 7.76 26.96 −14.50
GaN −7.02 −0.63 −6.49 −7.66
InN 6.66 −1.51 −13.34 −4.94

IV. STRAIN EFFECTS IN InGaN ALLOYS

Now that we have a complete set of deformation potentials
for GaN and InN, we can study the effects of strain on the
band structure of InxGa1−xN alloys. InxGa1−xN layers grown
pseudomorphically on GaN are under large biaxial stress
due to the lattice mismatch. The resulting strain strongly
affects the band structure. In addition, for c-plane-grown
devices, the strain causes piezoelectric polarization, which
induces electron-hole separation and lowers the radiative
recombination rate and hence the efficiency. For this reason,
growth in nonpolar and semipolar orientations, which avoid
the polarization fields, has been pursued to improve the
device efficiencies [8,9,56]. In such nonpolar and semipolar
InxGa1−xN layers, strain plays a crucial role in determining
the polarization character of the emitted light. In this section,
we explore the effects of strain on InxGa1−xN alloys in detail.

A. Band gap of c-plane InGaN alloys

The incorporation of In into GaN lowers the band gap and
allows the emission wavelength of InxGa1−xN-based devices
to be tuned over a wide spectral range from red to blue [58].
InxGa1−xN epilayers grown on GaN are pseudomorphically
strained, which affects the band gap. In addition, even in the
absence of strain, the band-gap variation with In concentration
is nonlinear, an effect known as band-gap bowing. For
InxGa1−xN, a surprisingly wide range of bowing parameters
has been reported in the literature [17–19,57,59,60]. Moreover,
the bowing parameter was found to depend on the In compo-
sition [57,59,61]. Here we aim to obtain a more accurate value
for the bowing parameter by using our calculated deformation
potentials to determine the effects of strain on the gap. These
effects need to be subtracted from the experimental band-gap
data before the effect of bowing can be determined.

It has been verified using hybrid functional calculations
that the equilibrium lattice parameters of the InxGa1−xN alloy
can be obtained by linear interpolation between GaN and InN:
aInGaN = aInN × x + aGaN × (1 − x) (Ref. [61]). Similarly, the
elastic constants and deformation potentials of the alloy
systems can be determined from those of the pure nitrides
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FIG. 5. (Color online) (a) Calculated band-gap change purely due to strain effects in an InxGa1−xN alloy grown pseudomorphically on
c-plane GaN. (b) Calculated transition energies of InGaN alloys grown on GaN as a function of In composition. (c) Band gap of InxGa1−xN
alloys with (solid line) and without (dashed line) strain effects. The bowing parameter is adjusted to provide an optimal fit to the experimental
data of Refs. [17] and [57] (shown as black dots), resulting in a value b = 2.0 eV.

by linear interpolation: CInGaN = CInN × x + CGaN × (1 − x)
and DInGaN = DInN × x + DGaN × (1 − x). For these physical
quantities, treating the dependence on alloy composition up
to linear order is sufficient. Any nonlinearities would have
negligible effects on the relevant observables. The band gap
of a free-standing alloy is calculated using the following
equation: Eg = EInN × x + EGaN × (1 − x) + b × x(1 − x),
with the bowing parameter b.

Assuming that the InxGa1−xN epilayer is pseudomorphi-
cally strained to match the in-plane lattice constant of GaN,
the in-c-plane biaxial strain components are determined by
the lattice mismatch between InGaN and GaN: εxx = εyy =
(aGaN − aInGaN)/aInGaN. The corresponding out-of-plane strain
component is related to the in-plane strain by a combination of
elastic constants of the alloy: εzz = − 2C13

C33
εxx . In the following,

we use the elastic constants calculated by Wright et al. [54].
We use Eq. (2) to calculate the strain effects on the band
gap of an InGaN alloy as a function of In composition. In
previous work [17,57,59], strain effects on the band gap were
assumed to be a linear function of the In fraction x. However,
as shown in Fig. 5(a), such a linear relation does not hold true.
The nonlinearity arises because the deformation potentials of
InGaN alloys are not constant, i.e., they cannot be taken to be
equal to those of GaN, but they depend on the In composition.
Since the difference in deformation potentials between GaN
and InN is quite large, the changes in band positions, which are
products of deformation potentials and strains, exhibit distinct
nonlinearities.

Using this more accurate treatment of strain effects, we can
now rederive the bowing parameter of unstrained InxGa1−xN
alloys by fitting the experimental data of band gaps measured
by McCluskey et al. [17,57]. As shown in Fig. 5(b), from
our calculations, the three transition energies of the c-plane
InGaN system decrease with increasing In composition, while
the energy separation between HH/LH bands and the CH band
increases with increasing In composition. The band gap of an
InxGa1−xN alloy as a function of In composition is shown
in Fig. 5(c), for both a free-standing (unstrained) alloy and
an alloy strained due to pseudomorphic growth on GaN. By
fitting our calculated band gap (solid curve) to the experimental
data [solid dots in Fig. 5(c)], a bowing parameter of 2.0 eV

is derived for InxGa1−xN alloys within the composition range
0 < x < 0.1. Strictly speaking, the bowing parameter depends
on alloy composition, but the experimental data set is obviously
not rich enough to address this additional complication, and
the use of a fixed bowing parameter over this relatively narrow
composition range is justified. The value b = 2.0 eV is smaller
than the result derived by McCluskey et al. [57], but it agrees
very well with the result obtained by recent first-principles
hybrid functional calculations [61,62].

B. Strain effects on the polarization character of nonpolar
m-plane InGaN

Nonpolar InGaN/GaN QWs have been proposed and
fabricated as promising candidates for high-efficiency light
emitters [8,63,64] because polarization fields in such devices
are expected to be greatly reduced, resulting in enhanced
efficiency. The lack of polarization fields, in turn, allows the
use of wider QWs, which reduce the carrier density in the
active layer for a given amount of injected current. These lower
carrier densities are beneficial because they reduce losses due
to Auger recombination, a loss mechanism that scales as the
third power of the carrier density [6,65].

Light emitted from nonpolar InGaN/GaN QWs has been
found to be polarized [9,14,56,66,67]. The emitted light has a
preferential polarization along the [1120] (x) direction, while
the weaker transition has a polarization along the [0001]
(z) direction (i.e., along the c axis, which lies in the plane
of the active layer in these nonpolar devices). Defining the
polarization ratio as ρ = (Ix − Iz)/(Ix + Iz), Masui et al.
[14] further found that the polarization ratio increases with
increasing In composition, and correspondingly the energy
separation between the valence bands with x character and
z character increases. Here we explore how strain affects the
band ordering and polarization characteristics of the optical
transition in such m-plane-oriented InxGa1−xN alloys.

For InxGa1−xN alloys grown on m-plane GaN substrates,
the two principal directions in the m plane are [1120] (x)
and [0001] (z), while the direction normal to the m plane is
[1100] (y). The in-m-plane strain components are determined
by the lattice mismatch between the InGaN alloy and the GaN
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FIG. 6. (Color online) (a) Strain components in InxGa1−xN alloys grown pseudomorphically on m-plane GaN. (b) Transition energies of
m-plane InxGa1−xN alloys. (c) Energy separation between the topmost two valence bands (E1 and E3). Experimental data from Masui et al.
[14] are shown as black dots.

substrate, while the out-of-plane strain component (along the
y direction) is determined by the relation εyy = −C11

C33
εxx −

C12
C33

εzz. Assuming that the InGaN film is perfectly strained
by the underlying GaN without any strain relaxation, the
strain components in the alloy are calculated from the lattice
mismatch and elastic constants, as shown in Fig. 6(a). The
strain component along the x direction εxx is compressive,
while that along the y direction εyy is tensile. This difference
between εxx and εyy (which is absent in InxGa1−xN alloys
grown along the polar c direction) plays a crucial role in
the modification of the band structure of m-plane InxGa1−xN
alloys by splitting the HH and LH bands and leading to
polarized light emission.

With our deformation potentials and the expressions for
band energies in Eq. (4), we calculate the transition energies
of an InxGa1−xN alloy as a function of In composition, as
shown in Fig. 6(b). The difference between εxx and εyy lowers
the symmetry of the wurtzite system from C6v to C2v and
splits the HH and LH bands. These two bands are denoted
now as E1 and E2, respectively, since the strain perturbation
breaks the original two |X ± iY 〉 states into px-like and py-like
states. By solving the strained k·p Hamiltonian, we find
that the eigenstate of the E1 band has px character while
that of the E2 band has pz character. Furthermore, at a very
low In composition (x = 0.04), the E2 valence band crosses
the CH band, which is pz-like and denoted as the E3 band.
This indicates that in m-plane InxGa1−xN alloys with In
compositions higher than 4%, the band ordering near the
valence-band edge is E1, E3, and E2 in order of decreasing
electron energy. The dominant optical transition is therefore
from the conduction band to the E1 band, and the emitted
light from this transition has polarization mainly along the x

direction. The next possible but much weaker transition is from
the CBM to the E3 band, leading to polarization along the z

direction. Such a band ordering and polarization character
of the emitted light is consistent with recent experimental
observations [9,14,67].

As shown in Fig. 6(c), the energy separation between
the E1 and E3 valence bands increases with increasing In
composition. This implies that the relative hole occupation of
the lower band decreases and the polarization ratio increases,
in agreement with the experimental observations of Ref.
[14] at low In compositions. A discontinuous change in the
experimental data occurs around an In composition of 0.2.
This variation cannot be explained if we assume that the

alloy is perfect and fully strained by the underlying GaN.
The discrepancy is possibly due to In segregation, or to strain
relaxation in these nonpolar InxGa1−xN alloys with high In
fraction.

C. The role of strain in the valence-band structure
of semipolar InGaN alloys

Semipolar QW orientations have been proposed to increase
the efficiency of light emitters. In these orientations, the effect
of spontaneous and piezoelectric polarization fields is reduced
and thereby the carrier overlap is increased [8,11,63,64].
Similar to the nonpolar case, growth of InGaN on GaN
along semipolar directions leads to strain conditions different
from those in conventional growth along the c direction.
Strain in semipolar InGaN grown on GaN is characterized
by the shear strain and anisotropic strain in the c plane.
This affects the splitting of the uppermost valence bands and
hence the polarization of the emitted light. Optical anisotropy
has been observed for semipolar devices [11,12,45,68,69]. In
addition, in semipolar (1122) InGaN QWs grown on GaN,
the dominant polarization direction was found to switch from
[1100] (perpendicular to the c axis) to [1123] when the In
concentration was increased above 30% [70,71].

Three factors critically influence the band structure of
InGaN QWs and therefore the polarization of the emitted
light: indium concentration, strain, and quantum confinement.
Based on k·p modeling, Yamaguchi predicted that the QW
thickness strongly affects the polarization [72]. This seems
qualitatively consistent with the results of Masui et al., who
observed an enhancement in optical polarization for thinner
QWs [71]. However, in Yamaguchi’s work, the magnitude
of this quantum confinement effect is very sensitive to the
choice of Luttinger parameters [51] and can range from 2 to
20 meV for 2-nm-thick QWs. Ueda et al., on the other hand,
found no appreciable QW thickness effect [70]. They proposed
strain to be the dominant factor, and they derived a large
shear-strain deformation potential of D6 = −8.8 eV from their
measurements [70]. Our own study of quantum confinement
[73] also produced very small differences compared to bulk
calculations; the main cause of polarization switching must
therefore be the strain.

In previous work [21], we found that anisotropic strain
(through the deformation potential D5) and shear strain
(through the deformation potential D6) have opposite effects
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on the valence-band separation. A switch in the band ordering
may occur if the shear strain and/or the deformation potential
D6 are large enough. However, using our consistent set of
deformation potentials, we found no evidence of any switch in
band ordering with increasing In concentration [21]. Note that
the D6 value derived by Ueda et al. [70] is much larger than any
of our calculated values. We conclude that the underlying cause
of the polarization switching remains unresolved. One possible
explanation is that the switching is due to inhomogeneities
of In concentrations and strain distributions in InGaN alloys
with high In content. A recent theoretical work supports our
conclusion that the polarization switching with increasing
carrier density may be attributed to inhomogeneous strain
distribution in the InGaN quantum wells [74].

Polarized light emission has also been observed in semipo-
lar InGaN QWs grown in (2021), (3031), and (3031) orien-
tations, and in all cases our calculated deformation potentials
have provided results for polarization ratios in good agreement
with the experimental observations [11,12], providing further
confidence in the accuracy of our values.

V. CONCLUSION

We have studied strain effects on the band structure of
wurtzite AlN, GaN, and InN using a first-principles approach
based on density functional theory with a hybrid functional. We
observed nonlinearities in the strain dependence and obtained
a set of strain bowing parameters that can be used to account
for nonlinear effects on band structure in highly strained
nitrides. For the linear regime around the experimental lattice
parameters, we have presented a complete and consistent

set of deformation potentials for the three nitride materials.
Examples of how our deformation potentials can be used in
the interpretation of experimental data on InGaN alloys and
quantum wells were provided. Together with the Luttinger
band parameters [51], the deformation potentials constitute
essential input for device modeling, and they will allow
accurate predictions of band positions under realistic strain
conditions.
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